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ABSTRACT. We study in this paper the affine Weyl group of type An_], [1]. Coxeter [1]
showed that this group is infinite. We see in Bourbaki [2] that An-] is a split
extension of Sn, the symmetric group of degree n, by a group of translations and of
a lattice of weights. An-] is one of the crystallographic Coxeter groups considered
by Maxwell [3], [4].

We prove the following:

THEOREM 1. An-]’ n >3 is a split extension of Sn by the direct product of (n-1)
copies of Z.

THEOREM 2. The group Az is soluble of derived length 3, A3 is soluble of derived
.ength 4. For n >4, the second derived group A;_] coincides with the first A;_]
and so ﬂn_] is not soluble for n > 4.

THEOREM 3. The center of An-1 is trivial for n > 3.
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1. INTRODUCTION.
Consider the presentation

A1 = Y1 Yor -ees yn]yg =e if 1 <i <n,
Yi¥is¥q T YieYi¥in 1F 1 cisn-l,
Yiy; =¥y i 1 <i<j-1<n and (i,3) # (1,n),
Yiyp¥r = Yy
where n > 3.
This is an irreducible Coxeter group whose gragh is a polygon with n vertices. Using

some geometrical methods Coxeter showed that An-] is infinite [4]. This group is

also a Weyl group [1]. It is the affine Weyl group of type A ;. We see in Bourbaki
[2] that An_] is a split extension of Sn’ the symmetric group of degree n, by a
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group of translations and of a lattice of weights. This group was also considered by
Maxwell [3], [4].

The purpose of this paper is to prove that An_] is a split extension of Sn by
a direct product of (n-1) copies of Z. The method depends on presentations of group
extension [5]. We also find that As is soluble of derived length 3, Aq is soluble
of derived length 4 and that the second derived group A coincides with the first
An-1 .
the center of A _, is trivial.

n-1
if n >4 and hence An—] is not soluble in this case. We finally show that

2. THE STRUCTURE OF A_ . )

We show in this section that A
product of (n-1) copies of Z. We achieve this by using the method in [5] as fol-
Tows. We find an epimorphism 6: An_]-+ Sn such that the extension

is a split extension of Sn by the direct

1 — kers — An_] — Sn — 1 (2.1)

splits. It will be required to find a presentation for kere. We guess that it will
be isomorphic to A = Zx(n-l) (given by generators and relations). We then construct
a new short exact sequence (2.3), where A is embedded as normal subgroup of a group E

in.such a way that A is the kernel of an epimorphism 6': E — G.

1 kere 6 —25 6 —1 (2.2)
4 +
: g

1 A E G 1 (2.3)

Then we use Tietze transformations to identify E with é, i.e., to find an isomor-
phism ¢: E — é, which makes the right-hand square commute. It then follows that
A = kero. A presentation for the symmetric group of degree n > 2 is

2 ) .
= < . = < < -
Sp T Xis oo xn_]lx1 e if 1<is<n-1,

X X415 T X541%%547 if 1<i<n-2,
= xjxi if 1<i<j-1<n-1>.

XiX;
We define the mapping 6: An_] — Sn by
01y T X if 1<i<n-1
yn — X1X2 ... xn_zxn_]xn_z e.. X2X1.
Then 6 is an epimorphism. If o is the mapping from Sn to An-l defined by
@ Xy Ty if 1<i<n-1,

then o« 1is a homomorphism and a6 = ]S .
n

Thus the extension
T—rkere — A, pa— Sy £ splits.
We construct the short exact sequence

1—->A—>E—>Sn——->1.
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A presentation of E will be

E = <generators of A, generators of Sn|,
relations of A, relations of Sn,
action of Sn on A> [6].
Let A= <ap, ..., 2, qlaza =aa; if 1 <i<kanls (2.
We define the action of Sn on A as follows:
Xy 0o
a; = al] (2.
1 g . )
a, =aja; if 2<i<n-l (2
X, duy IF T =k, T <k <] (2
3, =4 a._y if i=k, 2 <i<n- (2
a, otherwise (2.
NOTATION. We let Ay T XpX3 e Xy We also denote the relations xyx = yxy and
ab = ba by (x,y) and [a,b] respectively.

To reduce the relations of E to a manageable form we consider the following
lemma and proposition.

