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ABSTRACT. As weak forms of continuity in topological spaces, weak continuity [I],

quasi continuity [2], semi continuity [3] and almost continuity in the sense of Husain

[4] are well-known. Recently, the following four weak forms of continuity have been

introduced: weak quasi continuity [5], faint continuity [6], subweak continuity [7]

and almost weak continuity [8]. These four weak forms of continuity are all weaker

than weak continuity. In this paper we show that these four forms of continuity are

respectively independent and investigate many fundamental properties of these four

weak forms of continuity by comparing those of weak continuity, semi continuity and

almost continuity.
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1. INTRODUCTION.

The notion of continuity is one of the most important tools in Mathematics and

many different forms of generalizations of continuity have been introduced and

investigated. Weak continuity [i], quasi continuity [2], semi continuity [3] and

almost continuity in the sense of Husain [4] are well-known. It is shown in [9] that

quasi continuity is equivalent to semi continuity. It will be shown that weak

continuity, semi continuity and almost continuity are respectively independent. In

1973, Popa and Stan [5] introduced weak quasi continuity which is implied by both

weak continuity and quasi continuity. Recently, faint continuity and subweak

continuity which are both implied by weak continuity have been introduced by Long and

Herrington [6] and Rose [7], respectively. Quite recently, Jankovid [8] introduced

almost weak continuity as a generalization of both weak continuity and almost

continuity. In [i0], Piotrowski investigated and compared many properties of quasi

continuity, almost continuity and other related weak forms of continuity.

The main purpose of this paper is to show that these four weak forms of continuity

implied by weak continuity are respectively independent and to investigate many

fundamental properties of such weak forms of continuity by comparing with weak

continuity, semi continuity and almost continuity. In Section 3, we obtain some

characterizations of almost weak continuity and some relations between almost weak
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continuity and weak continuity (or almost continuity). Section 4 deals with some

characterizations of weakly quasi continuous functions. In Section 5, it is shown

that weak quasi continuity, faint continuity, subweak continuity and almost weak

continuity are respectively independent. In Section 6, we compare many fundamental

properties of semi continuity, almost continuity, weak continuity, subweak continuity,

faint continuity, weak quasi continuity and almost weak continuity. The last section

is devoted to open questions concerning subweak continuity and faint continuity.

2. PRELIMINARIES.

Throughout this paper spaces always mean topological spaces on which no separation

axiom is assumed. By f X Y we denote a function f of a topological space X

into a topological space Y. Let S be a subset of a space. The closure and the

interior of S are denoted by CI(S) and Int(S), respectively. A subset S is

said to be semi-open [3] (resp. regular closed, an e-set [ii]) if S C Cl(Int(S))

(resp. S Cl(Int(S)), S C Int(Cl(Int(S)))). The family of all semi-open (resp.

regular closed) sets in a space X is denoted by SO(X) (resp. RC(X)). The

complement of a semi-open set is called semi-closed. The intersection of all semi

closed sets containing S is called the semi-closure of S [12] and is denoted by

sCI(S). The union of all semi-open sets contained in S is called the semi-interior

[12] and is denoted by sInt(S). A subset S is said to be 8-open [6] if for each

x e S there exists an open set U such that x e U C CI(U) C S.

DEFINITION 2.1. A function f X Y is said to be semi continuous [3] (resp.
-i

e-continuous [13]) if for every open set V of Y, f (V) is a semi-open set (resp.

an e-set) of X.

A function f X Y is said to be quasi continuous at x e X [2] if for each

open set V containing f(x) and each open set U containing x, there exists an

open set G of X such that # # G U and f(G) V. If f is quasi continuous

at every x e X, then it is called quasi continuous. In [9, Theorem i.i], it is shown

that a function is semi continuous if and only if it is quasi continuous.

DEFINITION 2.2. A function f X Y is said to be weakly continuous [i] if

for each x e X and each open set V containing f(x), there exists an open set U

containing x such that f(U) C CI(V).

DEFINITION 2.3. A function f X Y is said to be almost continuous [4] if
-i

for each x e X and each open set V containing f(x), Cl(f (V)) is a neighborhood

of x.

In [13, Theorem 3.2], it is shown that a function is e-continuous if and only if

it is almost continuous and semi continuous. In [14] (resp. [i0]), almost continuous

functions are called precontinuous (resp. nearly continuous).

DEFINITION 2.4. A function f X Y is said to be weakly quasi continuous [5]

at x e X if for each open set V containing f(x) and each open set U containing

x, there exists an open set G of X such that G C U and f(G) C CI(V). If f

is weakly quasi continuous at every x e X, then it is called weakly quasi continuous

(briefly w.q.c.).

Both weak continuity and semi continuity imply weak quasi continuity but the

converses are not true by Examples 5.2 and 5.10 (below).

DEFINITION 2.5. A function f X Y is said to be faintly continuous
-i

(briefly f.c.) [6] if for every 8-open set V of Y, f (V) is open in X.

It is shown in [6] that every weakly continuous function is faintly continuous
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but not conversely.

DEFINITION 2.6. A function f X Y is said to be subweakly continuous

(briefly s.w.c.) [7] if there exists an open basis Z for the topology of Y such

-i -i
that Cl(f (V)) C f (CI(V)) for each V e Z.

It is shown in [7] that every weakly continuous function is subweakly continuous

but not conversely.

DEFINITION 2.7. A function f X Y is said to be a2most weak2y continuous
-1 -1

(briefly a.w.c.) [8] if f (V) C Int(Cl(f (CI(V)))) for every open set V of Y.

