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ABSTRACT. Two point boundary value problems involving reflection of the argument are

studied. The nonlinearity involved is allowed to cross asymptotically any number of

eigenvalues of the associated linear eigenvalue problem as long as those crossings

take place in subsets of sufficiently small measure.
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I. INTRODUCTION.

This paper is devoted to the study of the two point boundary value problems

and

x"(t) + f(x(t))x’(t) + g(t,x(t),x(-t)) e(t), t [-1,1]

x(-1) x(1) O;
(1.1)

x"(t) + g(t,x(t),x(-t)) e(t), t [-I,I]

x’(-l) x’(1) O;
(1.2)

where f: is a continuous function, g:[-1,1] x x is a function

satisfying Caratheodory’s conditions and e LI(-I,I) is given. It is assumed that

lim sup l(t’x’Y)r(t)x (1.3)

uniformly a.e. in t [-1,11, y where in the case of equaton (1.1) r (t)

ro(t) + rl(t) + r(t) where to(t) -- with strict inequality holding on a subset

of [-I,I] having positive measure, r LI(-1,1), r L(-I,I) and [rllL1 and

rol sufficiently small and in the case of equation (1.2) r(t) is such that
L

E Ll(-l,l) with I r(t)dt < 2.r
It should be observed that the linear eigen-value problem

x" + %x 0 (1.4)
x(-l) x(1) 0

22
has X

n
4

n 1,2,... for eigen-values and the linear eigen-value problem
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x" Xx 0
(1.5)

x’(-l) x’(1) 0
2 2

has X n---R--
4

n 0,1,2,... for eigen-values. Accordingly, the asymptotic behavior
2

of
g(t,x,y)

is related to the eigen-value -- for the problem (I.I) and the firstx
2

two-eigen-values 0 and - for the problem (1.2). However, the exp.ression
g(t,x,y) n22

lim sup is allowed to cross any number of eigen-values as long as

those crossings take place in subsets of [-I,i] of sufficiently small measure.

Differential equations with reflection of the argument represent a particular

case of functional differential equations whose arguments are involutions. Important

in their own right, they have applications in the investigation of stability of

differential difference equations. Initial value problems for equations with

involutions have been considered in numerous papers. A survey of results in this

direction is given in [I]. However, research on boundary value problems for such

equations is developed yet insufficiently. Wiener and Aftabizadeh initiated the

study of problem (I.i) in the case that f 0 and g(t,x,y) is bounded on

[-I,I] l x l in [2]. The methods used in this paper are similar to the ones used

by Gupta-Mawhin [3] for periodic solutions of Lienard’s differential equations. We

mention that in addition to using the classical spaces C([-I,I]), ck([-l,l]) and

Lk(-l,l) of continuous, k-times continuously differentiable or measurable real

functions the k-th power of whose absolute value is Lebesgue integrable we use the

space HI(-l,l) defined by

HI(-I,I) {x" [-I,I] I x is abs. cont. on [-I,i] and

L2x’ (-I,I)]

with the usual inner-product and the corresponding norm I’I
2. SOME PRELIMINARY LEMMAS. H

LEMMA I. Let F LI(-I,I) be such that for a.e. t [-I,I]

r(t) - (2.i)

with strict inequality holding on a subset of [-1,1] of positive measure. Then,

there exists a 6 6(r) > 0 such that for all x H1(-I,I), x(1)=x(-l)=0 one has

Br(X) ([x’(t)12 r(t)x2(t))dt
PROOF. We first see, using (2.1) and the Wirtinger’s inequaIity, [4],

HIfor all x (-I,I) with x(-l) x(1) O, that

BF(x) 0.

Moreover, Br(x) 0 if and only if

x(t) A cos ._t
2

for some A , but, then
2 2

0 (- r(t))x2(t)dt A2 (- r(t))cos 2
tdt 20

(2.2)
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2so that by our assumption that F(t) < -- on a subset of [-I,I] of positive

measure we have A 0 and hence x(t) 0 for t e [-I,I].

