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ABSTRACT. Explicit recurrences are derived for the matching polynomials of the

basic types of hexagonal cacti, the linear cactus and the star cactus and also for

an associated graph, called the hexagonal crown. Tables of the polynomials are

given for each type of graph. Explicit formulae are then obtained for the number of

defect-d matchings in the graphs, for various values of d. In particular, formulae

are derived for the number of perfect matchings in all three types of graphs.

Finally, results are given for the total number of matchings in the graphs.
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I. INTRODUCTION.

The graphs considered here will be finite and without loops or multiple edges.

Let G be such a graph. A matching in G is a spanning subgraph of G, whose

components are nodes and edges only. If the matching contains d isolated nodes,

then we call it a deecZ-d matching s did Berge ([I] and [2]) and Little [3 ]. Some

general results on defect-d matchings have been given in [I], [2] and [3 ]. In the

case where d=0, i.e. when the matchings has edges only, we call it a pe or

complete matching.
Let us associate with each node and edge of G the w and w

2
respectively, and with each matching in G, the weight

W(a) wlrw2 s

where r and s are the number of nodes and edges respectively in a. Then the

mZcng p00 of a graph G with p nodes is

m(G) ZW() lakWlP-2kw2k, (i. I)

where the summation is taken over all the matchings in G, and a
k

is the number of

matchings with k edges. It is clear that a
k

will be the number of defect-(p-2k)

matchings in G.
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The general matching polynomial was introduced in Farrell [4]. Since then, it

has been shown (See Gutman [5]) that several other well known polynomials in

Theortical Physics are special matching polynomials, i.e. they can be obtained from

m(G) by giving special values to w and w2. Gutman ([6] and [7]) has also

established the matching polynomial as a useful device in Mathematical Chemistry.

It should be pointed out however that Gutman’s "matching polynomial" (previously

called the acyclic polynomial) is a special form of m(G). This was established in

Farrell [8].

The cac6 is a connected graph in which no edge lies in more than one cycle.

These graphs were introduced by Uhlenbeck and Ford [9] and Riddell [I0], following

a paper by Husimi [ii]. Hence, they were originally called "Husimi trees". Some of

these graphs were enumerated by Harary and Norman [12] and Harary and Uhlenbeck [13

Some work on the enumeration of triangular cacti (every block is a triangle) can be

found in Harary and Palmer ([14], pp. 70-73).

We define a hexag0n cc6 to be a cactus in which every block is a hexagon.

In addition to being interesting mathematical objects, some types of hexagonal cacti

represent common chemical structures. Let H be a hexagon. We will call two nodes

of H OppO6e, if they are separated by a path of length 3. Therefore H contains

three pairs of opposite nodes. The hexagons which constitute a hexagonal cactus will

be called c of the cactus.

In this article, we will derive explicit recurrences for the matching polynomials

of two types of hexagonal cacti, which represent the fundamental components of many

types of hexagonal cacti. We will also derive similar results for an interesting

associated graph, which we call a hexagonal crown. We will give tables of polynomials

for all three types of graphs considered here. Following this, we will deduce

explicit formulae for the number of defect-d matchings in these graphs, for various

values of d. In particular, we will give formulae for the number of perfect matchings

in the graphs. Finally, we give explicit formulae for the total number of matchings

in each type of graph considered.

In the material which follows, we will sometimes write G for m(G), for

brevity of notation. Also, we will denote the generating function for m(G) by

G(t), where t is the indicator function. Let a I, a2,..., a
k

be nodes of a graph

G. We will denote by G-{al,a2 ak} the graph obtained from G by removing nodes

al,a2,...,ak. Finally, "cactus" would mean "hexagonal cactus" unless otherwise

qualified.

2. THE BASIC THEOREMS.

The first two results given in this section have been proved in the introductory

paper [4]. We repeat them here for completeness. The reader can consult [4] for

detailed proofs, if necessary.

Let G be a graph and e an edge of G. By partitioning the matchings in G

according to whether or not they contain the edge e, we obtain the following result.

THEOREM (Te Fndme Theoem). Let G be a graph containing an edge ab.

Let G" be the graph obtained from G by deleting ab and G’’, the graph obtained

from G by removing nodes a and b. Then

m(G) m(G’) + w2m(G’’).
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Given a graph G, we could apply Theorem recursively to it, until we obtain

graphs H.I for which m(Hi) are known. This algorithm is called the undamemt/
afgom for maZcing polyno. We will refer to it simply as the reduction

proc6s. When applying Theorem I, we will refer to the graph G" as the reduced
gph and to the graph G as the incorpoLted g1ph.