A function f X Y is weakly continuous if and only if for every open set V

of Y, f (V) C Int(f (CI(V))) [i, Theorem i]. A function f X Y is almost
-i -i

continuous if and only if f (V) C Int(Cl(f (V))) for every open set V of Y [7,

Theorem 4]. Therefore, almost weak continuity is implied by both weak continuity and

almost continuity.

From some remarks and definitions previously stated, we obtain the following

diagram. In Section 5, it will be shown that the four weak forms of continuity which

are all weaker than weak continuity are respectively independent.

DIAGRAM

continuous

s-continuous

almost continuous weakly continuous--semi continuous

a.w.c I-- f.c. s.w.c. w.q.c.

3. ALMOST WEAKLY CONTINUOUS FUNCTIONS.

In this section, we obtain some characterizations of a.w.c, functions and some

relations between almost weak continuity and almost continuity (or weak continuity).

THEOREM 3.1. For a function f X Y the following are equivalent:

(a) f is a.w.c.
-I -i

(b) Cl(Int(f (V))) C f (CI(V)) for every open set V of Y.
-I

(c) For each x e X and each open set V containing f(x), Cl(f (CI(V))) is

a neighborhood of x.

PROOF. (a) (b): Let V be an open set of Y. Then Y CI(V) is open in Y

and we have
-i -i

X f (CI(V)) f (Y CI(V))
-i -i

C Int(Cl(f (CI(Y CI(V)))))C X Cl(Int(f (V))).
-i -i

Therefore, we obtain Cl(Int(f (V))) f (CI(V)).

(b) (c): Let x e X and V an open set containing f(x). Since Y CI(V)

is open in Y, we have

X- Int(Cl(f-l(cl(V)))) Cl(Int(f-l(Y CI(V)))) C f-I(cI(Y CI(V)))
-i -i -i

f (Y Int(Cl(V)))C f (Y V) X- f (V).

Therefore, we obtain x e f-l(v)C Int(Cl(f-l(cl(V)))) and hence CI(f-I(cI(V))) is

a neighborhood of x.
-i

(c) (a): Let V be any open set of Y and x e f (V). Then f(x) e V and

CI(f-I(cI(V))) is a neighborhood of x. Therefore, x e Int(Cl(f-l(cl(V)))) and we

-i -i
obtain f (V) C Int(Cl(f (CI(V)))).
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Jankovit [8] remarked that a.w.c, functions into regular spaces are almost

continuous. It will be shown in Example 5.8 (below) that an almost continuous

function into a discrete space is not necessarily weakly continuous. Therefore, it is

not true in general that if Y is a regular space and f X Y is a.w.c, then f

is weakly continuous.

Rose [7] defined a function f X Y to be a/most open if for every open set

U of X, f(U) C Int(Cl(f(U))) and showed that a function f X Y is almost open
-i -I

if and only if f (CI(V))C Cl(f (V)) for every open set V of Y.

THEOREM 3.2. If a function f X Y is a.w.c, and almost open, then it is

almost continuous.

PROOF. Let x e X and V an open set containing f(x). By Theorem ii of [7]

we have x e f-l(v) C Int(Cl(f-l(el(V)))) C Int(Cl(f-l(v)))- Therefore, CI(f-I(v))
is a neighborhood of x and hence f is almost continuous.

COROLLARY 3.3 (Rose [7]). Every weakly continuous and almost open function is

almost continuous.

An a.w.c, and almost open function is not necessarily weakly continuous since the

function in Example 5.8 (below) is almost continuous and almost open but not weakly

continuous. It will be shown in Examples 5.2 and 5.8 that semi continuity and almost

weak continuity are independent of each other. Therefore, semi continuity does not

imply weak continuity. However, we have

THEOREM 3.4. If a function f X Y is a.w.c, and semi continuous, then it is

weakly continuous.

PROOF. Let V be an open set of Y. Since f is semi continuous, we have

f-l(v) g SO(X) and hence CI(f-I(v)) Cl(Int(f-l(v))) [15, Lemma 2]. On the other
-i -i

hand, since f is aoW.C., by Theorem 3.1 we have Cl(Int(f (V))) C f (CI(V)) and

hence CI(f-I(v)) f-I(cI(V)). It follows from Theorem 7 of [7] that f is weakly

continuous.

4. WEAKLY CONTINUOUS FUNCTIONS.

In this section, we obtain some characterizations of w.q.c, functions.

THEOREM 4.1. A function f X Y is w.q.c, if and only if for each x g X

and each open set V containing f(x), there exists U g SO(X) containing x such

that f(U) C CI(V).

PROOF. Necessity. Suppose that f is w.q.c. Let x g X and V an open set

containing f(x). Let A be the family of all open neighborhoods of x in X.

Then for each N e A there exists an open set G
N

of X such that # GNC N and

C CI(V). Put G {GNI N e A}, then G is open in X and x e CI(G). Letf(GN)
U G {x}, then we have x e U e SO(X) and f(U) C CI(V).

Sufficiency. Let x e X, U be an open set containing x and V an open set

containing f(x). There exists an A e SO(X) containing x such that f(A) C CI(V).

Put G Int(A/’U). Then, by Lemmas 1 and 4 of [15], G is a nonempty open set of X

such that G C U and f(G) C CI(V). This shows that f is w.q.c.

THEOREM 4.2. A function f X Y is w.q.c, if and only if for every F e RC(Y)
-i

f (F) e SO(X).