Assume, now, that the conclusion of the lemma is not true. Then we can find a

sequence {Xn} in HI(-1, I) and x in HI(-1, i) such that

IXnl i, for all n, Xn x in C([-l,l]), x x
H n

in HI(-1,1) with x (-I) x (I) 0 for all n and
n n

0 <. BF(Xn <--nl for all n 1,2

Now, we have from Schwarz’s inequality in HI(-I,I) that

[(x x) ]2 2 2
for all n 2n’

H
< IXnl IXIHI

and hence

m [xl 1"H n H
Also (2.3), (2.4) imply that

IXn 12
H
I I_l (l+F(t))x2(t)dt

and so,

which gives

Ixl 2 x2=< (l+F(t)) (t)dt
H

(2.3)

(2.4)

Br(x) $ O,

and hence x(t) 0 for t e [-I,I] by the first part of the proof of lemma. Thus,

0 a contradiction to the first equality in (2 3) Hence the lemma is,xn,Hl
proved. 2
LEMMA 2. Let F F

0
+ F + F where F e L (-I,I), F e LI(-I,I) and F0(t) 4

for a.e. t in [-I,I] with strict inequality holding on a subset of [-I,I] of

positive measure. Let 6(F0) be given by lemma i. Then for all x HI(-1,1) with

x(-1) x(1) 0

4
Br(x) >- [6(rO) " Irxl Irl

L
PROOF. We have

Sr(X) f_ <[x’(t)] z r0()xZ<t))dt f_ r()xZ(t)dt f-l r(t)x2(t)dt.
Using the fact that HI(-1,1) C([-l,l]) and the Wirtinger inequalities, [4],

I1 2 I’1 2 Ixl Ix’l 2 IxIHL (-1,1) L (-1,1) (-1,1) L (-1,1)

as well as lema I, we get

2 2 -4’too’-’"Br(X) a 6(ro) IxIH1 -7 IxlHt Irt
L

4 2
[(ro) 7 Irl 2 Irl ] IxlntL L

2
REMARK I. Clearly the best value for 6(0) is , so that when r

0
0, F 0,

we have
2 2)IXIHBr(x) Z (- - rl

L
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for all x H(-I,I) with x(-l) x(1) O.

LEMMA 3. Let F F
0

F + F=o be as in Lemma 2 and 6(F0) be given by Lemma I.

Then for all measurable real functions p on [-I,I] such that p(t) F(t) a.e.

on I-l,1], all continuous f: R I and all x Hl(-l,1) with x’ absolutely

continuous on [-I,I] and x(-l) x(1) 0 we have

-Jl x(t)(x"(t) + f(x(t))x’(t) + p(t)x(t))dt

L L

HPROOF Since x (-i,i) with x’ absolutely-continuous and x(-l) x(1) O,

we get on integrating by parts that

x(t)(x"(t) + f(x(t))x’(t) p(t)x(t))dt

I [(x’(t))Z P(t)x2(t)]dt
> f [(x’(t)) 2 F(t)x2(t)]dt

[(ro) 71rl --Irl llxl 2

L L H

in view of Lemma 2.

REMARK 2. We observe that the main ingredient in Lemmas 1,2, and 3 is that the

x HI(-I,I) satisfy Wirtinger inequalities. Now, since it is easy to see that for

Hx (-I,I) with x(-l) O, x’(1) + kx(1) O, where k >. 0 is given,

(or x’(-l)-hx(-l) =0, where h >. 0 is given, x(1) 0) Wirtinger type inequalities

hold, analogues of Lemma I, 2, 3, with f E 0, can be obtained.

3. EXISTENCE THEOREMS

Let f: be a continuous function and let g- [-i,I] x x be

such that g(-,x,y) is measurable for each x, y e and g(t,-,’) is continuous

on I x l for a.e. t [-I,I]. Assume, moreover, that for each r > 0 there

exists er LI(-I’I) such that Ig(t,x,y)l <" er(t) for a.e. t in [-I,I],

x in [-r,r] and all y e . We say that such a g satisfies Caratheodory’s

conditions.

We consider the following boundary value problem

x"(t) + f(x(t))x’(t) + g(t,x(t),x(-t)) e(t), t [-l,l]

x(-1) x(1) 0

We prove the following existence theorem for (3.1).

THEOREM I. Assume that there exists F LI(-I,I) such that

(3.1)

whereuniformly a.e. in t [-I I] and y . Suppose that F F0
+ F + F 2

L
1 -.L L==(-I I) F LI(-I,I) and F0 (-I,I) are such that Fo(t) < for a.e.

t in [-I,I] with strict inequality on a subset of [-I,I] of positive measure and
4 Irl +- ]rlJ < 6(r0)’ where 6 (F O) is as determined in Lemma I.

L L

LThen (3 I) has at least one solution for each e (-I,I).