The following theorem can be easily proved.

THEOREM 2 (Th Compont Thorem). Let G be a graph consisting of components

H. (i 1,2 r). Then
1

r
m(G) n m(Hi)

i=l

3. SOME ASSOCIATED GENERAL RESULTS.

Let G be a graph with p nodes and q edges. Consider the expression for

m(G) given in Equation (i.I). a
0

is the number of matchings with no edges. There

is only one such matching, viz. the empty graph with p nodes. Therefore a
0

I.

a is the number of matchings with edge. Therefore a q, the number of edges

in G. Consider the spanning subgraphs of G with two edges. These will consist

of the matchings with two edges and the spanning subgraphs with a path of length 2

and p-3 isolated nodes. Let e be the number of paths of length 2 in G. Then

our discussion leads to following theorem.

THEOREM 3. Let G be a graph with q edges. Then in m(G),

(i) a
0

(li) a q

and (ill) a
2 () e

where e is the number of paths of length 2 in G.

We define a cun to be a tree with nodes of valency and 2 only. The chain

with n nodes will be denoted by Pn" The Zn@th of P is the number of edges in
n

P i.e. n-l.
n

COROLLARY I.I. Let P be a chain with n nodes. Then
n

P WlPn_ + with PO I.
n W2Pn-2

PROOF. Apply the reduction process to the graph P be deleting a terminal
n

edge. The result then follows from Theorem I.

Many of our results will be given in terms of matching polynomials of chains. We

therefore give a table of values of m(Pn), for n I, up to n 8.
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TABLE

Matching Polynomials of Chains

m(en)

w

2 w+w2

3 w+2WlW2

4 2 24 Wl+3WlW2+W2
5 w+4ww2+3WlW

6 4 2 26 w[+5WlW2+6WlW2+W2
7 5 27 wl+6WlW2+l0WlW2+4WlW2

8 8 6 42 23 4wl+7WlW2+15wlW2+10wlW2+W2
By Cng a chain P to a graph G (both nonempty) we will mean that an end

n
node of P is identified with a node of G, so that P becomes a path in the

n n
resulting graph.

LEMMA I. Let G consist of a graph G with the chain Pn attached to node

x. Then

m(G) Pn_im(Gl + W2Pn_2m(G-{x}).
PROOF. Apply the reduction process to G by deleting the edge of P which

n
is incident to node x. The reduced graph will consist of two components P andn-I
GI. The incorporated grpah will contain two components, Pn_2 and Gl-{X}. The

result follows from Theorems and 2.

4. MATCHING POLYNOMIALS OF LINEAR HEXAGONAL CACTI.

We define the ne cactu in to be the cactus consisting of n cells linked

together in such a way that n-2 of them have exactly one pair of opposite nodes of

valency 4 and exactly two (n) cells, each having a node of valency 2

opposite a node of valency 4. These nodes of valency 2 will be called the

tunn nod of L (see Figure (i)). Clearly L contains 5n+l nodes and 6n
n n

edges. The graph obtained from L by attaching two chains of length 2 to one of

its terminal nodes, will be denoted by A (see Figure (ii)). A occurs as an
n n

intermediate graph when the reduction process is applied to L
n

L
3

a t "A
2

f k- v-

(+/-)
Figure i

LEMMA 2. An PLn + 2WlW2P2AnI-

(ii)

PROOF. Apply the reduction process to the graph A by deleting edge st (see
n

Figure (ii)). The reduced graph G" will contain two components P2 and the
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graph A with P attached to it The incorporated graph will contain three
n 3

components, an isolated node, P2 and A Thereforen-I

A =G+
n WlW2P2An-

Apply the reduction process to G by deleting edge tu. This yields

G PLn + WlW2P2An_l

The result follows by substituting for G in the equation above.

Let us apply the reduction process to the graph L by deleting edge cd (see
n

Figure (i)). The reduced graph G will consist of Ln_l with P6 attached to

it. The incorporated graph will contain two components, P4 and An_2. Therefore

L G + (4 i)
n w2P4An-2"

Using Lemma I, we get

G" P5Ln_I + w2P4An_2

Hence from Equation (4.1),

L + 2w2P4An 2n P5Ln-I (4.2)

From Lemma 2, we get

2
2WlW2P2An_3= An_2 P2Ln_2 + (4.3)

2w2P4An_2 2w2P4(p2Ln_2
+ 2WlW2P2An_3

By substituting the expression for 2w2P4An_2 obtained from Equation (4.2) we obtain

the following explicit recurrence for L
n

2
Ln (P5+2WlW2P2)Ln-I + (2w2P2P4-2WlW2P2P5)Ln-2

Hence by using the expressions for P2 and P5 obtained from Table and then

simplifying, we obtain the following theorem.

