ON COMPLEX L1-PREDUAL SPACES

MRINAL KANTI DAS

Department of Mathematics University of Nairobi P.O. Box 30197, Nairobi, Kenya.

(Received November 12, 1985 and in revised form April 30, 1986)

ABSTRACT - This paper contains some characterisations of complex L-balls, including interpolation theorems which are analogs of Edward's separation theorem for simplices.

KEY WORDS AND PHRASES: Boundary measures, Choquet ordering, Haar measure, Lindenstrauss space, Simplex.

1980 AMS SUBJECT CLASSIFICATION CODE. 46 B 99.

1. INTRODUCTION.

The purpose of this paper is to furnish some characterisations of complex L₁predual spaces which are being known as Lindenstrauss spaces after [1]. The dual unit balls of such spaces now-a-days called L-balls have been characterised by many authors including Lazar & Lindenstrauss [2], Lazar [3], [4], Lau [5] and others when the spaces are real. But their complex versions far from being trivial follow-ups seem to be much complicated and in reality sometimes need ingenuity to be formulated even. This paper contains some complex versions of Lau's results [5] embodied in Theorem 3.

2. NOTATIONS AND PRELIMINARIES

For a compact convex subset K of a locally convex Hansdorff space E, $\partial_e K$ stands for the set of its extreme points; M(K) for the Banach space (with total variation as norm) of complex regular Borel measures on K; $M_1(K)$ for the set of members of M(K) with norm ≤ 1 ; C(K), A(K), P(K) for the space of all real-valued continuous functions, continuous affine functions, continuous convex functions on K respectively.

For bounded real-valued functions f on K, the upper envelope is denoted by \hat{f} and the lower envelope by f. A measure μ is said to be a boundary measure if $|\mu|$ is maximal in the ordering of Choquet; in fact μ is a boundary measure iff $\mu(\hat{f}-f)=0$ for all fEC(K) [6;p.129]. We shall also write $\Gamma = \{ZE \ c: |Z|=1\}$.

If V is a complex Banach space, the dual unit ball $K=(V^*)_1$ is convex and compact in the w*-topology. We define the map hom f as (hom f)(x) = $\int_{\Gamma} \overline{\alpha} f(\alpha x) d\alpha$ for semi-continuous function f on K,

where d α is the unit Haar measure on Γ . Clearly hom f is Γ - homogeneous, i.e. (hom f) (βx) = β (hom f)(x) for $\beta \in \Gamma$. One can easily show that hom restricted to C(K) are norm-decreasing projections of C(K) onto the space of Γ - homogeneous 58

continuous functions on K. The adjoint projection hom defined as hom $\mu=\mu$ o hom is also a norm decreasing w*-continuous projection of M(K) onto a linear subspace $M_{hom}(K)$ of M(K). We can write (hom f)(x) = $S_1f(x) + i Tf(x)$

where
$$S_1 f(\mathbf{x}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos\theta f(\mathbf{x}e^{i\theta}) d\theta$$
, $Tf(\mathbf{x}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin\theta f(\mathbf{x}e^{i\theta}) d\theta$
 $-\pi$
If we write $(Sf)(\mathbf{x}) = \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} \cos\theta f(\mathbf{x}e^{i\theta}) d\theta$

(which multiplied by π gives what Roy [7] has defined as f_+), then 2(S₁f)(x) = odd Sf(x).

Throughout the paper we shall write $A_{_{O}}(K)$ for the set of all continuous Γ - homogeneous affine functions on $K=(V^{\star})_{_{1}}$.

(2.1)

3. Main Results

For real Banach space V, the following results are recently proved. <u>Theorem 1.</u> If K is the dual unit ball of a real Banach space V, then the following are equivalent:

- (i) V is an L₁-predual space.
- (ii) If μ_1, μ_2 are boundary measures on K having the same barycentre, then odd $\mu_1 = \text{odd } \mu_2$.
- (iii) For $f \in P(K)$, odd \hat{f} is affine.
- (iv) For any $f \in P(K)$, $\hat{f}(0) = \frac{1}{2} \sup\{f(x) + f(-x): x \in K\} = \sup\{even f(x) : x \in K\}$.
- (v) For any l.s.c. concave function f on K such that even $f \ge 0$, there exists a continuous affine symmetric function a on K such that $f \ge a$.
- (vi) If f, -h are l.s.c. concave functions on K such that $h \le f$ and $\sup\{even h(x) : x \in K\} \le \inf\{even f(x) : x \in K\}$, then these exists a continuous affine symmetric function a on K such that $h \le a \le f$.

