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ABSTRACT. A Cauchy structure and a preorder on the same set are said to be compat-
ible if both arise from the same quasi-uniform convergence structure on X. Howerver,
, there are two natural ways to derive the former structures from the latter, leading
to 'strong" and '"weak'" notions of order compatibility for Cauchy spaces. These in
turn lead to characterizations of strong and weak order compatibility for convergence

spaces.
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INTRODUCTION

L. Nachbin, [3], introduced order compatibility between a uniform structure
and a preorder 6 on the same set X by requiring the existence of a quasi-uniformity
8 on X such that U = SU 8 “land 6 =n8. an analogous procedure was used by
the authors in an earlier paper, [2], to define order compatibility between a Cauchy
structure C and a partial order ® on X; the principal deviation from Nachbin's
definition is the replacement of '"quasi-uniformity" by ''quasi-uniform convergence
structure”. However we required in [2] that the quasi-uniform convergent structure
employed be coarser than that generated by the order &. If the latter restriction
is removed, a weaker form of order compatibility is obtained.

This paper examines both types of order compatibility for Cauchy spaces. The
"strong" version is the subject of Section 1; here we extend the results of [2] by
assuming that 6 is a preorder rather than a partial order. A convergence space
derived from a "preordered Cauchy space'" is called a '"preordered convergence space",
and these are shown to be precisely the locally convex convergence spaces for which
the preorder is closed.

In Section 2, we consider the "weak" form of order compatibility, a topic not
previously studied. The characterization of 'weakly preordered Cauchy spaces", is

given in two forms, the first of which provides a convenient comparison with the
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preordered Cauchy spaces of Section 1. The second leads to a simple characterization
of weakly preordered convergence spaces.

Ine terminoiogy and notatiou ofi [2) will be used iu tiiis paper withou. further
reference. However we shall always assume in this present paper that % is a preorder

(i.e., a transitive, reflexive relation).

1. PREORDERED CAUCHY SPACES (STRONG COMPATIBILITY).
From Definitions 2.1 and 2.2 of [2], we obtain the definitions of preordered

uniform convergence space and preordered Cauchy space by simply assuming that O is

a preorder instead of a partial order. The latter term will be abbreviated "p.c.s".

A p.c.s. (X, 6,C) for which ®& is a partial order is called an ordered Cauchy space

(abbreviated "o.c.s.") 1In a p.c.s. (X, 6, C), we have "strong" compatibility
between & and C because of the requirement in Definition 2.1, [2], that the filter
<6> on X % X generated by ® be in 0. The relaxation of this requirement leads to
the "weak" compatibility studied in the next section.

In this section, we consider triples of the form (X,6 ,C ), where (X,6) is a
preordered set and C a Cauchy structure on X. In determining when X,6,C) is a
p.c.s., the preorder < on the set C of Cauchy filters, as defined on p. 486, [2],
plays a vital role since it is required in formulating two of the following
conditions (see also p. 487, [2]):

(OC)1 ¥~ € C whenever F €C ;
(OC)2 If &,4% €C ,3f'},and J‘i F, then¥F N& € C;

(OC)3 x < y implies x = y.

The first condition defines "local convexity" for a Cauchy structure on a preordered
set; recall that ¥~ = 6@&) U G—l(3) is the convex hull of § . The second condition
asserts that the preorder < on C is antisymmetric relative to Cauchy equivalence
classes, and the third turns out to be equivalent to the order 6 being closed in
X x X.

It was shown in Theorem 2.9, [2], that when © is a partial order, (X, 6, C) is
an o.c.s. iff conditions (OC)l, (OCZ)’ and (OC)3 are all satisfied. In this section

we show that when © is a preorder, (X, &, C) is a p.c.s. iff the same conditions
hold. This task is made easier by the fact that all lemmas and Propositions in
Section 2, [2] prior to Theorem 2.9 remain valid under the assumption that 6 is a
preorder rather than a partial order. Whereas the statement of Theorem 2.9, [2]
remains valid when © is a preorder, the proof of this theorem must be altered,

since it makes explicit use of the assumption that 6 1is antisymmetric. Since, in
particular Proposition 2.8, [2] is valid when © is a preorder, the principal theorem
of this section reduces to showing that (OC)I, (OC)Z’ and (OC)3 imply that (X,6,C)

is a p.c.s. Thus, for the remainder of this section, we assume that (X,6,C) is a

preordered set with Cauchy structure which satisfies (OC)I’ (OC)Z, and (OC)3.

Given (¥, & C ), an equivalence relation on the elements of X is defined as
follows: x ~ y iff (x,y) € Gﬂs—l

class containing x, and let <Ex> be the filter of oversets of E .
X

- Let E_= {y € X: x ~ y} be the equivalence
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LEMMA 1.1. For each x € X, <Ex> >y in (X, qc) for all y € Ex. In particular,
<E_> € C.
X

PROOF. It is obvious that E, = & (y) N 6 l(y), for all y € X. Since E, = E,
and ;' -y, the conclusion follows by (OC)I. ]

LEMMA 1.2, If F is a filter on X such that <@g> < FxXF , then there is x € X
such that Ex € ¥. Furthermore, F€C and F -y in (X, qc) for all y € Ex.