5 3 22 43 24 5THEOREM 4. Ln (Wl+6Wl+SWlW2)Ln-I + (2WlW2+4WlW2+2w2)Ln-2 (n>l) with L
0

--w

6 4 22 3(by convention) and L w1+6wlw2+gwlw2+2w2
5 3 2 ,,43.22_5Let us put --Wl+6WlW2+5WlW2 and B ZWlW2+4WlW2+2w2 Then the recurrence

given in Theorem 4 becomes

L = +B (44)
n Ln- Ln-2"

By multiplying both sides of this equation by tn, and summing from n 2 to , we

obtain the following generating function L(t) for m(Ln).
L
0
+ (L -aLo)t

COROLLARY 4. I. L(t) where L
0

and L are as given in
st Bt2

Theorem 4.
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The following table gives values of m(Ln) for n I, up to n 6.

TABLE 2

Matching Polynomials of Linear Hexagonal Cacti

n m(L
n

6+ 6w
4 + 9w21w2 + 2w$i wI lW2 2

Ii + 12w91w2 wI 2
52 + 8 8ww3 + 6lww + 12WlW2

+ 50w71w2 2

2 + 450Wli 0w3 + 855w81w42
5 + 4 29ww6 + 86w2 7 + 4w82+ 862w16w 2 2 lW2

4 wl + 24w9w2 + 240w 171w22 + 1304wli 5w3+24218w113w
39 10+ 624WlW 2

+ 44WlW 2

26 + 30w214w + 389w212 2 20 3 18 4
5 wI 2 w2 + 2866wi w2 + 13282wi w2

6 + l14924w12w7 + i05797w0 8+ 40548w116w5 + 83162wi14w 2 i 2
w

2
8 9 6 i0 4 ii + 408w21w12 + 8w13+ 63014WlW2 + 22945WlW2 + 4594WlW2 2 2

6 w131 + 36w219w2 + 574w217w2+25352w 5w23 + 32475w2341w2
1581 5 19w6 + 830768w7w + 1247415w I w2+ 135148w21 w2 + 396476wi 2

ii + 171469w71w1213w9 + i002990wli i0 + 514280w91w2 2+ 1334972wi 2 i w2
+ 34228wSlw132 + 3512ww142 + 128Wlwls2

We will obtain some results for the graph A These will be useful in then
material which follows.

From Lemma I, we have

PLn A
n 2WlW2P2An_ I.

2
yieldsMultiplying Equation (4.2) by P2’

2
l+2W2P4An_2)PLn P2(PsLn

By substituting for PLn and PLn_I, using Equation (4.5), we get the following

recurrence for A

(2w P P 2w w P P )AA (2WlW2P2+P5)An_l + 2
n 2 2 4- 2 2 5 n-2

Hence by comparing with Equation (4.4) and Corollary 4.1, we obtain the following

lemma.

(4.5)
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LEMMA 5.

(i) A a + B A (n>2)n An- n-2

I0 8 62 43 24_5
with A w +10WlW2+32wIw2+40WlW2+lgWlW2+2w2

(ii) A(t) U (l-t-Bt2) -I

327

where a + (Al-a2)t
(N.B. We take A

0
to be ).

5. MATCHING POLYNOMIALS OF HEXAGONAL STAR CACTI

We define the S, cacu S to be the cactus consisting of n cells attached

to a single node It is clear that Sn contains 5n+l nodes and 6n edges. S
4

is shown below in Figure 2.

c b

Figure 2

Let us apply the reduction process to S by deleting the edge ab (see Figure
n

2). The reduced graph G will consist of Sn_l with P5 attached to it. The

incorporated graph will contain n components, P4 and n-I copies of P5" There-

fore
n-i

Sn G + w2P4P5 (5.1)

By applying Lemma to the graph G we get

n-I
G PsSn_I + w2P4P5

Hence by substituting for G in Equation (51), we get the recurrence for m(Sn),
given in the following lemma.

LEMMA 6. S P5Sn + 2w2P4P5
n-I

(n>l)
n -I

with S L

We can use Lemma 6 in order to obtain an explicit formula for m(Sn). However,

we will obtain the result by using a simple combinatorial argument.

THEOREM 5. Sn WlP5n + 2nw2P4P5
n-I (n>0).