PROOF Let n =7 [(ro) -7 Irl Irl ]- Then, there exists r > 0 such
L w L

that for a.e. t in [-I,I] all x with Jx Z r and y .

lim sup
g(t,x,y) < r(t) (3.2)

ixl x
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g(t,x,y) < F(t) B

Define YI" [-l,1] x R x I l by

Then, by (3.3)

g(t,x,y)
x

g(t,rl,Y)

"rl(t,x,y)
r(t)

g(t,-rl,y)
-r

if Ixl > r

if 0 < x < r

,if x= 0

if -r < x < O.

365

(3.3)

(t,x,y) < r(t) + n

for a.e. t in [-I,I] and x,y in . Now, the function

(t,x,y) e [-I,I] x x (t,x,y)x
satisfies the Caratheodory’s conditions and the function h: [-1,1]

defined by

h(t,x,y) g(t,x,y) Yl(t,x,y)x
is such that there is an a LI(-1,1) satisfying

Jh(t,x,y) a(t) (3.4)

for a.e. t in [-1,1] and all x,y in .
Now equation (3.1) can be written as

x"(t) + f(x(t))x’(t) + l(t,x,(t),x(-t))x(t) + h(t,x(t),x(-t)) e(t),

x(-l) x(1) 0 (3.5)

We next apply Theorem IV.5 of Mawhin [5] to (3.5) in the manner applied by Gupta-

Mawhin in [3] (see also Mawhin-Ward [6]). To do this we need to verify that all

possible solutions of the family of equations

x"(t) f(x(t))x’(t) + {(l-x)(r(t)+n) + l(t,x(t),x(-t))}x(t)
+ h(t,x(t),x(-t)) e(t) (3.6)

x(-l) x(1) 0

are, a priori, bounded by a constant independent of X e [0,1] in C1([-1,1]).
Let, now, x(t) be a possible solution of (3.6) for some e [0,I]. Since, now,

(1-x)(r(t)+n) + %-fl(t,x(t),x(-t)) r(t) + n

for a.e. t in [-I,I] we have on integrating by parts the equation obtained by

multiplying the equation in (3.6) by -x(t) and applying Lemma 3 with too replaced

x(t)[x"(t) + f(x(t))x’(t) + {(1-)(r(t)+n) + %-(l(t,x(t),x(-t))}x(t)
+ h(t,x(t),x(-t)) e(t)]dt

2[x’ (t) {(1-x)(r(t)+n) + l(t,x(t),x(-t))}x2(t)
-{h(t,x(t),x(-t)) e(t)}x(t)]dt
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-> [(ro) 1/21rl z,,4-:-Ir 4
n] IZ

L H

I> ’’112
H 2(IIL II Ix!

L H

-(lall I1 1)lxl,
L L L

It follows that there exists a constant C independent of k [0,I] such that

Ixlc, Ixlc
H L

and from (3.6) there is still another constant C independent of k such that

L
and hence Ixl C2’ where C

2
is some constant independent of X [0,11.

Thus equation (3.I) has at least one solution for each e e LI(-1,1).
The foIlowing result of Wiener-Aftabizadeh ([2], Theorem 3.4) is an imediate

corollary of Theorem I.

COROLLARY 1. Let g: [-I,I] x be continuous and bounded on

I-I,1] . Then the probIem

x"(t) g(t,x(t),x(-t)) (3.7)
x(-1) Xo, x(1) x1

has at least one solution.

PROOF. Define h: [-1,1] / by

l/t 1-t 1-t I/t
h(t,x,y) g(t,x / x / x2, y / x

1
/ Xo).

Then (3.7) is equivalent to

x"(t) h(t,x(t),x(-t))

x(-1) x(1) 0

and (3.8) has at Ieast one solution by Theorem I, since lim h(tx) 0 uniformly

for a.e. t in [-1,1] and all y in .
COROLLARY 2. Let f: be a continuous function and let g: [-I,1]

Lsatisfy Caratheodory conditions and let F e (-I,I) be as in Theorem 1 and be such

that g(tx)lim sup F(t)

Ixl- x

uniformly for a.e. t in [-I,I]. Then the boundary value problem

x"(t) f(x(t))x’(t) + g(t,x(t)) e(t)

x(-l) x(1) 0

Lhas at least one solution for each given e < (-1,1).