PROOF. Necessity. Suppose that f is w.q.c. Let F e RC(Y). By Theorem 2 of

[5], we have f-l(F) f-l(gl(Int(F)))C Cl(Int(f-l(el(Int(F))))) C Cl(Int(f-l(F))).
-i

Therefore, we obtain f (F) e SO(X).

Sufficiency. Let V be an open set of Y. Since CI(V) e RC(Y), we have
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-i -i -if (CI(V)) e SO(X) and hence f (CI(V)) C Cl(Int(f (CI(V)))). It follows from

Theorem 2 of [5] that f is w.q.c.

THEOREM 4.3. For a function f X Y the following are equivalent:

(a) f is w.q.c.
-i -i(b) sCl(f (Int(Cl(B)))) E f (CI(B)) for every subset B of Y.
-i -i(c) sCl(f (Int(F))) C f (F) for every F e RC(Y).
-i -i(d) sCl(f (V)) f (CI(V)) for every open set V of Y.

-i -i(e) f (V) slnt(f (CI(V))) for every open set V of Y.

PROOF. (a) (b): Let B be a subset of Y. Assume that x f-I(cI(B)).
Then f(x) CI(B) and there exists an open set V containing f(x) such that

V( B ; hence CI(V)’ Int(Cl(B)) . By Theorem 4.1, there exists U e SO(X)

containing x such that f(U) C/ CI(V). Therefore, we have U/’f-l(Int(Cl(B)))
and hence x sCl(f-l(Int(Cl(B)))). Thus, we obtain

-i -isCl(f (Int(Cl(B)))) C f (CI(B)).

(b) (c): Let F e RC(Y). By (b), we have

sCl(f-l(Int(F))) sCl(f-l(Int(Cl(Int(F)))))
-i -iC f (Cl(Int(F))) f (F).

(c) (d): For an open set V of Y, CI(V) e RC(Y) and by (c) we have
-i -i -isCl(f (V)) C sCl(f (Int(Cl(V)))) C f (CI(V)).

(d) (e): Let V be an open set of Y and x sInt(f-l(cl(V))). Then
-i -i

x e X- sInt(f (CI(V))) sCl(f (Y CI(V))).

Since Y CI(V) is open in Y, by (d) we have
-i -isCl(f (Y CI(V)))C f (CI(Y CI(V)))
-i -i

f (Y- Int(Cl(V)))C X- f (V).

Therefore, we obtain x f-l(v) and hence f-l(v) C slnt(f-l(cl(V))).
(e) (a): Let x e X and V be an open set containing f(x). We have

-i -i
x f (V) C sInt(f (CI(V))) e SO(X).

-iPut U sInt(f (CI(V))). Then, we obtain x e U e SO(X) and f(U) C CI(V). It

follows from Theorem 4.1 that f is w.q.c.

5. EXAMPLES.

In this section, we shall show that semi continuity, almost continuity and weak

continuity are respectively independent. Moreover, it will be shown that each two of

quasi weak continuity, faint continuity, almost weak continuity and subweak continuity

are independent of each other. It is shown in Theorem 2 of [i] that if f X Y is

weakly continuous and Y is regular then f is continuous. Theorem ii of [6] shows

that "weakly continuous" in the above result can be replaced by "f.c.". However, we

shall observe that "weakly continuous" in the above result can not be replaced by

"semi continuous", "almost continuous", "s.w.c.", "w.q.c." or "a.w.c.".
REMARK 5.1. There exists a semi continuous function into a regular space which

is neither f.c., s.w.c, nor a.w.c. Therefore, semi continuity implies neither weak

continuity nor almost continuity.

EXAMPLE 5.2. Let X {a, b, c}, T {, X, {a}, {b}, {a, b}} and o {, X,

{a}, {b, c}}. Let f (X, T) (X, ) be the identity function. Then (X, ) is

a rgular space. Since {b, c} e SO(X, ), f is semi continuous and hence w.q.c.

However, f is neither f.c., s.w.c, nor a.w.c.

REMARK 5.3. There exists a f.c. function which is neither w.q.c., s.w.c, nor

a.w.c. The following example is due to Long and Herrington [6].
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EXAMPLE 5.4. Let X {0, i} and T {, X, {i}}. Let Y {a, b, c} and

{, Y, {a}, {b}, {a, b}}. Define a function f (X, T) (Y, s) as follows: f(0)

a and f(1) b. Then f is f.c. [6, Example 2]. However, f is neither w.q.c.,

s.w.c, nor a.w.c.

REMARK 5.5. There exists a s.w.c, function into a discrete space which is

neither w.q.c., f.c. nor a.w.c. Therefore, a s.w.c, function is not necessarily

weakly continuous even if the range is a regular space.

EXAMPLE 5.6. Let X be the set of all real numbers, the countable complement

topology for X and o the discrete topology for X. Let f (X, T) (X, o) be

the identity function. Then f is s.w.c, since the set {{x}l x e X} is an open

basis for o and (X, ) is TI. However, f is neither w.q.c., f.c. nor a.w.c.

REMARK 5.7. There exists an almost continuous function into a regular space

which is neither w.q.c., f.c. nor s.w.c. Therefore, almost continuity implies neither

weak continuity nor semi continuity.

EXAMPLE 5.8. Let X be the real numbers with the indiscrete topology, Y the

real numbers with the discrete topology and f X Y the identity function. Then

f is almost continuous and hence a.w.c. However, f is neither w.q.c., f.c. nor

S.W.C.

REMARK 5.9. There exists a weakly continuous function which is neither semi

continuous nor almost continuous.

