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ABSTCT. In this paper we study the special Dirichlet series

L(s) 2 sin(---)n

This series converges uniformly in the half-plane Re(s) > and thus represents a

holomorphic function there. We show that the function L can be extended to a

holomorphic function in the whole complex-plane. The values of the function L at

the points 0,+/-1,-2,+/-3,-4,+/-5,... are obtained. The values at the positive integers

1,3,5,... are determined by means of a functional equation satisfied by L.
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1. INTRODUCTION.

By a Dirichlet series we mean a series of the form

n:l
where the coefficients a are any given numbers, and s is a complex variable [1],

n
[2].

In this paper we study the special Dirichlet series

_2 2=n -s
L(s) sin(---)n s C

n=l

which converges uniformly in the half-plane Re(s) > and thus represents an analytic

function there. In section we study the analytic behaviour of the function L

beyond the half-plane Re(s) > I, and prove that the function L can be extended to a

holomorphic function in the whole complex-plane. Moreover values of L at the points

-m (m=0,I,2,3,...) are obtained at the end of this section. The values of L at the

positive integers 1,3,5,... are determined by means of the functional equation

L() 2 (2_)

satisfied by the function L, which we prove in section 2.
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2. ANALYTIC CONTINUATION OF L.

2___ 2n
L(s) sin (---) n-s (s C) (2.1)

is uniformly convergent in the half-plane Re(s) and so it represents an analytic

function there. The aim of this section is to extend L to the whole complex plane

and to prove that L is holomorphic in C.

LEMMA 2.1. For all values of s in the half-plane Re(s) >

[ g(t)tS-ldtL(s)
F(s)

2 2n -nt
sin(----)eG(t)

v/ n=l

t -te +e +1

,where

,Re(t)>o

PROOF. Co,sider the Euler’s integral

-t s-IF (s) e t dt

Substitution of nt,n N, for t in the above integral yields

-s # -nt s-n r(s) e t dt
J

Thus for Re(s) > I, we get

1(s)L(s) __2 sin.-m--)(2=n_ / e-ntts-1
/ n=l

i.e.

Thus

Now

Joe,

Thus

,Re(s)>o

dt

sin (--}--) e t
V n=l

dt

l(s)L(s) f C(t)tS-ldt

C(t) n --nt
iv

((g)n-()n)e ,where E e
2rI/3

G(t) ([[ ()n -nt
e ()n e-nti n=l n=l

,Re(t)>O

G(t)
t ti V/ (1 - e- (1 e-

By using the identities E i/ g + + 0 and i, we get

G(t) t -t
e +e +I
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t -t -I
The function G(t) (e + e + i) is analytic near t=0; therefore it can

be expanded as a power series in t. So we have

LEMMA 2.2. G(t) has the Taylor series expantion

G(t) -- a t 2n Itl<
R=O

where the coefficients a satisfy the recursion formula
n

n

I/3 3s + 2 s nao n n-k (2.2)

PROOF. Since G is an even function, the expantion of G can be expressed as

G(t) an t2n
R=O

2
whi=h i vd na -o (+/-n f= va+/-d n h d+/-k II < wh=h x=nd =o h

-+-- of G(t)). The relation G(t)(e t + e
-t + i)nearest singularities givest

n (2n),)=n=o

i.e.

i.eo

t2n)( t

nt2n + 2( n (2n)’!
n=o n=o n=o

)=1

an t 2n t 2n
n-k

n=o n=o

Thus for the coefficients a we have the recursion formula
n

n
1/3 3a + 2ao n

_
(-E-)-! a 0 n>ln-k

k=l

This completes the proof of the lemma.

The coefficient a can be determined successively by (2.2). The first few are
n

easily determined to be

ao 3 al 9

7
a2 3T a3 -1080

THEOREM 2.1. The function L defined by

! ts-1L(s) -I’(s C(t) dt ,Re(s)>1

can be extended to a holomorphic function in the whole complex plane.

