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ABSTRACT. A Cauchy structure and a preorder on the same set are said to be compat-

ible if both arise from the same quasi-uniform convergence structure on X. Howover,

there are two natural ways to derive the former structures from the latter, leading

to "strong" and "weak" notions of order compatibility for Cauchy spaces. These in

turn lead to characterizations of strong and weak order compatibility for convergence

spaces.
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INTRODUCTION

L. Nachbin, [3], introduced order compatibility between a uniform structure

and a preorder @ on the same set X by requiring the existence of a quasi-uniformity

g on X such that g U g-I and @ g. An analogous procedure was used by

the authors in an earlier paper, [2], to define order compatibility between a Cauchy

structure and a partial order on X; the principal deviation from Nachbin’s

definition is the replacement of "quasi-uniformity" by "quasi-uniform convergence

structure". However we required in [2] that the quasi-uniform convergent structure

employed be coarser than that generated by the order . If the latter restriction

is removed, a weaker form of order compatibility is obtained.

This paper examines both types of order compatibility for Cauchy spaces. The

"strong" version is the subject of Section I; here we extend the results of [2] by

assuming that @ is a preorder rather than a partial order. A convergence space

derived from a "preordered Cauchy space" is called a "preordered convergence space",

and these are shown to be precisely the locally convex convergence spaces for "hich

the preorder is closed.

In Section 2, we consider the "weak" form of order compatibility, a topic not

previously studied. The characterization of "weakly preordered Cauchy spaces", is

given in two forms, the first of which provides a convenient comparison with the
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preordered Cauchy spaces of Section I. The second leads to a simple characterization

of weakly preordered convergence spaces.

l’ne terminology and noaio of [2] will be used ill his paper inhou further

reference. However we shall always assume in this present paper that is a preorder

(i.e., a transitive, reflexive relation).

I. PREORDERED CAUCHY SPACES (STRONG COMPATIBILITY).

From Definitions 2.1 and 2.2 of [2], we obtain the definitions of preordered

uniform convergence space and preordered Cauchy space by simply ussuming that is

a preorder instead of a partial order. The latter term will be abbreviated "p.c.s".

A p.c.s. (X, , ) for which is a partial order is called an ordered Cauchy pace

(abbreviated "o.c.s.") In a p.c.s. (X, , ), we have "strong" compatibility

between @ and because of the requirement in Definition 2.1, [2], that the filter

<> on X x X generated by be in o. The relaxation of this requirement leads to

the "weak" compatibility studied in the next section.

In this section, we consider triples of the form (X, @ ,C ), where (X, is a

preordered set and C a Cauchy structure on X. In determining when (X, ,C is a

p.c.s., the preorder < on the set C of Cauchy filters, as defined on p. 486, [2],

plays a vital role since it is required in formulating two of the following

conditions (see also p. 487, [2]):

(OC)I C whenever

(OC)
2

If , C < , and < , then C;

x < implies x _< y.(0c)
3

The first condition defines "local convexity" for a Cauchy structure on a preordered

set; recall that ^ () D -I) is the convex hull of The second condition

asserts that the preorder < on is antisymmetric relative to Cauchy equivalence

classes, and the third turns out to be equivalent to the order being closed in

XXX.

It was shown in Theorem 2.9, [2], that when is a partial order, (X, , ) is

an o.c.s, iff conditions (OC) I, (0C2), and (OC)
3
are all satisfied. In this section

we show that when is a preorder, (X, , C) is a p.c.s, iff the same conditions

hold. This task is made easier by the fact that all lemmas and Propositions in

Section 2, [2] prior to Theorem 2.9 remain valid under the assumption that is a

preorder rather than a partial or_der. Whereas the statement of Theorem 2.9, [2]
remains valid when is a preorder, the proof of this theorem must be altered,

since it makes explicit use of the assumption that is antisymmetric. Since, in

particular Proposition 2.8, [2] is valid when is a preorder, the principal theorem

of this section reduces to showing that (OC) I, (0C)2, and (OC)3 imply that (X, ,
is a p.c.s. Thus for the remainder of this section we assume that (X C is a

preordered set with Cauchy structure which satisfies (OC)I’ (OC)2’ and (OC) 3.

Given (Y. )= an mquvalne rlan the elements of X is defined as

follows: x y iff (x,y) ( -I. Let E {y ( X: x y} be the equivalence
x

class containing x, and let <E > be the filter of oversets of E
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LE4A I.I. For each x ( X, <Ex> y in (X,qC) for all y ( Ex. In particular,

<E > C.
x

PROOF. It is obvious that E (y) N -l(y), for all y { X. Since E EY x y
and y, the conclusion follows by (OC) I.

LEMMA 1.2. If is a filter on X such that <> x then there is x X
such that Ex ( " Furthermore, (C and y in (X, qc for all y Ex.