EXAMPLE 5.10. Let X {a, b, c, d} and {, X, {b}, {c}, {b, c}, {a, b},

{a, b, c}, {b, c, d}}. Define a function f (X, I) (X, o) as follows: f(a) c,

f(b) d, f(c) b and f(d) a. Then f is weakly continuous [16, Example].

However, f is neither semi continuous nor almost continuous since there exists {c}

e I such that f-l({c}) {a} and Int({a}) Int(Cl({a})) .
6. PROPERTIES OF SEVEN WEAK FORMS OF CONTINUITY.

In this section, we investigate the behavior of seven weak forms of continuity

under the operations like compositions, restrictions, graph functions, and generalized

products. And also we study if connectedness and hyperconnectedness are preserved

under such functions. Many results stated below concerning semi continuity, weak

continuity and almost continuity have been already known. Many properties of faint

continuity and subweak continuity are also known in [6], [17] and [18]. The known

results will be denoted only by numbers with the bracket ). In contrast to this,

new results will be denoted by THEOREM, LEMMA, EXAMPLE etc.

6.1. COMPOSITIONS.

The following are shown in [3, Example ii] and [18, Example 2].

(6.1.1) The composition of two semi continuous (resp. weakly continuous, s.w.c.)

functions is not necessarily semi continuous (resp. weakly continuous, s.w.c.).

THEOREM 6.1.2. The composition of two almost continuous functions is not

necessarily almost continuous.

PROOF. See the proof of Theorem 6.1.8 (below).

THEOREM 6.1.3. The composition of two w.q.c. (resp. a.w.c.) functions is not

necessarily w.q.c. (resp. a.w.c.).

PROOF. In Example 2 of [18], f and g are weakly continuous. However, the

composition gof is neither w.q.c, nor a.w.c.

In the sequel we investigate the behaviour of compositions in case one of two

functions is continuous.
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THEOREM 6.1.4. If f X Y is semi continuous (resp. almost continuous) and

g Y Z is continuous, then go f X Z is semi continuous (resp. almost

continuous).

PROOF. The proof is obvious and is thus omitted.

The next results follow from the facts stated in [18, p. 810 and Lemma i].

(6.1.5) If f X Y is weakly continuous (resp. s.w.c., f.c.) and g Y Z

is continuous, then go f is weakly continuous (resp. s.w.c., f.c.).

THEOREM 6.1.6. If f X Y is w.q.c. (resp. a.w.c.) and g Y Z is

continuous, then go f is w.q.c. (resp. a.w.c.).

PROOF. First, by using Theorem 4.1 we show that go f is w.q.c. Let x e X
-i

and W an open set containing g(f(x)). Then g (W) is an open set containing
-i

f(x) and there exists U e SO(X) containing x such that f(U) C Cl(g (W)).

Since g is continuous, we obtain (g f)(U)C g(Cl(g-l(w)))C CI(W). Next, we show
-i

that g f is a.w.c. Let W be an open set of Z. Then g (W) is open in Y and
-i -I -i -i

hence we have (go f) (W) C Int(Cl(f (Cl(g (W))))) C Int(Cl((g= f) (CI(W)))).

This shows that go f is a.w.c.

THEOREM 6.1.7. The composition go f of a continuous function f X Y and

a semi continuous function g Y Z is not necessarily w.q.c.

PROOF. Let X Y Z {a, b, c, d}, T {, X, {a}, {b}, {a, b}, {a, c, d}},

{, Y, {a}, {b}, {a, b}} and 8 {, Z, {a}, {b}, {a, b}, {b, c, d}}. Let

f (X, ) (Y, ) and g (Y, ) (Z, 8) be the identity functions. Then f is

-i
continuous and g is semi continuous since g ({b, c, d}) e SO(Y, s). The set

{b, c, d} is regular closed in (Z, 8) and (go f)-l({b, c, d}) SO(X, ). Thus,

by Theorem 4.2 go f is not w.q.c, and hence not semi continuous.

THEOREM 6.1.8. The composition go f of a continuous function f X Y and

an almost continuous function g Y Z is not necessarily a.w.c.

PROOF. Let X Y Z be the set of real numbers. Let be the usual

topology, the indiscrete topology and 8 the discrete topology. Let

f (X, T) (Y, ) and g (Y, ) (Z, 8) be the identity functions. Then f is

continuous and g is almost continuous by Example 5.8. However, g, f is not a.w.c.

since Int(Cl((g f)-l(cl({z})))) @ for every {z} e 8. Hence g, f is not almost

continuous.

The following is shown in Lemma i of [18].

(6.1.9) If f X Y is continuous and g Y Z is weakly continuous, then

g f is weakly continuous.

THEOREM 6.1.10. If f X Y is continuous and g Y Z is s.w.c. (resp.

f.c.), then g f X Z is s.w.c. (resp. f.c.).

PROOF. Suppose that f is continuous and g is s.w.c. There exists an open
-I -i

basis E of Z such that Cl(g (W)) g (CI(W)) for every W E. Since f is

continuous, we have Cl((go f)-l(w)) C f-l(cl(g-l(w))) C (g= f)-I(cI(W)). Therefore,

go f is s.w.c. Suppose that f is continuous and g is f.c. For every 8-open
-i -i

set W of Z, g (W) is open in Y and hence (g f) (W) is open in X. Hence

g, f is f.c.

6.2 RESTRICTIONS.

THEOREM 6.2.1. The restriction of a semi continuous function to a regular closed

subset is not necessarily w.q.c, and hence it need not be semi continuous.