PROOF. Let us define P and Q for Re(s) > by

P(s) / G(t) ts-ldt

Q(s) f G(t)t s-ldt
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The integral

f G(t)t s-ldt

exists and converges uniformly in any finite region of the s-plane, since the function

-t Re(s)+l -t -2t(e t )/(e + e +I

is bounded for all values of Re(s), and we can compare the integral with that of

i/t2. Thus Q is an entire function. Recall from Lemma 2.2 that

g(t) =-- a t 2n
n ,t ,[ o,1]

n=o

the convergence being uniform on [0,i]. We deduce for Re(s) that

P(s) =’ a t2n+s-ldtnn=o

n=o

Thus P is a meromorphic function on C with simple poles at 0,-2,-4,-6

Since I/F is an entire function we may now extend L to the whole of C by

L(s) __P(s) Q(s)
+ (2.3)r(s) r(s)

Since Q and I/F are entire functions, the singularities of L can only be those

of P/F We have seen that P has simple poles at 0,-2,-4,-6 Since I/F

has simple zeros at 0,-2,-4,... it follows that L is regular for all values of s

in the complex plane. This completes the proof of the theorem.

LEMMA 2.3. (i) L has zeros at -I,-3,-5

(ii) The values of L at 0,-2,-4,-6 are given by

L(-2m) (2m)!a ,m 0 ,1,2,5,4

PROOF. (i) This follows immediately from the fact that I/r has zeros at 0,-I,

-2,-3,..., and thus

P(1-2m) Q(1-2m)t(1-2m)
F(1-2m) +

F(1-2m)
=0 ,m,N

(li) As in (i) we use the partial fraction (2.3) of L to get

P(s) (s)
L(-2m) lim +

s-9-2m F( s F( s

P(s) __1__1---lim -,-l’im2m [’(s) z___n=o 2n+an
s--- 2m F(s) s

i.e.

L(-2m) lim a
s-->-2m r s) 2m/s m
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Since F has simple poles at the points -m (m=0,I,2,3,...) with residues (-l)m/m!,
we get

Thus

lim (2m+s) F (s) Res(r ,-2m)s -9 2m (2 m)’---"

L(-2m) (2m)!am ,m 0,1,2,3,...

where a can be determined successively by (2.2).
m

3. DERIVATION OF THE FUNCTIONAL EQUATION OF L.

In this section we derive the equation

2___( r(-)o(/-)L(_) ,,c.L(s)
.,/Y

where is the Dirichlet seres (2.1)

2 2n -sL(s) sin( )n s C
4T n= ---Finally we determine the values of L at 1,3,5,..., by the use of the functional

equation obtained above.

LEMMA 3.1. There exists an integral function I such that

L(s) =--P(1-s)I(s) ,s C

PROOF. Let 0 < r < i, and let Cr be the contour consisting of the paths C I,
C
2

and C3, where

c ((R),r]

C
2 +Dr(0) is a circle of radius r and the center at the origin oriented in the

positive direction.

C
3 [r,).

C

Define the function I byr

I_/_ f (-t) s-1

-tI r(s) 2i C et+ e +
r

We prove now that I is independent of r. We have
r

dt

f (_t) s-1
Ir(S) It’(s) -Y t -tC e + e +1o
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where CO
is the contour shown in figure (a). Now

dE im -dt
C e +et-t+ 8-->o C e +et-t+1
o

where C is the contour in figure (b).

According to Cauchy’s theorem, the integral around C is zero. Thus

(-t)s-
dt 0

t -tC e +e +1
o

It follows that I is independent of r.
r

Now,

r (log t -=i)(s-1)
I (s) | e dt +
r 2=i t -t

e +e +1

t dt+ J t -t2i C e +e t+l r e +e +12

The middle term approaches zero as r 0 provided Re(s) > O, since

Hence

dt

2

t -t dt < M r e
C e +e +1
2

Re(s)< H r

-=i(s-1 =i(s-1 y s-1
lim I (s)

_e +e t ---dt.
r--,o r 2,i

e +e +1

Define the function I by

l(s) lim I (s)
r--o r

Thus we have

l(s) =--sin(ms) i ts-1
et+e-t+l

dr.