REMARK 3. Existence of solutions for boundary value problems

x"(t) + g(t,x(t),x(-t)) e(t), t [-I,I]

x(-) o
x’(1) + kx(1) O, k 0

or
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x"(t) + g(t,x(t),x(-t)) e(t), t [-I,I]

x’(-l) hx(-1) O, h 0

x(1) 0

can be proved in view of Remark 2; for then Lemmas 1, 2, 3 remain valid (with different

constants involved, of course) and they are the main ingredients in the proof of

Theorem and Theorem IV.5 of [5] continues to be applicable.

We next study the boundary value problem

x"(t) + g(t,x(t),x(-t)) e(t) (3.9)
x’(-1) x’(1) o.

HNow, for x (-1,1) for which x and x’ are absolutely-continuous on [-1,1]

with x’(-l) x’(1) O, Wirtinger type inequalities are no longer available for x

and x’ as are needed in the proofs of Lemma 2. However, in this case Wirtinger type

inequalities are available for x’ and x". This fact is exploited next to obtain an

existence theorem for (3.9).

LEt@CA 4. Let e c (-I,I), F c LI(-I,I) with F (t)dt O. Then for every

possible solution x(t) of the boundary value problem

x"(t) + p(t)x(t) e(t)
(3.10)

x’(-l) x’(1) 0

where p LI(-I,I) with P I p(t)dtF, p(t) 0 a.e. in [-I,I] satisfies the

inequality

2(I- )Ix"IL1 21elLllX"[ +e [e[L lx[e"
PROOF. Let p(t) be as in the statement of lemma above and x(t) be a possible

solution of (3.10). Then multiplying the equation in (3.10) by x(t) and integrating

by parts we have

x’ (t)dt + p(t)x2(t)dt e(t)x(t)dt. (3.11)

112 /2
Since, by our assumptions p (t)x(t) and p (t) belong to L2(-I,I), we have

by Schwarz’s inequality

IP(t)x(t)Idt) (fll- P(t)dt)(fll- P(t)x2(t)dt)

xp(t) (t)dt

and hence using (3.10) we have

[e(t) x"(t) Idt)2 g P(t)x2(tldt
On the other hand, since x’(-1) x’(1) 0 we have

x’(t) fl x"(s)ds
1 x"-ft (s)ds

so that

It follows that

fl Ix’(t)12dt 1 Ix"(s)lds)
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Now,

C.P. GUPTA

2 -I-: I="I / g le(t) x"(t)l 2

L L

le(t)- x"(t)121 > (lel I- Ix’’l )2
L L L

L
-21el"L Ix"l IL

+ IX"ILl
2 21el i. ix,,lIx" ILl L L

(3.12)

x"(t) +-fl(t,x(t),x(-t))x(t) + h(t,x(t),x(-t)) el(t) (3.16)

where

the form

x" + gl(t,x(t), x(-t)) el(t).

g1(t,x,Y)
r(t) uniformly a.e. for t in [-1,1] andMoreover we have lim sup x

ali y in and if Ixl max (R,-r) then for a.e. t in [-1,1] and all y in

gl(t,x,Y)
we also have 0 so that r(t) 0 a.e. t n [-1,1].x

Let N [2-] so that r + < 2 and let r > 0 be such that

gl(t,x,y 1

0
x

r(t) + for all x with Ixl rl, all y in and a.e. t in

[-I,I]. Proceeding as in the proof of Theorem I we can write the equation (3.15) in

(a- A) .< e I
< (A- a).

Clearly the equation in (3.9) is equivalent to the equation

(3.14)

and

Using this in (3.12) we finally get

I 21
L L L L L

LTHEOREM 2. Assume that there exists r(t) (-1,1) such that lim sup
g(t,x,y)

r(t) uniformly a.e. in t [-I,I] and all y in . Suppose that r < 2 and that

there exist real numbers a, A, r and R with a R, r < 0 < R such that for a.e.

t in [-I,i] and y in , g(t,x,y) A when x R and g(t,x,y) a when x r.

Then the boundary value problem (3.9) has at least one solution for each e : LI(-I,I)
verifying the relation 2a e(t)dt e 2A.

