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ABSTRACT. In an earlier paper the authors described an algorithm for determining the

quasi-order, Qt(b), of t mod b, where t and b are mutually prime. Here Qt(b) is the

smallest positive integer n such that t
n

+/-i mod b, and the algorithm determined the

sign (i)
e

e =0, I, on the right of the congruence. In this sequel we determine the

complementary factor F such that t
n

(-i) =bF, using the algorithm rather that b

itself. Thus the algorithm yields, from knowledge of b and t, a rectangular array

a a
2 a

r

k k
2

k
r

g g g
2 r

ql q2 qr
The second and third rows of this array determine Qt(b) and ; and the last 3 rows of

the array determine F. If the first row of the array is multiplied by F, we obtain

a canonical array, which also depends only on the last 3 rows of the given array; and

we study its arithmetical properties.
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O. INTRODUCTION.

Given t,b >_ 2, mutually prime, the quasi-order of t mod b, written Qt(b), is the

smallest positive integer k such that tkm +i mod b. We have described in [HP] two
Qt (b)

algorithms for determining Qt(b) and for deciding whether t m +I mod b or
Qt (b)

t -1 mod b. In fact, our algorithms provide us with a residue E mod 2 such
Qt (b)

that t --- (-I) mod b. In this paper, which can be viewed as a sequel to

[HP], we give an algorithm for determining the complementary factor F such that

Qt (b)
t (-1) bF (0.0)
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and study F as a function of tand b. Of course, a conceptually simple algorithm for
Qt (b)

)determining F would be to divide t (-i by b; however, our algorithm is based

on a (reduced, contracted) symbol associated with b, and not on knowledge of b

itself. This approach enables us to pursue the analysis of canonical symbols in

Section 2. Such symbols may be viewed as generating the entire set of symbols.

Let us recall the b-algorithm from [HP] and the notion of a symbol. Given t,b

as above, we aefine S to be the set of integers a satisfying

a < b t# a (0.1)O<

t- lifGiven a . S, we consider the integers qb + (-l)a, 0 or I, where <_ q <_ 2
t is odd; < q < if t is even and I; < q < - if t is even and O. We

claim that, whether t is odd or even, there is exactly one value of q in the given

ranges such that tlqb + (-l)Ea for some c. We choose this value of q and thus define

a function a a’, where

qb + (I) a tka ’, k >_ I, t a’ (0.2)

Then the function a a’ is a permutation of . We regard E as a residue mod 2 and

define a symbol (or t-symbol)

a a2 ar

k k 2 kr (0.3)
I 2 r
ql q2 q2 t

by means of the system of equations

qi b + (-I) la t lai+I, 1,2 r, ar+ a (0.4)

Our notation for a symbol is more complete than in [HP], since there we included

neither the qi nor t in the notation.

We recall that gcd(b,ai) is independent of and we call (0.3) reduced if

gcd(b,ai) I. We also call (0.3) contracted if there is no repetition among the a i.
The main theorem of [HP] was the following.

Quasi-Order Theorem Let (0.3) be a reduced and contracted symbol. Let k ?,ki,
l. Then k is the quasi-order of t mod b and indeed tk-- (-I) mod b

Actually, we have introauced a very slight change into the description of the

algorithm compared with [HP]. For there we considered the set S of integers given by

0 < a < , t # a, and the permutation of S. By allowing a we enlarge S to ,
the enlargement being actual only if b is even, t is odd. But then () and we

obtain the new symbols

bb -
t-I

b

t-1
2

(t odd, b even). (0.5)

We call such symbols trivial, and note that the only reduced and contracted trivial
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symbol, for a given odd t, is

2

i0 (t odd). (0.6)

However, this symbol completes the Quasi-Order Theorem, which, in the version in

[HP], excluded the case b 2 and hence excluded the trivial fact that the

quasi-order of t mod 2 is if t is odd.

We base our algorithm for calculating the complementary factor, in Section I, on

the symbol (0.3) or, equivalently, the equations (0.4). Indeed, we construct a

symbol

tk_(-1) A A2 Ar
k k k2 r (0.7)
I 2 r
ql q2 qr t

from the data of the last 3 rows of (0.3). We show that there is always such a

symbol for an arbitrary choice of positive integers kl, k 2 k r, rood 2 residues

el’ 2 Or’ and positive integers ql’ q2’ qr subject to the conditions

< qi <- if t is odd, < qi < if t is even and i I;

_< qi < - if t is even and i O. (0.8)

Indeed, there is then a unique symbol (0.7), which we call a canonical symbol. If

the symbol (0.3) is given, then the symbols (0.3), (0.7) are related by the rule

(tk (-1)e)ai bAi, (0.9)

A
showing that the complementary factor is any of the equivalent ratios However,

since we calculate A simply as a function of the last 3 rows of (0.7), we may

consider canonical symbols independently of their relation to the computation of the

complementary factor. In fact, Section 2 is devoted to such a study of canonical

symbol s.