PROOF. In Example 5.2, f (X, T) (X, ) is semi continuous and A {a, c} e
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RC(X, ). The restriction flA A (X, o) is not w.q.c, and hence it is not semi

continuous.

The following is shown in Example 3 of [19].

(6.2.2) The restriction of an almost continuous function to any subset is not

necessarily almost continuous.

THEOREM 6.2.3. If f X Y is weakly continuous and A is a subset of X,

then the restriction flA A Y is weakly continuous.

PROOF. Let V be an open set of Y. Since f is weakly continuous, by Theorem
-l -1

4 of [20] we have Cl(f (V))Ci f (CI(V)). Therefore, we obtain

CIA((flA)-I(v)) CiA(f-l(v)hA)C Cl(f-l(v))(’ A C (flA)-l(cl(V)),
where CIA(B) denotes the closure of B in the subspace A. It follows from [7,

Theorem 7] that flA is weakly continuous.

The following are shown in [17, Theorem 4] and [6, Theorem 12].

(6.2.4) The restriction of a s.w.c. (resp. f.c.) function to a subset is s.w.c.

(resp. f.c.).

THEOREM 6.2.5. The restriction of an a.w.c, function to a subset is not

necessarily a.w.c.

PROOF. In Example 3 of [19], f R R is almost continuous and hence a.w.c.

However, the restriction flM M R is not a.w.c, at x 0.

In the sequel we investigate the case of restrictions to open sets. The following

are shown in [15, Theorem 3] and [19, Theorem 4].

(6.2.6) The restriction of a semi continuous (resp. almost continuous) function

to an open set is semi continuous (resp. almost continuous).

The following are immediate consequences of Theorem 6.2.3 and (6.2.4).

(6.2.7) The restriction of a weakly continuous (resp. s.w.c., f.c.) function to

an open set is weakly continuous (resp. s.w.c., f.C.)o

THEOREM 6.2.8. If f X Y is w.q.c, and A is open in X, then the

restriction flA A Y is w.q.c.

PROOF. Let x e A and V be an open set of Y containing f(x). Since f is

w.q.c., by Theorem 4.1 there exists U e SO(X) containing x such that f(U) C CI(V).

Since A is open in X, by Lemma i of [15] x e A(’U e SO(A) and (flA)(A(%U)
f(A(’IU) C f(U) CI(V). It follows from Theorem 4.1 that flA is w.q.c.

THEOREM 6.2.9. If f X Y is a.w.c, and A is open in X, then the

restriction flA A Y is a.w.c.
-i

PROOF. Let V be an open set of Y. Since f is a.w.c., we have f (V)
-IInt(Cl(f (CI(V)))). Since A is open, we obtain

(flA)-l(v) C A/’ Int(Cl(f-l(cl(V)))) IntA(A/CI(f-I(cI(V))))
ClntA(ACI(A f-I(cI(V)))) IntA(CIA((flAI-I(cI(V))))

where IntA(B) and CIA(B denote the interior and the closure of B in the

subspace A, respectively. This shows that flA is a.w.c.

6.3. GRAPH FUNCTIONS.

Let f X Y be a function. A function g X X Y, defined by g(x)

(x, f(x)) for every x e X, is called the graph function of f. The following are

shown in [21, Theorem 2], [22, Theorem 2] and [20, Theorem i].

(6.3.1) The graph function g of a function f is semi continuous (resp.

almost continuous, weakly continuous) if and only if f is semi continuous (resp.

almost continuous, weakly continuous).
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The following is shown in Theorem 7 of [17].

(6.3.2) If a function is s.w.c., then the graph function is s.w.c.

The following is shown in Theorem 13 of [6].

(6.3.3) A function is f.c. if the graph function is f.c.

THEOREM 6.3.4. The graph function g X X Y is w.q.c, if and only if

f X Y is w.q.c.

PROOF. Necessity. Suppose that g is w.q.c. Let x e X and V an open set

containing f(x). Then X V is an open set containing g(x) and by Theorem 4.1

there exists U e SO(X) containing x such that g(U) C CI(X V). Therefore, we

obtain f(U) C CI(V) and hence f is w.q.c, by Theorem 4.1.

Sufficiency. Suppose that f is w.q.c. Let x e X and W be an open set

containing g(x). There exist open sets UIC X and V C Y such that g(x)

(x, f(x)) e UI
V W. Since f is w.q.c., by Theorem 4.1 there exists U

2
e SO(X)

containing x such that f(U2) C CI(V). Put U UI(’ U2, then x e U e SO(X) [15,

Lemma i] and g(U) C CI(W). It follows from Theorem 4.1 that g is w.q.c.

THEOREM 6.3.5. The graph function g X X Y is a.w.c, if and only if

f X Y is a.w.c.
-i

PROOF. Necessity. Suppose that g is a.w.c. In general, we have g (X B)
-i

f (B) for every subset B of Y. Let V be an open set of Y. By Theorem 3.1,
-i -i -i -i

we obtain Cl(Int(f (V))) Cl(Int(g (X V)))C g (CI(X V)) f (CI(V)). It

follows from Theorem 3.1 that f is a.w.c.

Sufficiency. Suppose that f is a.w.c. Let x e X and W be an open set of

X Y containing g(x). There exists a basic open set U V such that g(x) e
-iU V C W. Since f is a.w.c., by Theorem 3.1 Cl(f (CI(V))) is a neighborhood of

x and U(CI(f-I(cI(V))) C CI(U/’ f-I(cI(V))). On the other hand, we have
-i -i -i

U ( f-I(cI(V)) g (U CI(V)) C g (CI(W)). Therefore, Cl(g (CI(W))) is a

neighborhood of x and hence g is a.w.c, by Theorem 3.1.