PROOF. Choose F such that F x F N -I. clearly x ( F implies F c E

The second statement follows by Lena 1.

From Lemma 2 and (OC)3, the next lemma follows easily.

LEMMA 1.3. Assume that , are filters on X such that: <> c

<> c , E and E ( . The following statements are equivalent:x y

(i) E m
x y

(2) n, C

(3) <8> c (:x) N (x:)

THEOREM 1.4. (X, , C) is a p.c.s, iff conditions (OCI) (OC)2 and (OC)
3

satisfied.

are

PROOF. As we have noted previously, it is enough to prove that the three

conditions are sufficient. From Proposition 2.6, (generalized to preordered sets),
we see that (X, ,C) is a p.c.s, iff U(: ,C and ,C is

compatible with C, where ,C A C is characterized in Proposition 2.4, [2]

and ,C (,C) v (,C)-I. In view of Proposition 2.7, [2], it is sufficient

to show that ,C is compatible with C In other words, we must show, as in the

proof of Theorem 2.9, [2] that x o,C implies C
By Proposition 2.4, [2], we may assume x , where
n -i

@ j) x j)) <@>, and 5 < ’’ j n. If E for some
j=l x

x ( X, then C by Lemma i. Suppose E for all x X. 2hen there must
x

be an ultrafilter finer than such that < > x K. Otherwise, there must

be (by Lemma ) ultrafilters K1 and K2, both finer than such that

<> _c K1 x hl < > _c 2 x 2’ and, for nonequivalent elements x and y, E
x A

and E K Since I x 2 D and K2 x I D 6, one can show that
y 2

K1 K2 and K2 KI. But then (OC)
2 requires that K 1N K2 C, and it follows

from Lemma 3 that E K a contradiction.
x 2’

Let be the set of all ultrafilters finer than such that < > x K

The argument given in paragraphs 2 and 3 of the proof of Theorem 2.9, [2] leads to

the conclusion that there is ( C such that for all ( K Thus if

I { : ( K }, we conclude that I and i ( C

If I the proof is complete. Assume instead that there is an ultrafilter

finer than such that Then < > c x and so E 6 for some
X
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x X by Lemma 2. A repetition of a previous argument shows that every such ultra-

filter must contain E for the same x X. If ]L is the set of all such
X

ultrafilters and ’2 N{ : IL it follows that E ( and so
x 2’

It remains only to show that I N 2 C Let 6 ]( and ]L. Then

K and are in C and X D G As in an earlier paragraph of the proof, we

can deduce that K < and < K, from which it follows by (OC) 2 that X N C

Thus I N 2 C, and the proof is complete.

PROPOSITION 1.5. If (X, , C) is a p.c.s., then is closed in X X.

PROOF. It is shown in Proposition 2.7, [2], that (OC)
3

is equivalent to the

statement U{Q : @, Since <> o@,C and o,C is closed under

compositions @=U{Do <> o: o,C U{ <> ,C where

the last equality follows from 4.1.5, p. 301, [I], the closure being taken relative

to the product convergence structure on X X derived from the convergence structure

on X compatible with ,C By Proposition 2.6, [I], the latter convergence

structure is precisely qc
Let (X,q) be a convergence space (in the sense of Fischer), let Cq be the set

of all q-convergent filters, and let q(x) be the set of all filters which q-converge

to x. It is well known that the following statements are equivalent:

(a) There is a Cauchy structure C on X such that q q c
(b) C

q
is a Cauchy structure on X.

(c) For x, y ( X, q(x) and q(y) are either equal or disjoint.

If (X,) is a preordered set and q a convergence structure on X, we define the

triple (X, @, q) to be a preordered convergence space if there is a Cauchy structure

C on X such that (X, ,C is a p.c.s, and q qc
PROPOSITION 1.6. Let (X, be a preordered set, q a convergence structure on

X. Then (X, @ q) is a preordered convergence space iff (X, C q) is a p.c.s.

PROOF. Let (X, @ q) be a preordered convergence space, and let (X, C be a

Note that
q D C. From the fact that (X, @, C) satisfiesp.c.s, such that q q c

(OC) and (OC) 3, it is easy to deduce that (X, @, cq) has the same properties.

Furthermore the latter space also satisfies (OC) 2, since for complete spaces (OC) 2
follows immediately from (OC) 3.

The converse argument is trivial.

THEOREM 1.7. Let (X, ) be a preordered set, q a convergence structure on X.

Then (X, , q) is a preordered convergence space iff (X, , q) is locally convex

and @ is closed.

PROOF. Using Proposition 1.5, it is a simple matter to verify that the two

properties specified for (X, , q) are equivalent to the assertion that (X, @, q)
Since (X, , q) is complete, Theorem 1.4 andsatisfies (OC) and (OC) 3.