Suppose then that we start with a canonical symbol (0.7); such a symbol is not

necessarily either reduced or contracted. Let gcd (tk-(-1) E, Ai) d. Then we

obtain from (0.7), by reducing and contracting, a symbol

A1/d A2/d As/d
k k k2 s (0.10)
Cl c2 s
ql q2 qs t

tk_(-l)
and every reduced, contracted t-symbol is so obtained. Writing b’ d we



116 P. HILTON and J. PEDERSEN

then know that the quasi-order of t mod b’ is k’ kl+k2+...+ks and that
+ + +

tk’_: ,_i,k 2 mod b’.

1. THE COMPLEMENTARY FACTOR

We proceed to solve the set of equations (0.4) (in the ’unknowns’ ai)

qi b + (-1) la t lai+ 1, 1,2 r (ar+ al). (I.I)

It will be convenient henceforth to regard the index as belonging to the set of

residues modulo r, so that we may, in practice, use any integer as an index. Now the

determinant of the matrix of coefficients in the equations (1.1) is easily seen to be

+(tk (-I)), where
r r

k . k i (1.2)
i=l i=l

Thus the set of equations (1.1) has a unique solution, whatever values are given to

k k r (subject to the restraint k >_I stated in the Introduction);

El’ 2 Er; ql’ q2 qr"
Our procedure is to set B tk (I) and solve the associated system of

equations

+ (-I) IA t 1Ai+ 1,2 r (1.3)qi B

then the solution of (1.1) is given by

Ba bA 1,2 r (1.4)

Since the solution of the system (1.3) is unique, it suffices to find numbers

AI, A2 Ar satisfying (1.3). We claim that the following values of these

numbers do indeed satisfy (1.3). Thus we set

k-k k k.k-ki-I
2t

i-I- i-2 + + ci r- irAi cilt + ci it + c 1,2, r

where

Ci-l+ei-2+’" "+ei
Cs, (-i) -S+lqi_s s 1,2 r.

To prove our claim, we first note that
+E. .

Cil qi-1 Cir (-I) lqi Ci+l,s+l (-I) ICis
hence

qiB+(-1) A
qi(tk-(-1) e) + (-1) i(cil k-ki_ k-ki_l-ki_2

t + ci2t + + Ci,r_
k.

while
k.k.

tk k-ki-1 tt 1Ai+ Ci+l, + Ci+l,2t + + Ci+l, r

tk
. k-ki_ k.

qi + (-1) l(cilt + + Ci’r-1 t l)

by (1.7). Since, also by (1.7), we see that qi(-1) (-1) lcir, it follows

(1.5)

(1.6)

(1.7)

+ Cir),
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immediately that we have found a solution, and tnus the unique solution, of the set

of equations (1.3).
We are particularly interested in A1. We will write A for A1, so that

kkl+"’+kr-1 kl+’"+kr-2 t + cr (1 8)A clt + c2t + + Cr_

where
+ 1+’"+ )qr-c (-1) r r- r-(i-2

(i-l) (1.9)

We have proved

Theorem 1.1 Let

b a a2 ar

k k 2 kr k k Z
I 2 r
ql q2 qr t

be a reduced and contracted symbol. Then k is the quasi-order of t mod b and

tk (-I) mod b;

(I.i0)

moreover

tk (-I) bF (1.11)

where alF A, and A is 9iven by (1.8). More 9enerally, a

b__z(l. 5).
F Ai, where A is liven

Let us call a contracted symbol normal if a 1. We then have

Corollary 1.2 Let the symbol (1.10) be normal. Then the complementary factor F is A

itself,

tk (-I) bA

where A is 9iven by (1.8).
Examples (i) Consider the normal symbol

641 5 159 241 25 77 141 125 129

7 2 4 3 2 2 2 9 2
5

1). Then 22 + 232 + 641A, and(of course, with t 2, i 1, qi

A 223- 221 + 219- 217 + 214- 210 + 29- 27 + 6,700,417.

(ii) Consider the normal symbol

23 9 11 7 6 8 3 4 2

2 2

0 0 0 0

2 2 2 2 2

11showing that 5 m -1 mod 23. Then

511 + 23A
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where

and

59 7 6 55A c + c25 + c35 + c4 + c554 + c653 + c752 + c85 + c9

Cl q9

c2 (-l)Oq8 2

c3 (-l)Oq7
c4 (-1)Iq6
c 5 (-l)Oq5 2

c 6
(-z)lq

4 =-i

c 7
(-1)1q

3 -2

c8 (-l)Oq2 2

c 9
(-l)Oq 2

Thus A 1953125 + 156250 + 15625 3125 + 1250 125 50 + 10 + 2 2122962.