PROOF. Partition the matchings in the graph Sn, into two classes (i) those in

which node x (see Figure 3) is isolated and (ii) those in which it is not. The

matchings in (i) are matchings in the graph S -{x}. Therefore the contribution of
n

these matchings to m(Sn) is WlP5n. If node x is not isolated, then it is joined

to an edge. There are 2n edges incident to node x. Hence an edge can be chosen

in 2n ways. Once an edge is chosen, the 2n edges adjacent to it cannot be used

in any matching Therefore the contribution of the matchings in class (il) is
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2nPnP5n-l. Hence the result follows.

The following table gives values of m(S for n=l, up to n--7.
n

TABLE 3

Matching Polynomials of Hexagonal Star Cacti

n m(S
n

4 + 9ww 2 + 2w 3w + 6WlW 2 2 2

wlll+ 12w91w2 + 50w 71w22 + 88w 51w23 + 61ww42 + 12WlW52
22 103 8416 + 18Wl14W + 123w]I w2 + 418w I w2 + 759WlW 2

w I 2

+ 726w 61w25 + 333ww6+254w21w72
21 + 24wlgw + 228w172 15w3 + 3438wi134w I i 2 i w2 + i152wi 2 w2

+ 6288wlllw5+2 7028ww6+2 4608ww7+2 1593w51w8+2 216ww92
24w + 365w 222 + 2450w20w i0210w184w216 + 30Wl 2 i w2 I + i w2

+ 27884w]16w5 + 51010w4w6 + 62500w12w7 + 50205wi08
2 2 I 2 I w2

9 + 6993w6 10 + 810w]4wll+ 25110ww2 lW2 2

25w3 + 23955w34w131 + 36w29wl 2
+ 534w27w221 + 4472wi 2 w2

158+ 87324w121w52 + 223684wlgw612 + 408336w7w + 531543wi w2
712II + 28917w w13 9 II i0 + 123768wglw 2

+ 487260wi w2 + 305478wi w2 1 2

32w2 + 7378w30w 3 + 48321w28 4w316 + 42wqw2 + 735w I 2 I 2 I w2
2276 + 1778970w w

2
+ 3238347w

20 8+ 220626w216w52 + 728903w]24w2 i i w2
14 Ii16 i0 + 3238326w w18w9 + 4426821wi w2 1 2

+ 4399934wi 2
i013 + l14U53wSlw14 + 10706w

6 151212 + 568134wi w2 2 Iw2+ 166035w I w
2

6. MATCHING POLYNOMIALS OF HEXAGONAL CROWNS.

We define the hexagonal crown C to be the graph obtained by identifying then’
two terminal nodes of Ln. We take C to be the graph shown below in Figure 3

(ii). Clearly Cn contains 5n nodes and 6n edges. C
5

is shown below in

Figure 3(i).

(i)

Figure 3 (ii)
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Let us apply the reduction process to C by deleting edge ab (see Figure 3).
n

Let the reduced graph be G and the incorporated graph G’’. Apply the reduction

process to G{ by deleting edge af the reduced graph will be A and then-I
incorporated graph will be G’’ Therefore we get

C + 2w2G’’ (6 I)
n An-

Let us define the graph B to be the graph obtained from L by attaching two
n n

chains of length 2 to each of its terminal nodes. Then G’’ is the graph obtained

from Bn_2 by removing one of its nodes of valency I. Let x be the associated

terminal node. Apply the reduction process to G’’ by deleting the edge incident

with x and containing a node of valency I. The reduced graph will consist of a

nontrivial component G and an isolated node. The incorporated graph will contain

two components, P2 and Bn_3. Therefore we get

G’’ wiG + w2P2Bn_3 (6.2)

Apply the reduction process to G by deleting the edge of the chain attached to

node x, which is incident to x. The reduced graph will contain two components,

An_2 and P2" The incorporated graph will contain two components, Bn_3 and an

isolated node. Therefore

G P2An_2 + WlW2Bn_3 (6.3)

Hence by substituting for G’’ in Equation (6.1) using Equations (6.2) and (6.3), we

get
2

Cn An_l + 2WlW2P2An-2 + 2w2(wlw2+w2P2)Bn-3 (6.4)

LEMMA 7. (i) B p2A
n 2 n

+ 2wlw2P2Bn-I (n>l)

and therefore

(ii) B(t) p22A(t) [l-2WlW2P2t] -I,
2

when we take B
0 P2a

PROOF. Apply the reduction process to B by deleting one of the edges of an
n

attached chain, which is incident to a terminal node x of L The reduced graph
n

will contain two components. P2 and a non-trivial component G’. The incorporated

graph will contain three components P1 P2 and B Thereforen-I

B P2G" + w (6 5)n lW2P2Bn-I
By using Equation (6.3) with n replacing n-2, we get

G" P2An + WlW2Bn_

Hence (i) follows by substituting for G" in (6.5) (ii) can be established using

standard techniques.
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The following lemma can be obtained by multiplying Equation (6.4) by tn,
summing from n 3 to , then using (ii) of Lemma 7. The generating function

for m(C gives correct coefficients of t
n

for n > 2.