PROOF. Define gl: [-I,I] x x by

gl(t,x,y) g(t,x,y) : (a + A)

and el: [-I,I] by

el(t) e(t) : (a + A)

so that for a.e. t in [-I,I]

I
gl(t,x,y) : (A a) 0 for all x R and y in

(3.13)

gl(t,x,y) (a A) 0 for all x r and y in
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and there is an

0 <_- 71(t,x,y) < r(t) + n

a LI(-I,I) such that

lh(t,x,y) < (t)

for a.e. t in [I,i] and all x, y in .
Once again we apply Theorem IV.5 of [5] to conclude existence of a solution for

(3.16) with the boundary conditions x’(-l) x’(1) O. To do that we need to show

that the set of all possible solutions of the family of equations

x"(t)+ [(l-X)(r(t + n) + lTl(t,x(t),x(-t))]x(t) +

%h(t,x(t) x(-t)) lel(t)
x’(-1) x’(1) 0

is a priori bounded independently of e [0,1] in CI[-I,1].
Let, now, x(t) be a solution of (3.17) for some [0,1]. Since,

(3.17)

0 < (l-)(r(t) + n) + %Yl(t,x(t),x(-t)) < r(t) + n

for a.e. t in [-1,1] with r + q < 2 and since

le h(t,x(t),x(-t))[
L L L

we see from Lemma 4 that

[1
L L L L

+ </)(lel + I1 )Ixl
L L L

Also integrating the equation in (3.17) we have

I_l (l-l)(r(t)+q)x(t)dt + II- [gl (t,x(t),x(-t)) e1(t)]dt 0.

If, now, x(t) R for all t in [-I,I] we have using (3.13), (3.14) that

(1-)(r+n)R < o

(3.18)

which contradicts the assumption that R > 0. Similarly, x(t) S r for all t in

[-I,I] leads to a contradiction. Hence, there exists a T in [-I,I] such that

r < x(T) < R. (3.19)

Next, it is easy to write explicitly the solution x(t) with jl x(t)dt 0

of the boundary value problem x"(t) y(t), x’(-l) x’(1) 0 for y e LI(-I,I)
Il y(t)dt O. From this it is easy to deduce the existence of a 6 > 0 suchwith

Ill x(t)dt and x’(-l) x’(1) 0that for every x e clt-l,l, with (t) x(t)

that

I1 lx"l (3.20)
L L

and

I’1 -< 1:"1 . (3.21)
L L

Noting that x (t) +
1
x(t)dt + x

2

L L L L

L L

and inserting (3.20) in (3.18) we get

(3.22)
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Now, by the fact that there exists a T [-I,I] with r < x(T) < R we have that

t x’(s)ds[ < max (-r R) + 2[x’[
L

<= max (-r,R) / 2lx"l
L

using (3.21). Hence

x(t)dt[ < [(x(t)ldt < 2 max(-r R) 4[x"[
L

Finally inserting (3.23) in (3.22) we get that there exists a constant 01 > 0

independent of % [0,1] such that

Ix"l z o
L

Using this in (3.20) we then deduce the existence of a constant 0 independent of

% [0,I] such that

(3.23)

[x[ <= 13.
C [-1,11

This completes the proof of the theorem.

COROLLARY 3. Let g: [-I,I] x ]R I satisfy Caratheodory’s conditions and assume

that there exists F(t) LI(-I,I) such that lim sup
g(t,x) < F(t) uniformly a.e.

ixl x

r(t)dt < 2 and that there exist real numbersin t [-I,I]. Suppose that F -I
a, A, r, R with a < A, r < 0 < R such that for a.e. t in [-I,I], g(t,x) A when

x R and g(t,x) a when x r.

Then the boundary value problem

x"(t) + g(t,x(t)) e(t)
(3.24)

x’(-1) x’(1) o

I_has at least one solution for each e L2(-I,I, with 2a e(t)dt < 2A.

REMARK 4. In case g(t,-) is monotonically-increasing for a.e. t in [-I,I] see

Mawhin [7] for the boundary value problem (3.24) for a result similar to Corollary 3,

above.

The existence of a solution for the boundary value problem

"(t) + g(t,x(t),x(-t)) e(t)
(3.25)

x’(-l) O, x’(1) + hx(1) O, (h > 0 given)

can be obtained in a similar manner as for (3.9). In fact the following theorem is

true, whose proof we omit as it is very similar to the proof of Theorem 2.

THEOREM 3. Assume that there exists F(t) LI(-I,I) such that

lim sup
g(t,x,y) <. r(t) uniformly a.e. in t [-I,I] and all y in I. Suppose

ixlo x

that F < and that there exist real numbers a, A, r, R with a < A, r < o < R

such that for a.e. t in [-I,I] and y in , g(t,x,y) A when x R and

g(t,x,y) <. a when x < r.

Then the boundary value problem (3.25) has at least one solution for each

Le (-I,I).
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