Of course, as this second example shows, it is frequently quicker, with a

calculating device, simply to divide tk-(-l) by b to obtain the complementary

factor. However we wish to emphasize that we may define integers A by means of the

equations (1.3), even if no symbol (0.3) had previously been considered. Thus we may

specify the sequences k I, k 2 kr; I’ 2 r; ql’ q2 qr subject to

the appropriate constraints, and then set B tk-(-l) and determine the integers

AI, A2 Ar by means of (1.3) or, equivalently,. (1.5). This becomes particularly

relevant in view of the following theorem.

k2
c q q2 qrTheorem 4 Given the sequences k k r, i’ 2 r’ I’

subject to the appropriate constraints, set B tk-(-l). Then there exists exactly
one symbo

A A2 Ar
k k 2 kr

2 r

ql q2 qr

(1.12)

and A is liven by (1.5), 1,2 r.

Proof The uniqueness is obvious. Thus the force of the theorem is that (1.12) is a

symbol, that is, that

B0 < A < (1.13)

of course, it is clear from (1.5) that A is an integer.

To prove (1.13), we first observe that it is plain from (1.3) that if A
Ball i, then A > 0 for all i. Thus we have only to prove A <_

Assume first that t is odd. Then qi <-’ so that, by (1.5),

A <- (tk-I + tk-2 + + i) tk i<__

B<- for
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Now assume t even. If t 2, then Ei I, qi 1, so

k-k k-k -k k.
A t i-1 t i-1 i-2 + + (_l)rt (_l)r> 0

k BMoreover, B-A 2 IAi+l, k _> 1, so Ai+ < for all i, as required. Thus we may

assume t > 4.

Next we dispose of the case r I. It is then plain from (1.3) that A ql"

t tk-1 t tk+lNow if I O, then ql <-- <
2 while, if I i, then ql -< < -2---" Thus

we have disposed of the case r I, and may assume r > 2.
tAssume Ei-I O. Then, by (1.7), Cil qi-I < I, so that, by (1.5),

+ < 1/2 <_ 1/2
Finally, assume i-1 1. Then Cil < and ci2 -qi-2" Setting

k ki_ ki_ 2
=,, we find

Ai < (tk-l) < 1/2 (tk-1) < 1/2 B, if r 2"

Thus the inequality (1.13) is proved in all cases.

We call a symbol (1.12) a canonical symbol. Note that a canonical symbol can be

trivial. For if t is odd then the symbol, with k columns,

tk-1 tk_l tk_l
2

t-1 t-1
2 T

is trivial, and is plainly canonical.

Remark If we had obtained (1.12) from the symbol (0.3) the inequalities (1.13)
would, of course, have followed immediately from (1.4). However, we now know that

such a symbol (1.12) exists (and is unique) for any allowable selection of

kl’ k2 kr; I’ 2 r; ql’ q2 qr" In the next section we make a more

detailed study of canonical symbols.

2. CANONICAL SYMBOLS

We first prove some easily accessible lemmas relating to the canonical symbols

(1.12).
Lemma 2.1 In the symbol (1.12), A is independent of ki_ I.
Proof See (I.5).
Lemma 2.2 Let

tk+l a a2 ar

k k 2 kr

E1 2 Cr
ql q2 qr

(2.1)
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be a non-trivial symbol. Then it is canonical, so that a Ai.

Proof By (1.4), (tk (-l))ai tk + I)Ai- If +I # -(-I), then

tk + 2a i, (the factor 2 arises if t is odd)

tkcontradicting 0 < a < + I).

Remark Notice that we must insist that (2.1) is non-trivial. For, if t is odd,

tk+1 tk+l
2

0

t-1
2

tk+l

t-I

(k columns)

is a (trivial) non-canonical symbol.

Our next lemma is a portmanteau enunciation on quasi-orders; recall the notation

Qt(b)
Lemma 2.3

Proof (i)

v= O.

(ii)

(iii)

(i) If tk-z +i hod b, then Qt(b)Ik
(ii) If clb then Qt(c)IQt(b)

(iii) If (0.3) is a contracted symbol, then kIQt(b
(iv) Qt(tk+l) k unless t 2, k 2, when Q2(3)
Let Qt(b) , and k u + v, O <__ v <. Then tv +tk=_ _+I hod b, so

Let Qt(b) k. Then tkm +1 hod b, so tk m +1 hod c. Apply (i).
Let gcd(b,ai) d, b cd, a aid. Then

ar

k k 2 kr

el c2 Cr
ql q2 q2 t

is reduced and contracted, so that, by our main theorem, Qt(c) k.

(iv) Let Qt(tk+l) _> I. Then /_< k.

t+ < tk + I, except that 2 + 2 2 I.