Proposition 1.6 imply the desired conclusion.

2. WEAKLY PREORDERED CAUCHY SPACES (WEAK COMPATIBILITY).

As before, we assume that X is a set, a preorder on X, and a Cauchy

structure on X. (X, , C) is defined to be a weakly preordered Cauchy space if

there is a quasi-uniform convergence structure on X such that: (I) the uniform
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-Iconvergence structure v j derived from has C as its set of Cauchy filters;
(2) = U{ }. This definition differs from that of preordered Cauchy
space only in the condition < > , which is required for the latter but not for
our present definition. We abbreviate weakly preordered Cauchy space by "w.p.c.s.".

Given a preorder on X, let Y be the quasi-uniform convergence structure on

X with base consisting of all finite filter intersections of the form

0{x
i

x Yi (xi’ y’) ’ i n}. If, in addition, C is a Cauchy structure
on X, let T,C ^ where the lattice meet i taken in the lattice of all

quasi-uniform convergence structures on X. Finally, we define a preorder on filters
in C as follows:

Q iff fl or there is (x,y) such that

fl C and 9
As we shal see, I,C and Qplay the same role in the theory of weak compatibility
that o,C and respectively, play in that of strong compatibility.

PROPOSITION 2.1. Let (X,) be a preordered set with Cauchy structure Then

Y, has a base of sets consisting of all finite intersections of the form

{ j xj j n}, where j j, j n.

n fl wherePROOF Consider a composition of the fom I 2"
each i x i and there are two possibilities for i and i (I) "i i
where (xi, yi) , or (2) i i’ and i i C (i.e., 3i C )" By

examining four possible cases, it is easy to verify that the existence of the

composition i i+l implies that i Q i+l" Thus if I and n’
we obtain for the entire chain of compositions Q and 61 %0...0 %.

We thus see that filters of the form indicated in the proposlton are in

YC and a base for Y,C involves taking finite compositions and intersections of

such filters. It can be shown by a straightforward set theoretic argument that any

finite composition of filters of the indicated form can again be written as a finite

intersection of filters of the same form, which is the desired conclusion

PROPOSITION 2.2. A triple (X, , C) is a w.p.c.s, iff U{ : T, },
-Iand C is compatible with , T,C v (T,)

PROOF. Given the two conditions, (X, , C) is a w.p.c.s, according to the

definition of this term. Conversely, assume that (X, , C) is a w.p.c.s, derived

from a quasi-uniform convergence structure , and let v s-I be the associated

uniform convergence structure Then it is easy to see that C, and

since and C are compatible with C so is C Also D{0 : 6 o}

u{ne : ^ u} a u{ne:e ,e since (x,y) x x @ T,
We next introduce conditions on a triple (X, ,C which lead to a character-

ization of a w.p.c.s, similar to that given for a p.c.s, in Theorem 1.4. It turns

out that only two such conditions are needed (woc)2 and (woc)
3
which are analogous

to (OC)
2 and (OC)3, respectively. There is no form of "local convexity" involved

in the characterization of weak compatibility, and so we shall later use (woc) to

describe a single condition (not related to (OC)p which can replace both (woc)
2

and

(wo)
3
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(woc)2 If W , are in C, @, and Q then WA C.
(woc)

3 @ implies (x,y) E @.

PROPOSITION 2.3. If (X, ,) is a w.p.c.s., then (woc)
2
and (woc)

3
are

satisfied.

PROOF. Assume , C Q, and Q. Then, by Proposition 2.1,

x T, and x T,C Thus () x

() x) r, and by Proposition 2.2,

By Proposition 2.1, x x y i, and so (x,y)

THEOREM 2.4. (X, ,C is a w.p.c.s, iff conditions (woc) 2 and (woc)
3

are

satisfied.

PROOF. Using Proposition 2.2, we must show:

-1
(2) =P’ where P , Te, V (Te, C

(I). If (x,y) @, then x T, which implies

(x,y) U{ : T,c }. If (x,y) G for some f ,e then x x ZG
implying x T,c By Proposition 2.1, Q , and so (x,y) by (woe)3"

(2) It is sufficient to show x E T implies , By,e
Proposition 2.1, we may assume x _DG= (.j x j)) , where j Q j,
for j l,...,n. Let N, be distinct ultrafilters finer than Then there are

indices i, j such that "i x,i c. and j x.j
_
x , where i@"i and

j@ j. This implies N @ and @N so that N by (woc)2. Thu

Rearranging the indices if necessary, let l,...,m be the indices such that, if

j _< m, then there are ultrafilters , finer than H such that x D__ j j,m
where j @ ’3 in g Let j A and 7 jlj. The reasoning of the

preceding paragraph leads to the conclusion that 1 and that N for every

ultrafilter _m H Thus which implies { C and the proof is

complete.