6.4. PRODUCT FUNCTIONS.

Let {XI e V} and {YI e V} be any two families of topological spaces

with the same index set V. The product space of {Xel e e V} (resp. {Y e e V})

is simply denoted by HX (resp. HY ). Let f X Y be a function for each

e e V. Let f HX HY be the product function defined as follows: f({x })

{f(xe)} for every {x} e HX=. The natural projection of HXe (resp. HYe) onto X
8

X8 (resp. q8 HY Ya). The following are(resp. Ya) is denoted by P8 HX e
shown in [15, Theorem 5], [14, Theorem 2.6] and [18, Theorem i].

(6.4.1) The function f X HY is semi continuous (resp. almost

continuous, weakly continuous) if and only if f X Y is semi continuous (resp.

almost continuous, weakly continuous) for each e e V.

The following two results are shown in Theorems 3 and 5 of [18].

(6.4.2) If f X Y is s.w.c, for each e e V, then f HX HY is

s.w.c.

(6.4.3) If f HX HY is f.c., then f X Y is f.c. for each e V.

LEMMA 6.4.4. Let f X Y be an open continuous surjection and g Y Z a

funtion. If ge f X Z is w.q.c., then g is w.q.c.
-i

PROOF. Let F e RC(Z). Since go f is w.q.c., (ge f) (F) SO(X) by Theorem

4.2. Since f is an open sontinuous surjection, by Theorem 9 of [3] we obtain
-I -if((go f) (F)) g (F) e SO(Y). It follows from Theorem 4.2 that g is w.q.c.
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THEOREM 6.4.5. The function f X HY is w.q.c, if and only if f X Y

is w.q.c, for each s e V.

PROOF. Necessity. Suppose that f is w.q.c. Let e V. Since q HYs Y8
is continuous, by Theorem 6.1.6 f6 P6 qB f is w.q.c. Moreover, P6 is an open

continuous surjection and by Lemma 6.4.4 f8 is w.q.c.

Sufficiency. Let x {xs} e HXs and W be an open set containing f(x).

There exists a basic open set Vs such that f(x) e HVsC W, where for a finite

number of V, say, s
I, e2’ s V is open in Y and otherwise V Y

n s s "J
e SO(Xs) containing xs such that f (Us) CSince f is w q c there exists U

s

CI(V) for i’ s2 n" Put
n

H XU H U
s

=1 s#.

then x e U e SO(HX) [15, Theorem 2] and
n n

f(U) C H f (Us
H Y C CI(V

j=l Sj j s#.
s

j=l j #s.
Y C CI(W).

Therefore, it follows from Theorem 4.1 that f is w.q.c.

LEMMA 6.4.6. Let f X Y be an open continuous surjection and g Y Z a

function. If g f X Z is a.w.c., then g is a.w.c.

PROOF. Let W be an open set of Z. Since g f is a.w.c., we have
-i -i -i -i(g. f) (W) .i Int(Cl((g f) (CI(W)))) C Int(f (Cl(g (CI(W))))).

-i -i
Since f is an open surjection, we obtain g (W) j Int(Cl(g (CI(W)))). This shows

that g is a.w.c.

THEOREM 6.4.7. The function f HX HY is a.w.c, if and only if

f X Y is a.w.c, for each a e V.

PROOF. Necessity. Suppose that f is a.w.c. Let 6 e V. Since f is a.w.c.

and q6 Ys Y6 is continuous, by Theorem 6.1.6 f8 P8 q8 f is a.w.c, and

hence f8 is a.w.c, by Lemma 6.4.6.

Sufficiency. Let x {x e X and W be an open set containing f(x). There

exists a basic open set V such that
n

f(x) e VC W and V j=IHVj #a. Y’
where V is open in Y for j i, 2 n. Since f is a.w.c., by

(. S.

Theorem 3.1 CI(f-I(cI(Ve ))) is a neighborhood of x and

J
n

CI(f-I(cI(Va ))) n X C CI(f-I(cI(W))).
j=l

e"
j j s#s.

-I
Therefore, Cl(f (CI(W))) is a neighborhood of x and f is a.w.c, by Theorem 3.1.

It is well-known that a function f X HY is continuous if and only if

qB f.: X YB is continuous for each B e V. We investigate if weak forms of

continuity have this property.

The following are shown in [15, Theorem 6] and [3, Example i0].

(6.4.8) If a function f X HY is semi continuous, then q. f X Y

is semi continuous for each 8 e V. However, the converse is not true.

q6

THEOREM 6.4.9. A function f X IFf is almost continuous if and only if

X YB is almost continuous for each B e V.



PROPERTIES OF SOME WEAK FORMS OF CONTINUITY 107

PROOF. Necessity. Since q8 is continuous, this is an immediate consequence

of Theorem 6.1.4.

Sufficiency. Let x e X and W an open set containing f(x) in HY. There

is open in Yexists a basic open set V such that f(x) e VC W, where V
J

for i, 2 n and otherwise Ve Y-I Since qB(f(x)) e V8 and q8o f is

almost continuous for each B e V, Cl((q f) (Ve)) is a neighborhood of x for

n J
for i, 2, n and $Cl((q.= )-I(v )) is a neighborhood of X.