Let

tk+l a a2 as

’I ’2 ’s
El E2
ql q2 qsl t

Lemma 2.4

Apply (ii).
But, if < k, then k > 2 and so

(2.2)

be a contracted symbol. Then Ik.
Proof By Lemma 2.3(iii), IQt(tk+l). Thus the result follows from Lemma 2.3(iv).
Theorem 2.5 If (2.2) is a non-trivial contracted symbol, it may be expanded to a

canonical symbol.

Proof We know by Lemma 2.4 thatI k. Thus we may expand (2.2) to a symbol (2.1)
which is also, of course, non-trivial. Apply Lemma 2.2.
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It follows that any non-trivial t-symbol for tk + may be contracted-expanded

to a canonical symbol, so that the first row of the symbol may be computea from the

remaining 3 rows by means of formula (1.5).
Example Consider the symbol

624 24

2

5

This expands to

624 24 24

2 2

which is canonical.

We now proceed to relate canonical symbols for different values of ki; to this

end, we write Ai(k) instead of Ai-
Theorem 2.6 Given the canonical symbols

tk-(-l) Al(k) A2(k) Ar(k)
k k2 kr

2 r

ql q2 qr

(2.3)

tk+l_(_l) Al(k+l) A2(k+l) Ar(k+l)
k k 2 kr_ kr+l

E E
2 r

ql q2 qr

(2.4)

we have At(k) At(k+1).
Proof This follows immediately from Lemma 2.1.

The force of this theorem is the following. We start with b tk + and any

and construct a contracted t-symbol. By Theorem 2.5 we know it may bea <

expanded to a canonical symbol S. If we now replace k by (k+1) and retain the same

a I, the t-symbol we obtain (perhaps not contracted) (i) has the same ci as S, (i i)

has the same qi as S, (iii) has the same k as S, < < r-l, (iv) has the final k r
increased by 1.

Example As in our previous example, start with

54-1 624 24

2

5
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and expand to

624 24 24

2 2

Then we know that the symbol with b 3124 is

55-1 3124 24

2

Executing the algorithm shows that the missing entry is 124. This raises the

question of whether there is an easier way to compute the top row of the symbol for

tk+l (_I).
To show that there is, suppose the canonical symbol (2.3) given; we describe how

to calculate Ai(k+l ). Set

Ai(k+l) Ai(k Ai(k), the th difference, 1,2 r, (2.5)

ki+.. +k

Ai(k t r(t-Z)6i(k), 1,2 r, (2.6)

and call 6i(k the residual th difference.

Theorem 2.7 The residual th difference 6i(k) is 9iven by

. kl+...+ki_
61(k) 0, 6i+l(k)-(-l) 16i(k) qi t 1,2 r-i (2.7)

Proof Since, by Theorem 2.6, Al(k+l Al(k) it follows immediately that 61(k 0.

We now prove the rest of (2.7). From (I.3),

qi(tk+l-(-1) ) + (-i) IAi(k+l) t IAi+l(k+l)
1,2 ,r-I. k

qi(tk-(-l) ) + (-I) ai(k t iai+l(k). k
Thus, by subtraction, qitk(t-1) + (-1) Ai(k) t A

ki+o..+krt (t-Z),

i+l(k), or, dividing by

kl+...+ki_
tqi

Example Consider the canonical symbol

+ (-I) 16i(k)= 6i (k) 2 r-I+1

28 1256 374

3

55+1 3126

0 0

2 5
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Here k 5; thus, to obtain the canonical symbol associated with 15626, still with

A 28, we compute

2 kl62(5) ql 2, 63(5 (-1) 62(5 + q2 t -2 + 5 3

k2+k 3A2(5) t (t-I)62(5) 54"4"2 5000

k3 3"4"3 1500A3(5) t (t-I)63(5) 5

We infer the canonical symbol

56+I 15626 28 6256 1874

4

0 0

2 5

Theorem 2.7 admits the following convenient corollary.
tz-1Corollary 2.8 Ai(k+l Ai(k t-ZT_ (Ai(k+l) Ai(k)).

Proof The only change in the last 3 rows of (2.4), compared with (2.3), is the

replacement of kr by kr+l. Thus it follows from (2.7) that

6i(k+l 6i(k
Thus (2.6) yields

Ai(k+l) tAi(k
or Ai(k+2) Ai(k+l) t(Ai(k+l) Ai(k)) (2.8)

The corollary is an easy consequence of (2.8).
Example We revert to the previous example and take 3. Thus we seek the

canonical symbol for 390626 with A 28. We know that A2(5 5000, A3(5 1500.
Thus, by Corollary 2.8,

A2(8) A2(5) 31A2(5) 155000,

A3(8) A3(5) 31A3(5) 46500

so that the required symbol is

58+1 390626 28 156256 46874

6

0 0

2
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