LEMMA 8.

c(t)
(ya+)

y(l-at-t2)
where

l-2WlW2P2t, a l+2WlW2P2t2
2

2w
2 (WlW2+w2P2)

and

C

with

The following theorem is immediate from Lemma 8.

THEOREM 6.

5 3 2 8 6 2 4 3 2 4 5
(Wl+SWlW2+7WlW2)Cn_l (2WlW2+14WlW2+20WlW2+6Wlw -2w2)Cn_2

4WlW
6 4 2 2 3

(Wl+3WlW2+3WlW2+w2)Cn_3 (n>3),

C I, C
2
and C

3
as given below in Table 4.

The following table gives values of m(Cn) for n I, up to n 6.

TABLE 4

Matching Polynomials of Hexagonal Crowns

n m(C
n

5+6ww + 5WlWi wI 2

2+64w4 3+33w24+4w52 W110+12wSw2+46w61w2 lW2 lW2 2

15 13 +123wlllw2+qO2w9w3+663w7 +558w5 5
Wl +18Wl w2 2 2 lW2 lW2

3w62+30WlW+221w I

14w3+3718w12420 18w + 236w6w22+1232wI IWl +24wi 2 2 w2+6688w
+7220w81w26+4560w61wT+I5523ww8+2322w21w9+28w120

I0 5
w

1 2

15 S25+30w23w +385wlw2+2770Wl19W3+12330Wl17W+35476wI w
2Wl i 2 2 2

136 Ii 7 98+36350w7 9+11225ww10+67270wi w2+84500Wl w2+69585WlW2 lW2 2

+1770w31w211+100WlW122
w130+36w128w2+ST0w126w2+52322w4w3+230927w212w +123876w 0w2S

8+924988w296+678336w16w7+943647w14w2 w
2345232wSw2 i 2

+996wwlq+16wlS22

c(t)
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7. DEFECT-d MATCHINGS IN LINEAR HEXAGONAL CACTI.

We will denote the number of defect-d matchings in a graph G by Nd(G).
Therefore the number of perfect matchings will be No(G). The total number of

matchings in G will be denoted by NT(G). It is clear that Nd(G) is the
d

coefficient of the term in w in m(G), and that No(G) is the coefficient of the
0

term in w Also NT(G) is obtained from m(G) by putting w w
2

I.

The following theorem is i=edlate from Theorem 4, by equating coefficients of
d

the terms in Wld. Notice that m(G) contains a term in w if and only if d

and p (the number of nodes in G) have the same parity, since the edges in a match-

ing are incident to an even number of nodes.

THEOREM 7. L (n>l) has a defect-d matching if and only if d and n have
n

opposite parities and 0 d 5n+l, if n is odd, or d 5n+I, if n is even.

In this case,

Nd(Ln) Nd_5(Ln_l)+6Nd_3(Ln_l)+5Nd_l(Ln_l)+2Nd_4(Ln_2)+4Nd_2(Ln_2)+2Nd(Ln_2)

with the initial values of Nd(Ln) as given above in Table 2.

The following corollary of Theorem 3 gives explicit formulae for the first

three coefficients of m(Ln).
COROLLARY 3. I. In m(Ln),

(i) NDn+l(en)

(ii) N5n_I(Ln) 6n

and (ill) N5n_3(Ln) 18n2-13n+4
PROOF. Since L has 5n+l nodes and 6n edges, (i) and (li) follow

n
immediately from Theorem 3. L has n-i nodes of valency 4 and the remainingn
4n+2 have valency 2. Therefore

(n-l) () + 4n+2 10n-4

N5n_B(Ln (n) (10n-4)

The result follows after simplifications.