Moreover, we have
n

Cl((q.o f)-l(ve )) C Cl(f-l(Hva )) C CI(f-I(w)).
j=l

Assume that z CI(f-I(Nv)). There exists an open set U containing z such that

U f-I(Hv) . Therefore, U f (qk f)-l(Vk for some k (i k n). This

shows that z Cl((q f)_l(Vk ---n] -i

ek
and hence we obtain z Cl((qe.o f) (V.)).

-i
Consequently, Cl(f (W)) is a neighborhood of x and hence f is almost continuous.

The following three results are shown in Theorems 2, 4 and 6 of [18].

(6.4.10) A function f X NY is weakly continuous if and only if

qs f X Y8 is weakly continuous for each 8 e V.

(6.4.11) A function f X HYe is s.w.c, if qD f X Y8 is s.w.c, for

each 8 e V.

(6.4.12) If a function f X HYe is f.c., then q8
each 8 e V.

f X Y is f.c. for

THEOREM 6.4.13. If a function f X HYa is s.w.c., then q=m f X Y8 is

s.w.c, for each 8 e V.

PROOF. Since q8 is continuous, this follows immediately from (6.1.5).

THEOREM 6.4.14. If a function f X HY is w.q.c., then q f X Y8 is

w.q.c, for each 8 e V. However, the converse is not true in general.

PROOF. Since q8 is continuous, by Theorem 6.1.6 q8 f is w.q.c. In Example

i0 of [3], f. X- X. is semi continuous for i i, 2. However, a function
1 1

f X X
1 X2, defined as follows: f(x) (fl(x), f2(x)) for every x e X, is not

w.q.c.

THEOREM 6.4.15. A function f X Ya is a.w.c, if and only if qB=f X YB
is a.w.c, for each V.

PROOF. The necessity follows from Theorem 6.1.6. By using Theorem 3.1, we can

prove the sufficiency similarly to the proof of Sufficiency of Theorem 6.4.9.

6.5. CLOSED GRAPHS.

For a function f X Y, the subset {(x, f(x))l x X} of the product space

X y is called the graph of f and is denoted by G(f). It is well known that if

f X Y is continuous and Y is Hausdorff then G(f) is closed in X y. We

shall investigate the behaviour of G(f) in case the assumption "continuous" on f

is replaced by one of seven weak forms of continuity.

THEOREM 6.5.1. If f X Y is semi continuous and Y is Hausdorff, then

G(f) is semi-closed in X y but it is not necessarily closed.

PROOF. By Theorem 3 of [21], G(f) is semi-closed in X y. In Example 8 of

[3], f X X* is semi continuous and X* is Hausdorff. However, G(f) is not

closed in X X* because (1/2, O) e Cl(G(f)) -G(f).
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COROLLARY 6.5.2. A w.q.c, function into a Hausdorff space need not have a

closed graph.

THEOREM 6.5.3. An almost continuous function into a Hausdorff space need not

have a closed graph.

PROOF. In Example I of [19], f R R is almost continuous and R is

Hausdorff. However, G(f) is not closed since (p, -p) e CI(G(f)) G(f) for a

positive integer p.

COROLLARY 6.5.4. An a.w.c, function into a Hausdorff space need not have a

closed graph.

The following is shown in [23, Theorem i0].

(6.5.5) If f X Y is weakly continuous and Y is Hausdorff, then G(f) is

closed.

The above result was improved by Baker [17] as follows:

(6.5.6) If f X Y is s.w.c, and Y is Hausdorff, then G(f) is closed.

6.6. PRESERVATIONS OF CONNECTEDNESS AND HYPERCONNECTEDNESS.

In this section we investigate if connected spaces and hyperconnected spaces are

preserved under seven weak forms of continuity. A space X is said to be

hyperconnected if every nonempty open set of X is dense in X. The following are

shown in Example 2.4 and Remark 3.2 of [24] and [22, Example 3].

(6.6.1) Neither semi continuous surjections nor almost continuous surjections

preserve connected spaces in general.

The following is shown in [20, Theorem 3].

(6.6.2) Weakly continuous surjections preserve connected spaces.

THEOREM 6.6.3. Connectedness is not necessarily preserved under s.w.c.

surjections.

PROOF. Let X be real numbers with the finite complement topology, Y real

numbers with the discrete topology and f X Y the identity function. Then f is a

s.w.c, surjection and X is connected. However, Y is not connected.

The following is an improvement of (6.6.2) [25, Corollary 3.7].

(6.6.4) Connectedness is preserved under f.c. surjections.

COROLLARY 6.6.5. Neither w.q.c, surjections nor a.w.c, surjections preserve

connected spaces in general.

PROOF. This is an immediate consequence of (6.6.1).

The following is shown in [26, Lemma 5.3].

(6.6.6) Semi continuous surjections preserve hyperconnected spaces.

THEOREM 6.6.7. Almost continuous surjections need not preserve hyperconnected

spaces.

PROOF. In Example 5.8, f X Y is an almost continuous surjection and X is

hyperconnected. However, Y is not hyperconnected.

THEOREM 6.6.8. Weakly continuous surjectlons need not preserve hyperconnected

spaces.

PROOF. Let X {a, b, c}, T {, X, {c}, {a, c}, {b, c}} and {, X,

{a}, {b}, {a, b}}. Let f (X, T) (X, ) be the identity function. Then f is

a weakly continuous surjection and (X, ) is hyperconnected. However, (X, ) is

not hyperconnected.

COROLLARY 6.6.9. Hyperconnectedness is not necessarily preserved under s.w.c.,

f.c., w.q.c, or a.w.c, surjections.