The equivalence of (i) - (iv) is due to Lazar $\begin{bmatrix} 4 \end{bmatrix}$ while that of (i), (v), (vi) is proved by Lau $\begin{bmatrix} 5 \end{bmatrix}$.

Many interesting developments are noted when efforts are made to obtain complex analogs of these results (many others not stated here) of real Lindenstrauss spaces. A brilliant step towards this have been made by Effros $[\underline{8}]$ who has shown that $\operatorname{odd} \mu$ is to be replaced by hom μ in complex space. Olsen [9] has shown that the hypothesis even $f \geq 0$ in (v) is to be replaced by $\Sigma f(\zeta_k x) \geq 0$ for $\zeta_k \in \Gamma$ with $\Sigma \zeta_k = 0$, xcK. Subsequently Roy $[\underline{7}]$ has tried to give complex analog of (iv), replacing odd \widehat{f} by $\operatorname{odd}(Sf)^\circ$. His formulation is rather partial. But $[\underline{9}]$ contains some interesting examples.

Below we give a characterisation of complex L_1 -predual space V which is a kind of complex analog of Lau's result and is due to Olsen [9].

<u>Theorem 2</u>. If K is the dual unit ball of a complex Banach space V, then the following are equivalent:

- (i) V is an L₁-predual space;
- (ii) For every l.s.c. concave function f on K such that $\Sigma f(\zeta_k x) \ge 0$ for all xEK and $\zeta_k \in \Gamma$, k = 1, 2, ..., n with $\Sigma \zeta_k = 0$, there is an a $\in A_0(K)$ such that re $a(x) \le f(x)$ for all xEK.

We give in Theorem 3, some complex analogs of Lau's result. However to start with, we furnish a Lemma below:

<u>Lemma 1</u>. If μ be a non-zero positive measure on a compact convex subset K of a locally convex Hausdorf space E, then for all u.s.c. convex function f on K

$$f(x) \leq \mu(K)^{-1} \int f(y) d\mu$$
 where $r(\mu) = x$.

Proof: By a well-known result [10; I.2.2.], the stated inequality holds for f ε P(K). Now applying Mokobodzki([10; I.5.1]) that for every u.s.c. convex function f, there is a dscending net {f_a : f_a ε P(K)} which converges to f, we get the desired result.

Our main result is

<u>Theorem 3</u>. If K is the dual unit ball of a complex Banach space V, then the following are equivalent:

- (i) V is an L₁-predual space;
- (ii) If f is a l.s.c. concave function on K with even $(Sf)(x) \ge 0$ for all $x \in K$, then there exists an a $\in A_0(K)$ such that read f on K;
- (iii) If f, -h are l.s.c. concave functions on K such that $h \leq f$ and even S h (x) $\leq 0 \leq$ even S f(y) for all x,y \in K; then there exists an a $\in A_{\circ}(K)$ such that $h \leq re a \leq f$ on K.
- (iv) If f, -h are l.s.c. concave functions on K such that $h \le f$ and $\sup \{\sum_{k=1}^{n} \alpha_k h(\zeta_k x) ; x \in K, n \in \mathbb{N}, 0 \le \alpha_k, \Sigma \alpha_k = 1, \zeta_k \in \Gamma, \Sigma \alpha_k \zeta_k = 0\}$

$$\leq 0 \leq \inf\{\sum_{k=1}^{\infty} \alpha_k f(\zeta_k x): x \in K, n \in \mathbb{N}, 0 \leq \alpha_k, \Sigma \alpha_k = 1, \zeta_k \in \Gamma, \Sigma \alpha_k \zeta_k = 0\};$$

then there is an a $\epsilon A_{O}(K)$ such that $h \leq re a \leq f$ on K;

(v) If g is an u.s.c. convex function on K, then $\hat{g}(0) \leq \sup\{\Sigma \alpha_k g(\zeta_k x): x \in K, n \in N, 0 \leq a_k; \Sigma a_k = 1, \zeta_k \in \Gamma, \Sigma a_k \zeta_k = 0\}.$

Proof . (i) \rightarrow (ii).