LEMMA 1. In the group Sn the following identities hold:
(1) 8y = x50, if 2<i<k
(ii) BX5 = 8 if 1=k
(iii) AXs = gy 1T T =k
(iv) B Xy = Xy if i > k+l
(V) a8y = Xgeew X8 GF 2 <<k
(vi) A% = X3 .. XiBi -
PROOF. (i) BXs = XaXg o Xg_ 1XiXgog - XXs
SR CIRRIE SURT 3 PUET RPN 9
= X e X5 1Xp1%iXi4] Xy
" Xin b
(ii) to (iv) obvious.
(v) and (vi) application of (i).
PROPOSITION 1. In the group E, relations (2.4) to (2.9) become the following:
(i) Relation (2.5) is equivalent to (alxl)2 = e.
(ii) Relation (2.7) is equivalent to a; = a?i 2 <i<n-l.
(iii) Relation (2.6) is equivalent to (a;xy.X,).
(iv) Relation (2.8) follows from (ii).
(v) Relation (2.9) is equivalent to [a,xij for 3 < i <n-1.
(vi) Relation (2.4) is equivalent to (x2a1)2 = (alxz)z.

O 00

o
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PROOF. (i) Obvious
(i1) Easy by induction on 1.
(ii1) Using part (ii) relation (2.6) becomes

-1 2 -1,-1
xlAi COV.PE ST SN PR Y.

Using relation (2.9) it reduces to (a;x;, X,).

(iv) Obvious by using part (ii).

(v) Using part (ii) relation (2.9) becomes

-1, S .
R ST-RE S URSV. 37 P £k, 1#k+l.

If i > k+1, then by Lemma 1 (iv) we get
[x;» a1] for 3 <i <n-l.
If i <k then by Lemma 1 (i), we get

[Xi+1’ a;] for 2 <i <n-1.

Therefore relation (2.9) is equivalent to [a;, Xi] for

3 <1 <n-1.

(vi) Using part (ii) relation (2.4) becomes

-1 -1, . -1 -1 ;
Bby 850 3y = 18y 188 s T < k<=l

Using Lemma 1 (v) and relation (2.9), we get

(x,a1)% = (a;x,)?.

THEOREM 1. The group E is isomorphic to An-l and so An-] is a split extension

of S, by A where n > 3.

PROOF. In Proposition 1, we let a;x; = b. Then E has the following generators:

X1 Xps wovs Xp g b Relations of E are:
Relations of Spe
b2 = e,
(b, x5)
[bxy, x;J for 3 < i <n-1
(x,bx7)% = (bx;x,)2.
We change relation (2.13) to the form
(b, x1X5x7).
We change relation (2.12) to [b, X1] for 3 <1 <n-l

1

We Tet c = 4 _;ba Then ¢2 = e.

n-1°
Using relation (2.11) and Lemma 1 (i), we get (c, x;).

s
Xn-1 ¥n-1 = Bqo1b8yy -

(2.10)
(2.11)
(2.12)
(2.13)

(2.14)
(2.15)
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Using Lemma 1 (ii) and (v) and (2.15)
_ -2
X 1€ = An_]bAn_]
Using Lemma 1 (vi)
I B
1€ = Bngbly_p = X1y
).
Using Lemma 1 (i) and (2.15) we get

Therefore (c, Xn_1

[c, Xi] for 2 <i <n-1.

Thus E has the following presentation

A
-
A
=
]
—
-

E = <xps ovvs X ys clx? =e for 1<
c2 =e,
(Xi’ xi+]) for 1 <1 <n-2
[Xi’ xk] for 1 <1 <k-1<n-1,
(xp_10 €)s (x5 €)s
[Xi’ c] for 2 <i<n-1>,

Let ¢ = Xo- Then it is clear that E is the same as A and the theorem is proved.

n-1
REMARK 1. We notice the special cases Ao =S, = 1,.

Al = 53.

=]
N
|

= A(3, 3, 3) the triangle group a(3, 3, 3) [6].

REMARK 2. We used the Reidemeister-Schreier process to find A = keres for n=3, 4.
From the computations involved we found the action of S~ on A. For n>5, we
guessed that A = Zx("']) and the action is a generalization for the case when n=3,4.
We then proved this guess by the method in [6].

3. THE DERIVED SERIES OF A ;.
We prove in this section the following theorem:

THEOREM 2. The group A3 is soluble of derived length 3, A, is soluble of derived
length 4. For n > 4, the second derived group A;_] coincides with the first A;_]
and so An-] is not soluble for n > 4.