We have seen in the proof of theorem 2.1 that the function defined by the integral

ts_i
t -t

e +e +1

is a meromorphic function with simple poles at the points 0,-2,-4, Since the

function sin(s) has simple zeros at 0,-2,-4 it follows that I is regular for
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all values of s in the complex plane.

Moreover we have

Thus

l(s) _[(s)sin(s) t(s)

I(s) r(1-s) L(s)

401

THEOREM 3.1. The function L satisfies the functional equation

s-1
2L(s) #() r(-s)cos( s)t(-s)

PROOF. Let R n+, n 1,2,3 and let C (0<r<l) be the contour
n n,r

consisting of the positive real axis from R to r, a circle radius r and center
n

at the origin oriented in the positive direction, the positive real axis from r to

R and finally a circle of radius R with center at the origin oriented in then’ n
negative direction.

i.e.

n,r r n R
n

To deduce the functional equation of L we evaluate the integral

f (_t) s-1
2---q-

C et+e_t -dt
+Ir,n

If we assume s x is a negative real number, then we have

(-t)x-1 e(X-1)lg(-t)

It follows that

x-1 x-1
I(-t)i Itl

Since the function (et+e-t+l) -I is bounded on the circle _DR (0),
n

t -t t < 2 MDR (o) e +e n

which goes to zero as n goes to infinity.

Thus we have

(-t)s-1
dtl(s) lim - t -tn-- C e +e +1

n,r

Now between I)
R (0) and D (0) the integrand has poles at the pointsr
n

2=i 2=i (3m-I), m=1,2,3,
+/- -5-- -+ --5-(3m+I) and +/-
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Denote

Thus we have

I. A. ABOU-TAIR

H(t)
(_t) s-1

t -t
e +e +I

2i 1__( 2=Res (H, ----) V/ ----)

2i 2:)Res(H,- ) --x/ (

s-1

s-1

-=is/2e

,is/2

2,)Res(H,2---{m+l)) --(
s-1 s-1-,is/2

e (3m+I)

S-1 s-12,i 2,) ,is/2Res(H,-----(3m+l)) -(- e (3m+l)

2, i 2 s-1 -is/2 s-1
Res(H,----()m-1 =--() e (.,,)m-1)

2-i 2 )s-1 s-1
Res(H,----(3m-1) =---(- e’iS/2(Sm_l)

The sum of the residues between D
R

(0) and 9Dr(0) equals
n

s-1 n
2,) (I+Z s-1 s-1 )(’ cosC,s) [(3m+1) -(3m-1)

m=l
One can easily verify the identity

n s- s-
)

1+ [()m+l) -(3m-1) ] sin(,m)mm= -1

Thus the sum of the residues is

s-1
__2(z 2 Z mS-1 )cos(gs) m=l sin(-m)

It follows that

2 2) cos(1/2zs)( 2 mS-1-[(s) --(- sin(-m) ).

s-1

__(22=) cos({xs)L(1-s) (3. i)

We have seen that -I(s)F(l-s) L(s) for all s E C, so by the identity theorem

the formula (3.1) is true for all s E C. Thus we have proved the functional

equation

s-1
2 2

t(s) -() cos(y,s) (1-s)L(1-s)

LEMMA 3.2. The values of L at the points

the formula

L(l+2m) (-1)m vr2,.(

s=2m+l,m=O,1,2,3,...

a

are given by

where a’s are determined by (2.2).
m
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PROOF. For s -2m the functional equation and the identity

L(-2m) (2m)! a m
m D,I,2,...

of the previous section give the proof of the lemma.
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