We shall, in fact, show that (ii) is implied by Theorem 2 (ii). So let f be l.s.c. concave on K such that even $Sf(x) \ge 0$. We define

$$F(x) = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \left[\cos\theta f(xe^{i\theta}) \right] d\theta$$
$$-\pi/2$$

Then $F(x) = 2 \ Sf(x)$. Clearly F is l.s.c. concave. Let $\zeta_{k} \in \Gamma$ for k = 1, 2, ..., nbe such that $\Sigma \zeta_{k} = 0$. Now note that $Sf(x) = S_{1}f(x) + even \ Sf(x)$ and that Σ Hom f $(\zeta_{k}x) = 0$. Thus $\Sigma F(\zeta_{k}x) = 2 \ \Sigma Sf(\zeta_{k}x) = 2\Sigma S_{1}f(\zeta_{k}x) + 2\Sigma \ even \ Sf(\zeta_{k}x) =$ $2 \ \Sigma \ even \ Sf(\zeta_{k}x)$ which is ≥ 0 by hypothesis. Consequently by Theorem 2 (ii),, there is a function $b \in A_{O}(K)$ such that re $b \leq F$ on K.

We consider the measure $\mu = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \cos\theta \epsilon \quad (xe^{i\theta})d\theta$

where $\varepsilon(y)$ is the Dirac measure at y. By [6: p. 115], $r(\mu) = x$. Also $\mu(k) = \frac{4}{\pi}$. On applying Lemma 1, we have $2F(x) \leq \mu(K)f(x)$ i.e. $F(x) \leq \frac{2}{\pi}f(x)$. Putting a $= \frac{\pi b}{2}$, we have re a $\leq f$ on K. (ii) \rightarrow (iii). Let f, -h be l.s.c. concave functions on K such that $h \leq f$ and even S h(x) <0 < even Sf(y) for all x,y, ϵ K.

We first show that $h(x) + h(-x) \le 0 \le f(y) + f(-y)$ for all x,y ε K. Let us establish the last inequality, since the first one can be done similarly. To do so we take the measure

$$\mu = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \cos\theta \quad \varepsilon (\mathbf{x} \mathbf{e}^{\mathbf{i}\theta}) d\theta$$

and find as before by [6, p. 115] that $r(\mu) = x$, $\mu(K) = \frac{4}{\pi}$. Now apply Lemma 1 to get $f(y) + f(-y) \ge 0$ from even $Sf(y) \ge 0$. Now we define $F(x) = f(x) \land (-h) (-x)$.

Then F is l.s.c. concave. Moreover by the hypothesis and the inequalities just proved, we have $F(x) + F(-x) \ge 0$ for all $x \in K$ so that even $SF(x) \ge 0$. By (ii) then we have an a $\in A_0(K)$ such that re $a \le F$. This a is, in fact, the function with the desired property.

(iii) \rightarrow (iv). Let f, -h be two l.s.c. concave functions on K, which satisfy the conditions given in the hypothesis of (iv). Then clearly even (Sh)(x)

$$= \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} \cos\theta \left[h(xe^{i\theta}) + h(-xe^{i\theta}) \right] d\theta \le 0$$

Similarly even (Sf)(y) \geq 0 for all y ϵ K.

So by (iii) there is an a $\in A_{O}(K)$ such that $h \leq re a \leq f$ on K.

(iv) $\stackrel{\rightarrow}{n}$ (v). Suppose that g is an u.s.c. convex function and let $g_{0} = \sup\{\sum_{k=1}^{\infty} \alpha_{k} g(\zeta_{k} x): x \in K; n \in N; 0 \le \alpha_{k}; \Sigma \alpha_{k} = 1, \zeta_{k} \in \Gamma, \Sigma \alpha_{k} \zeta_{k} = 0\}$. We assume that $g_{0} = 0$; there will be no loss of generality in the assumption since $(g + \alpha)^{-}(0) = \hat{g}^{-}(0) + \alpha$ for positive real number α .