Theorem 7 is a useful result, because it can be used to obtain explicit formulae

for all the coefficients of m(Ln). We will illustrate this by finding formulae for

the fourth and fifth coefficients of m(Ln).
Put d 5n-5 in Theorem 7. This yields

N5n_5 (Ln) N5n_l0 (Ln_l)-6NSn-8 (Ln_l)+5N5n_6 (Ln_ I)
(7.1)

+ 2N5n_9 (Ln_2)+4N5n_7 (Ln_2)+2N5n_5 (Ln_2)

Notice that N5n_l0(Ln_ I) N5n_8(Ln_ I) and Nsn_6(Ln_ I) are the fourth, third and

second coefficients of m(Ln_2) and that

Nsn_7(Ln_2) N5n_5(Ln_2) 0
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Therefore by using Corollary 3. I, we get

N5n_8(Ln_l) 18(n-l)2-13(n-l)+4, N5n_6(Ln_ I) 6(n-l)

and Nsn_9(in_2)

By substituting these values in Equation (7.1), we obtain the following lemma

which give a recurrence for the fourth coefficient of m(Ln).
LEMMA.

N5n_5 (Ln) N5n_l0(Ln_ l)+108n2-264n+182 (n>2),

with NO(L I) 2

By using standard techniques we establish the following theorem.

THEOREM 8.

N5n_5(Ln) 2(18n3-39n2+34n-12) (n>O)

Put d 5n-7 in Theorem 7. This yields

N5n_7 (Ln) N5n_l 2 (Ln-l)+6N5n-10 (Ln_l)+5N5n_8 (Ln_

+ 2N5n_l (Ln_2)+4N5n_9 (Ln_2)+2N5n_7 (Ln_2)

Using Theorem 8, we get

N5n_10(Ln_ I) 2 [18(n-l)3-39(n-l)2+34(n-l)+12]

using Corollary 3.1, we get

N5n_8(Ln_l) 18(n-l)2-13(n-l)+4, N5n_ll(Ln_2) 6(n-2)

and N5n_9(Ln_2)

It is clear that N5n_7(Ln_2) 0. By substituting these values in Equation

(7.2) and then simplifying, we obtain the following lemma.

LEMMA I0.

N5n_7(Ln) --N5n_12(Ln_l) + (261n3-1026n2+1759n-1081) (n>2),

with N3(L2) 61

By solving the above recurrence, we obtain the following theorem which gives an

explicit formula for the fifth coefficient of m(Ln).
THEOREM 9.

N5n_7(Ln) (108n4-468n3+841n2-745n+264) (n>l)

The following theorem gives an explicit formula for the number of perfect match-

ings in L
n

THEOREM I0. L has a perfect matching if and only if n is odd, and in this
n

case,

N0(Ln) 2(n+l)/2

PROOF. Suppose that n is odd. Then from Theorem 7, d O. Put d 0 in

Theorem 7. This yields
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NO(Ln) 2 N0(Ln_2) with N0(L I) 2.

22N
0 (Ln_4)

2
(n- i)/2N0 (L I) 2

(n+l)/2

Conversely, suppose that L has a perfect matching. Then it must have an even
n

number of nodes. == 5n+l is even. == n is odd.

We will use Theorem 7 in order to derive explicit expressions for the number of

defect-d matchings in Ln, for d and d 2.

LEMMA II.

NI(Ln) 2NI(Ln_2) + 5(2n/2) (n-even)

with NI(L0)
PROOF. Put d in Theorem 7. This yields

N I(Ln) 5N0(Ln_ I) + 2N l(Ln_ I)

The result then follows from Theorem I0.

The following theorem gives an explicit formula for the number of defect-i

matchings in L (n-even).

THEOREM II.
(n-2) /2

N (Ln) (5n+2) 2 (n-even)

PROOF. From Lemma II,

NI(Ln) 2NI(Ln-2 + n where n 5(2n/2

NI(Ln) 6
n + 26n_2 + 22Nl(Ln_4)

Z 2k126" + 2
(n-2) /2

n-k
k=O

5.2n/2() + 6.2n/2

N (L2) (k-even)

The result follows after simplifications.

LEMMA 12. N2(Ln) 2N2(Ln_2) + (25n-7)2(n-3)/2
with N2(L I) 9.

PROOF. Put d 2 in Theorem 7. This yields

(n-odd),

N2(Ln) 5NI(Ln) + N0(Ln_2) + 2N2(Ln_2) (n-odd)

515(n-I)+212 (n-3)/2 + 4(2 (n-l)/2) + 2N2(Ln_2)
using Theorems I0 and II. The result follows after simplifications.
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By solving the recurrence given in Lemma 12, using standard techniques (e.g. see

Proof of Theorem 11), we obtain the following theorem, which gives an explicit

formula for the number of defect-2 matchings in Ln(n-odd).
THEOREM 12.