. To prove the theorem we consider the derived series of An 1 We notice that
A . T

:?31-= <y1|y%>. Hence {e, y;} is a transversal for A;_] in A,_- Using the
n-1 -
Reidemeister-Shreier process we find the following presentation for A;_]:

! = 3=2=3
Ab_y = <busbay oosby q[bd = % = b3

(bibi})% = e if 1<i<n-2,

if 1<i<n-2,

wi%1f e if 1<i<j-1<n-l>
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We now consider the following cases:
Az o
i) If n=3, == <by, baby = b; = [b1, b2] = e>.
Az
Using the Reidemeister-Schreier process we find that A% =z x z.
Therefore Azl is soluble of derived length 3.

A
ii) If n =4, 3. <b1[b? = e>. We use the Reidemeister-Schreier process

3 n
to find the following presentation for A,
A:; = <X’y’z,t|x2 = yz = 722 = t2 = [x,z] = [y,t] = e

xytz xtzy = e>.
éﬁ = <X,Y,Z,t|x2 = y2 = 22 = t2 = [x,y] = [x,z] = [x,t] =
Alll
) [y.x] = [y,t] = [2,t] = e>.

We use the Reidemeister-Schreier process to find that Aﬁ' = zxz. Therefore
A, is soluble at derived length 4.

A -
iii) If n > 4, :D:l- is trivial. So the second derived group A;’] coincides

"
n-1 ~ -
with first derived group An-]' Hence An-l is not soluble for n > 4.

4. THE CENTER OF A_ ..
We prove in this section that the center of An-l is trivial for n > 3.
LEMMA 2. The identity of A is the only element fixed by S".

PROOF. We let w be an element of A. We can write w in the form

my My Mh-1 . X3 .
apa, ... a4 where mj el for 1 <j<n-1. Let w =w for 1 <1 <n-1.
We therefore get the equation
X
mi my m i mp mz m
[al ar ... an?]]j =ajaz ... an?]] (4.1)

for 1 <i<n-1.
Using the action of S = on A [in Section 2] equation (4.1) for i =1 implies

Zmytmot LM
a; = e.

Since A is free abelian this equation gives

my +my, + ... +m o =0. (4.2)

n-1
Using the action of S~ on A, equation (4.1) for 2 <1 <n-1 implies

T B I B B
i-1 i

Since A 1is free abelian this gives
mi-m =0 for 2 <i<n-1l. (4.3)

From (4.2) and (4.3) we get m; =mp = ... = mo_y = 0. Therefore w = e as required.
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THEOREM 3. The center of An-l is trivial for n > 3.

PROOF. We know that

1————>A——>/~\n_]——>5n — 1.

We let x ¢ Z(A _;) S0 x =as where a e A and s e S . Welet x; =ajs; bea
typical element of An_]. Hence xx; = x;x implies asa;s; = a;s;as. Applying the
epimorphism o we get o(s)e(s;) = o(s;)o(s) and so 6(s) « Z(Sn) ={e}. Hence

s e kerg = An Sn = s = ?. Therefore x = a commutes elementwise with Sn‘ Using
Lemma 3, a =e and so Z(An_]) = {e}.

REMARK 3. From Remark 1 we notice that Z(Ap) = Z and Z(A,) = Z(S3) = {e}.

REMARK 4. We notice that 3{] = Sn from Theorem 1. Since S3; and S, are soluble

of length 3 and 4 respectively, we get that Az and A3 are soluble of length 3 and
4 respectively. Sn is not soluble for n >4 and A 1is soluble, it follows that
An-l is not soluble for n > 4.

REMARK 5. One way to view An-l is as a subgroup of the wreath product Z § Sn de-

fined as follows: Let Z*" be the free abelian group with base Py, ..., Pn_] on

which Sn acts by permuting the basis, xi = (i-1, 1), exchanges Pi-] and Pi
ko n-1/en-1

and fixes the others. The subgroup {P, ... Pn-l,2j=0kn =0} =H is S -invariant,

and has basis {a; = Py - Poll <i<n-1, and An.p s Just this split extension
of Sn by H. Therefore An-l is the subgroup of the natural wreath product of
FARN Sn consisting of those elements in which the component from the base group has

exponent sum zero.

REMARK 6. The motivation behind studying this group An-1 was to get some information
about the circular braid group Bn [7]. We see that An_] is the Coxeter group cor-
responding to {he Af{in group Bn. Consider the diagram

<

1 — Y — F — (1)
1 i é £ 1
—s X — B —> B _

é in in 1
— — — ——
lﬁ/n 4" n

Here B, is Artin's braid group (6], U, the unpermuted braid group, F a free group
of countably infinite rank [7] and X n-1 as described in this paper. Knowing
(1) 4id not help us to describe the structure of én which was described in a
different way [7]. We are still unable to find the groups X and Y.
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