We define $F = -\sigma g$ where $(\sigma g)(x) = g(-x)$. Clearly F is l.s.c. concave. Since $g + \sigma g \leq 2g_0$ by the definition of g_0 , it follows that $g \leq F$. Moreover for $n \in N$, $\alpha_k \geq 0$, $\Sigma \alpha_k = 1$, $\zeta_k \in \Gamma$, $\Sigma \alpha_k \zeta_k = 0$, $x \in K$, we have $\Sigma \alpha_k F(\zeta_k x) = -\Sigma \alpha_k g(-\zeta_k x)$ so that $\inf \{ \frac{n}{\Sigma} \alpha_k F(\zeta_k x); x \in K, n \in, \alpha \geq 0 \Sigma \alpha_k = 1, \zeta_k \in \Gamma, \Sigma \alpha_k \zeta_k = 0 \} = -g_0 = 0$. Thus by (iv), there is an $h \in A_0$ (K) such that $g \leq re h \leq F$. We put $re h = a \in A(K)$. Now since $g \leq a$, we have $\hat{g}(0) \leq a(0)$. Again $-\sigma g \geq a - 2g_0 \in A(K)$, so that $a(0) - 2g_0 \leq (-g)$ (O) $= -\hat{g}(0)$.

Thus $\hat{g}(0) \leq a(0) \leq -\hat{g}(0) + 2g_0$ so that $\hat{g}(0) \leq g_0$ and the result follows. (v) \rightarrow (i) is the same as [7;p.103]

<u>Note</u>: Our result in (v) is sharper than Roy's result [7; Thm 3.3 (iii)] that for $g \in P(K), \hat{g}(0) \leq \sup\{\Sigma \alpha_k g(\zeta_k x): x \in K, n \in N, 0 \leq \alpha_k, \Sigma \alpha_k = 1, \zeta_k \in \Gamma, \Sigma \alpha_k \zeta_k = 0\}$. In fact this follows from (v) immediately, since the reverse inequality is evident from the concave character of \hat{g} .

REMARKS"

In analog with Lazar's selection theorem for Choquet simplex, Lazar & Lindenstrauss [2] formulated a selection theorem for real L-balls which was followed by a complex version by Olsen [9]. Our results which are chiefly complex analogue of Lau's result [3] seem to resemble Edward's interpolation theorem [10; [II.3-10]]for simplices.

REFERENCE

1.	LINDENSTRAUSS, J.	:	Extension of Compact Operators Memoirs Amer. Math. Soc. $\underline{48}$ (1964).
2.	LAZAR, A. & LINDENSTRAUSS, J.	:	Banach spaces whose Duals are L1-spaces and their Representing Matrices I, Acta Math. 126 (1971), 186-193.
3.	LAZAR, A.	:	Space of Affine Continuous Function on Simplex, Trans. Amer. Math. Soc. 134 (1968), 503-525.
4.	LAZAR, A.	:	The Unit Ball in Conjugate L ₁ -spaces, <u>Duke Math</u> , <u>J. 39</u> (1972), 1-8
5.	LAU, Ka-Sing	:	The Dual Ball of Lindenstrauss Space, Math. Scand. 33, (1973), 323-337.
6.	CHOQUET, G.	:	Lectures on Analysis, vol. II W.A. Benjamin, INC, (1976).
7.	ROY, A.K.	:	Convex Functions on the Dual Ball of a Complex Lindenstrauss space, <u>J. London. Math. Soc</u> . (2) (1979) 529-540.
8.	EFFROS, E.G.	:	On a Class of Complex Banach spaces, <u>Illinois J. Math.</u> 18 (1974), 48-59.
9.	OLSEN, G.H.	:	Edward's separation Theorem for complex Lindenstrauss space with Application to selection and Embedding Theorem, <u>Math. Scand. 38</u> (1976), 97-105.
10.	ALFSEN, E.M.	:	Compact Convex Sets and Boundary Integrals. (1971); Springer Verlag.