PROOF. This follows immediately from Theorem 6.6.8.
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6.7. SURJECTIONS WHICH IMPLY SET-CONNECTED FUNCTIONS.

DEFINITION 6.7.1. Let A and B be subsets of a space X. A space X is

said to be connected between A and B if there exists no clopen set F such that

A C F and F/’AB . A function f X Y is said to be set-connected [27]

provided that f(X) is connected between f(A) and f(B) with respect to the

relative topology if X is connected between A and B.

The following lemma is very useful in the sequel.

LEMMA 6.7.2 (Kwak [27]). A surjection f X Y is set-connected if and only
-i

if f (F) is a clopen set of X for every clopen set F of Y.

THEOREM 6.7.3. A semi continuous surjcetion need not be set-connected.

PROOF. In Example 5.2, f is a semi continuous surjection but it is not

set-connected since f-l({a}) is not closed in (X, T).

THEOREM 6.7.4. An almost continuous surjcetion need not be set-connected.

PROOF. In Example 5.8, f is an almost continuous surjection but it is not

set-connected.

COROLLARY 6.7.5. Neither w.q.c, surjections nor a.w.c, surjections are

set-connected in general.

PROOF. This is an immediate consequence of Theorems 6.7.3 and 6.7.4.

The following is shown in [28, Theorem 3].

(6.7.6) Every weakly continuous surjection is set-connected.

THEOREM 6.7.7. A s.w.c, surjection need not be set-connected.

PROOF. In Example 5.6, f (X, T) (X, ) is a s.w.c, surjection but it is

not set-connected since f-l({x}) is not open in (X, Y) for a clopen set {x} of

(x, o).

The following is shown in [25, Theorem 3.4].

(6.7.8) Every f.c. surjection is set-connected.

7. QUESTIONS.

In this section we sum up several questions concerning subweak continuity and

faint continuity.

QUESTION i. Are the following statements for s.w.c, functions true

i) A function is s.w.c, if the graph function is s.w.c.

2) Each function f X Y is s.w.c, if the product function f X HY

is s.w.c.

QUESTION 2. Are the following statements for f.c. functions true

i) The composition of f.c. functions is f.c.

2) If a function is f.c., then the graph function is f.c.

3) If each f X Y is f.c., then f X Y is f.c.

4) If each q8(C) f X Y8 is f.c., then f X HYa is f.c.

5) If f X Y is f.c. and Y is Hausdorff, then G(f) is closed in X y.

Finally, the results obtained in Section 6 are summarized in the following table,

where denotes the results already known.
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TABLE

s .c. a.c.

f:X Y:P, g:Y Z:P (-)
gof:X- Z:P 6.1.1 6.1.2

f:X Y:P, g:Y Z:C + +
2

gof:X Z:P 6.1.4 6.1.4

f:X Y:C, g:Y Z:P
3

gof:X Z:P 6.1.7 6.1.8

f:X Y:P, AC X (-)
4 flA:A Y:P 6.2.1 6.2.2

f:X Y:P, A:open (+) (+)
5 flA:A Y:P 6.2.6 6.2.6

6
g:X XY:P (+) (+)

f:X Y:P 6.3.1 6.3.1

’7
f :X Y:P (+) (+)

g:X XY:P 6.3.1 6.3.1

f:HX HY :P (+)
8 +af :X / Y :P 6.4.1

f :X Y :P (+)
9 +af:HX HY :P 6.4.1

f:X HY :P (+) +
i0 pa:X Ye:P 6.4.8 6.4.9

ii p f:X Y :P (-) +
f:X /SHY :P 6.4.8 6.4.9

12
f:X Y:P, Y:T2

G(f):closd 6.5.1 6.5.3

f:X Y:onto P,
13 X connected

(-) (-)
6.6.1 6.6.1

Y:connected
f:X Y:onto P (+)

14 X :hyperconnected 6.6.6 6.6.7
Y :hyperconnected

f:X Y:onto P
15 f:set-connected 6.7.3 6.7.4

w.c. s.w.c, f.c. w.q.c. a.w.c.

(-) (-)
6.1.1 6.1.1 6.1.3 6.1.3

(+) (+) (+) + +
6.1.5 6.1.5 6.1.5 6.1.6 6.1.6

(+) + +
6.1.9 6.1.10 6.1.10 6.1.7

+ (+) (+)
6.2.3 6.2.4 6.2.4. 6.2.1

(+) (+) (+) +
6.2.7 6.2.7 6.2.7 6.2.8.

(+) (+) +
6.3.1 6.3.3 6.3.4

(+) (+) +
6.3.1 6.3.2 6.3.4

(+) (+) (+) +
6.4.1 6.4.1 6.4.3 6.4.5

() (+) +
6. .i 6.4.2 6.4.5

(+) + (+) +
6.4.10 6.4.13 6.4.12 6.4.14

(+) (+)
6.4.10 6.4.11 6.4.14

(+) (+)
6.5.5 6.5.6 6.5.2

(+) (+)
6.6.2 6.6.3 6.6.4

6.6.8 6.6.9 6.6.9

6.6.5

6.6.9

(+) (+)
6.7.6 6.7.7 6.7.8 6.7.5

(+)
6.4.1

6.1.8

6.2.5

+
6.2.9

+
6.3.5

+
6.3.5

+
6.4.7

+
6.4.7

+
6.4.15

+
6.4.15

6.6.5

6.6.9

6.7.5

i.

2.

3.

6.
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