N2(hn) (25n2+36n+11)2 (n-7)/2 (n-odd)

By putting w w
2

in Corollary 4.1, we obtain the following generating

function NTL(t) for NT(Ln).

l+6t
NTLt)" 2

1-12t-8t

l+6t A
Now

2 t-a
1-12t-St

2 3t
t + O.

2 8

B+ where a and b are the roots of the equation
t-b

A/a -B/b
NTL(t) l-t/ +

l-t/ba
n

By equating coefficients of t we get

NT(Ln) -A(I/a)n+1-B(I/b)n+l

By finding A, B, a and b from the relation above, we obtain the following theorem

which gives an explicit formula for the total number of matchings in L
n

THEOREM 13.

NT(Ln) c(6-2I/) n+l + (6+2I/) n+l (n>O)

7+3I/
where c and is the surd conjugate of c.

8. DEFECT-d MATCHINGS IN STAR CACTI.

The following corollary of Theorem 3 gives simplified formulae for the first

three coefficients of m(S ).
n

COROLLARY 3.2. In m(Sn),
(i) N5n+I(Sn)

(ii) N5n_I(Sn) 6n

and (iii) N5n_3(Sn) n(16n-7)

PROOF. (i) and (ii) are immediate from the theorem. S has one node of
n

valency 2n and 5n nodes of valency 2. It follows that

g (n) + 5n 2n2+4n

NDn_3(Sn) (n) (2n2+4n)
The desired result is obtained after simplifications.

The following result is added for completeness. It can be easily established.

LEMMA 13. N0(Sn) 0 n > O.

The following theorem gives an explicit formula for the total number of matchings
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in S
n
THEOREM 14. NT(Sn) 2(4+5n)8n-I

PROOF. Put w w
2

in Theorem 5. This yields

NT(Sn) 8
n + 2n.5(8n-l)

This reduces to the desired result.

9. DEFECT-d MATCHINGS IN HEXAGONAL CROWNS.

The following theorem can be obtained from Theorem 6 by equating coefficients of
d

the terms in w

THEOREM 15. C (n>4) has a defect-d matching if and only if n and d have
n

the same parity and 0 d 5n if n is even or d 5n if n is odd. In

this case,

Nd(Cn) Nd_5(Cn_ I) + 8Nd_3(Cn_ I) + 7Nd_ l(Cn_ I)

2Nd_8(Cn_2) 14Nd_6(Cn_2) 20Nd_4(Cn_2)

6Nd_2(Cn_2) + 2Nd(Cn_2) 4Nd_7(Cn_3)

12Nd_5(Cn_3) 12Nd_3(Cn_3) 4Nd_l(Cn_3) (n>4),

with the initial values of Nd(Cn) as given in Table 4.

COROLLARY 3.3. In m (C),
n

(i) N5n(Cn)
(ii) N5n_2(Cn) 6n

and (iii) N5n_4(Cn) n(18n-13) (n>l).

PROOF. (i) and (ii) follow immediately from the theorem. C has n nodes of
n

valency 4 and 4n nodes of valency 2. Therefore

n() + 4n i0n. N5n_4(Cn (n) iOn

The result therefore follows.

We will use Theorem 15 and Corollary 3.3 in order to obtain explicit formulae

for the fourth and fifth coefficients of m(Cn).
Let us put d 5n 6 in Theorem 15. This yields

Nsn-6 (On) N5n-I (Cn-I) + 8Nsn-9 (Cn-I) + 7N5n-7 (Cn-I)

2N5n_14(Cn_2) 14N5n_12(Cn_2) 20N5n_lO(Cn_2)

6N5n_8 (Cn_2) + 2N5n_6 (Cn_2) 4N5n_l 3 (Cn_3)

12N5n_ll(Cn_3) 12N5n_9(Cn_3) -4N5n_7(Cn_3) (9.1)

It is clear that Nsn_7(Cn_l) and N5n_9(Cn_I) are the second and third
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coefficients respectively of m(Cn_ I). N5n_10(Cn_2), N5n_12(Cn_2) and Nsn_14(Cn_2)
are the first, second and third coefficients respectively of m(Cn_2). Also

N5n_8(Cn_2) N5n_6(Cn_2) 0. It can be easily seen that

N5n_13(Cn_3) N5n_ll(Cn_3) N5n_9(Cn_3) N5n_7(Cn_3) 0

From Corollary 3.3, we have

N5n_7(Cn_ I) 6(n-l)

N5n_9(Cn_ I) 18(n-l)2-13(n-l)

N5n_l0(Cn_2)

N5n_l 2(Cn_2) 6(n-2)

and Nsn_14(Cn_2) 18(n-2)2-13(n-2)
By substituting these values into Equation (9.1), and then simplifying, we obtain the

following lemma.