We now introduce the condition (woc for a triple (X, , ).

(woc) qC(x) q(y) iff (x,y) { -i.
It is significant that this condition is formulated entirely in terms of and

q the convergence structure derived from

THEOREM 2.5. (X, is a w.p.c.s, iff condition (woc) is satisfied.

PROOF. In both directions of this proof, we use the characterization of a

w.p.c.s, given in Theorem 2.4.

Assume that (X,. , satisfies (woc) 2 and. (woc) 3. If ?(x) qC(y), then

x" y in qe -iThus x n e, which_l implies x and x. By (woc) 3,
(x,y) A If (x,y) A and q(x), then @ and

@ . By (woc) 2, A implying (q(y). By the symmetric

argument, q(y) implies q(x), and so qC(x) qC(y). Thus (woc) is

established.
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Conversely, assume that (X,,) satisfies (woc) I. Let Q and Q
where 5, C. Considering only the nonobvious case, we can assume that there
is (x,y) @ such that $ x C and N 9 C. We can also assume there is

(b, a) @ such that $ C and O C Then qc(a) qC(x) qc[a)
qC(x). Likewise, qc(b) qC(y). By (woc)l (a,x) @0-I

and (b,y) -1.
Thus (x,a), (a,b), (b,y) are all in @-i, which implies (x,y) -I. Thus

(x,y) @ N -I, and again by (woc)l we conclude q(x) qC(y). Consequently,
0 qC(x) qC(y), implying 0 C and so (woc)2 is established.

To prove (woc)3, let x Q 9. If x 9 6 , then q (x) q (y), and (x,y)
follows by (woc) I. Otherwise there are elements a, b in X such that (a,b) and

x a C, 9 I] C. But this implies q (a) q (x), so that (x,a) [i I,
-I

and q(y) qc(b), so that (y,b) @ @ Thus (x,a), (a,b), (b,y) are all in

and so (x,y) @.

Next, we consider weak compatibility for convergence spaces. Let (X,) be a

preordered set, and let q be a convergence structure on X. The triple (X, , q) is a

weakly preordered convergence, space if there is a Cauchy structure on X such that

(X, , C) is a w.p.c.s, and q qc.
If (X, , q) is a weakly preordered convergence space, then it is an immediate

consequence of Theorem 2.5 that every Cauchy sructure C compatible with q has the

property that (X, @, C) is a w.p.c.s.; in particular (X, @, q) has this property.

Thus we obtain

COROLLARY 2.6. For a preordered set (X, with convergence structure q, the

following statements are equivalent.

(a) (X, @ q) is a weakly preordered convergence space.

(b) (X, @, q) is a w.p.c.s.

(c) If is a Cauchy structure on X such that q qc then (X, ,C) is a w.p.c.s.

One final characterization of weakly preordered convergence space which makes no

reference to the notion of Cauchy structure is given in the next theorem.

THEOREM 2.7. The triple (X, @ q) is a weakly preordered convergence space iff

the following conditions are satisfied:
-i(a) (x,y) implies q(x) q(y)

(b) (x,y) @ @-i implies q(x) q(y)= .
PROOF. If (X, ,q is a weakly preordered convergence space, then (a) follows

immediately from Corollary 2.6, and (b) follows from Corollary 2.6 and the fact that

q q c for some Cauchy structure

Conversely, assume the two conditions; it suffices to show that (X, C q)
satisfies condition (woc) I. From (a) and (b), we see that for any x, y X, q(x) and

q(y) are either equal or disjoint; thus C
q

is a Cauchy structure. Also (a) gives

"half" of condition (woc)l, and the other "half" comes from (b), since q(x) q(y)

implies q(x) q(y) # , and so (x,y) -i.
In case is a partial order, it is appropriate to speak of a weakly ordered

Cauchy space or a weakly ordered conve.rg.ence space in the case of weak order

compatibility. In this case the compatibility is indeed "weak", since any triple

(X, , C where (X, ) is any poset and C any T Cauchy structure will constitute

a weakly ordered Cauchy space, and likewise if q is any T
2

convergence space then
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(X, , q) will be a weakly ordered convergence space. It is well known that, in

general, every T1Cauchy space has a variety of T completions. Thus if (X, , C)

is any weakly ordered Cauchy space and (X’, C’) is any T
1
completion of (X,C), then

a partial order ’ can be defined on X’ in many ways so as to make (X’, ’, ’) a

weakly ordered Cauchy completion of (X, , C).

In the case of strong compatibility the completion theory is much more compli-

cated. Not all ordered Cauchy spaces have ordered Cauchy completions. A detailed

treatment of this topic may be found in [2].
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