LEMMA 13. N5n_6(Cn) N5n_ll(Cn_ I) + 2(54n2-132n+79) (n>2)

with N4(C2) 64.

The recurrence given in the above lemma can be solved by standard techniques.

The solution is given in the following theorem.

THEOREM 16. N5n_6(Cn) 2n(18n2-39n+22) (n>0).

A similar analysis can be done by putting d 5n-8 in Theorem 15. This would

yield an explicit formula and a recurrence for the fifth coefficient of m(Cn). We

will omit the proofs, since they would be quite similar to those of Lemma 13 and

Theorem 16.

LEMMA 14. N5n_8(Cn) N5n_13(Cn_l) + (216n3-1026n2+1615n-809) (n>3),

with N7(C3) 663.

The solution of the recurrence given in the above lemma, is given in the

following theorem.
nTHEOREM 17. N5n_8(Cn) (108n3-468n2+697n-353) (n>l).

The following theorem gives an explicit formula for the number of perfect

matchings in C
n (n+2)/2THEOREM 18. N0(Cn) 2 (n-even)

PROOF. Put d 0 in Theorem 15. This yields

NO (Cn) 2N
0 (Cn_2) (n-even)

22N0 (Cn-4)

2n-2N0(C2).
Hence the result follows.
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The following lemma is analogous to Lemma II. It can be established by putting

d in Theorem 15 and then substituting for N0(Cn_ I) and No(Cn_3) using

Theorem 18.

LEMMA 15. NI(Cn) 2NI(Cn_2) + 5.2
(n+l)/2 (n-odd and n>l), with NI(C I) 5

An explicit formula for the number of defect-I matchlngs in C can now be obtained
n

by solving the above recurrence for NI(Cn). A solution constructed along the lines

of the proof of Theorem II, yields the following result.

THEOREM 19. N (Cn) (5n) 2
(n-l)/2 (n-odd)

Put d 2 in Theorem 15. This yields

N2(Cn) 7NI(Cn_ I) 6No(Cn_2) + 2N2(Cn_2) 4NI(Cn_3)

7.5(n_i)2 (n-2)/2 6.2n/2 + 2N2(Cn_2) 4.5(n_3)2 (n-4)/2

On simplification, we obtain the following lemma.

LEMMA 16. N2(Cn) 2N2(Cn_2) + (25n-17)2
(n-2)/2 (n-even), with N2(CO) 0.

By solving the above recurrence using standard techniques, we obtain the

following theorem which gives an explicit formula for the number of defect-2

matchlngs in C (n-even).
n

THEOREM 20. N2(Cn) n(25n+16)2(n-6)/2(n-even).
The following lemma gives a recurrence for the total number of matchlngs in C

n
It can be obtained from Theorem 6 by putting w w

2
I.

LEMMA 17. NT(Cn) 16NT(Cn_I) 40NT(Cn_2) 32NT(Cn_3) (n>4), with

NT(C I) 18, NT(C2) 160, NT(C3) 2016 and NT(C4) 25472.

n
By multiplying the above recurrence by t summing from n 0 to , and then

simplifying, using the boundary conditions, we obtain (with NT(Co)ffi0),

18t-128t2+176t3+192t4
NTC (t)

1-16t+40t2+32t3

6t-2 + 2(I-6t)

1-12t-St
2

Hence we obtain the following lemma, which gives a generating function NTC(t) for

m(C ). (It gives correct coefficients of tn, for n>l).
n

LEMMA 18.

NTC(t
2(I-6t)

2
1-12t-St

Hence by using the standard technique illustrated above in establishing Theorem

13, we obtain the following theorem which gives an explicit formula for the total

number of matchings in a hexagonal crown.

I/TT-3
THEOREM 21. NT(Cn) c(6+2I/)n+l + (6-2I/)n+l (n>l), where c

4

I0. DISCUSSION.

Our article gives a comprehensive account about matchings in the linear and star

cacti, and in the hexagonal crown. As far as other hexagonal cacti are concerned, we
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have given results which, together with the theorems given in Sections 2 and 3, can

be used to obtain their matching polynomials. It would be virtually impossible to

give results from which the matching polynomial any arbitrary hexagonal cactus could

be obtained by mere substitution.

Most of our results on defect-d matchlngs (d>0) can be extended. We have indeed

extended some of these results, but have not given them here, since no new techniques

are involved. Also, they would have made the article unacceptably long.
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