PROOF. Choose F € F such that F X F ¢ 60N 9-1; clearly x € F implies F C Ex.

The second statement follows by Lemma 1. ]
From Lemma 2 and (OC)3, the next lemma follows easily.

LEMMA 1.3. Assume that ¥ ,4 are filters on X such that: <@> cFXF,
<B>cC &x &, Ex € ¥, and Ey € & . The following statements are equivalent:

(1) Ex=Ey
(2) 3N fe ¢
(3) <6> c (FxH) N (&xF) .

THEOREM 1.4. (X, 6,C) 1is a p.c.s. iff conditions (OCI), (OC)Z’ and (OC)3 are

satisfied.

PROOF. As we have noted previously, it is enough to prove that the three
conditions are sufficient. From Proposition 2.6, (generalized to preordered sets),

we see that (X,6,C) is a p.c.s. iff 6 = U{NG: GE€ OG,C } and us’c is

compatible with C, where o = 00 A uc is characterized in Proposition 2.4, [2]

6,C
_1 .
and u@’c = (GG,C ) v (OG,C ) . In view of Proposition 2.7, [2], it is sufficient
to show that us I is compatible with C . In other words, we must show, as in the
’
proof of Theorem 2.9, [2] that ¥ x ¥ € Oy @ implies HeC .
’

By Proposition 2.4, [2], we may assume ¥ x ¥ > G, where

n -
c=(Nn 6 1(lij) XMB‘__.I)) N <6>, and 3j§*w 1<j<n. If Exeu for some

j=1
x €X, then ¥ €C by Lemma 1. Suppose E_ t ¥ for all x € X. Chen there must
be an ultrafilter ¥ finer than ¥ such that <G> $ X x X. Otherwise, thare must
be (by Lemma .) ultrafilters Kl and }62, both finer than ¥ , such that
<G> ¢ }Cl X }"1’ <e> c }(2 X }(,2, and, for nonequivalent elements x and y, Ex € hy
and Ey € }(,2. Since ](,1 X}cz > @G and }(,2 X }(,1 > G, one can show that
}cl < )(2 and }(2 < )(,1. But then (OC)2 requires that }cl n }(,2 € ¢, and it follows

from Lemma 3 that Ex € }(1 n }(2, a contradiction.

Let X be the set of all ultrafilters ¥ finer than )} such that <§ > $ XX X.
The argument given in paragraphs 2 and 3 of the proof of Theorem 2.9, [2] leads to
the conclusion that there is M7 € C such that M C ¥ for all ¥ € K. Thus if
ul =N{¥: X € X}, we conclude that 7 < lil and Hl €C .

If ”1 =Y , the proof is complete. Assume instead that there is an ultrafilter
S finer than ¥ such that £ § ¥. Then <0>c £x& , and so E_€ £ for some
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x 2 X by Lemma 2. A repetition of a previous argument shows that every such ultra-
filter ¢ must contain Ex for the same x € X. If I is the set of all such
ultrafilters £ and Hz =N{£: &£ € L}, it follows that Ex € Nz, and so H,) €C.

It remains only to show that H = “1 n Hz €C. Let X€ K and £ € I.. Then
Xand £ are in C , and § XX 2 G . As in an earlier paragraph of the proof, we
can deduce that X < f£and £ < X, from which it follows by (OC)2 that ¥ N &£ e€C.
Thus ¥H = “1 n uz € (¢, and the proof is complete. (]

PROPOSITION 1.5. If (X, 6, C) is a p.c.s., then © is closed in X x X.

PROOF. It is shown in Proposition 2.7, [2], that (OC)3 is equivalent to the
statement : 6 = U{NG: G € UG,C }. Since <6> € a
compositions ©=U{NBo <6> oR: m(qs’c 1oU{Ng o <o>c° §: §¢€ uG,C } = 6 , where
the last equality follows from 4.1.5, p. 301, [1], the closure being taken relative

e.c and OG,C is closed under

to the product convergence structure on X X X derived from the convergence structure
on X compatible with ug ¢ - By Proposition 2.6, [1], the latter convergence

’
structure is precisely qa . i}

Let (X,q) be a convergence space (in the sense of Fischer), let cq be the set
of all q-convergent filters, and let q(x) be the set of all filters which q-converge
to x. It is well known that the following statements are equivalent:

(a) There is a Cauchy structure C on X such that q = qc .
(b) cq is a Cauchy structure on X.
(¢) Por x, y € X, q(x) and q(y) are either equal or disjoint.

If (X,0 ) is a preordered set and q a convergence structure on X, we define the

triple (X, 6, q) to be a preordered convergence space if there is a Cauchy structure

C on X such that (X,6,C) is a p.c.s. and q = 90 -

PROPOSITION 1.6. Let (X,®) be a preordered set, q a convergence structure on
X. Then (X,®, q) is a preordered convergence space iff (X, 6, cq) is a p.c.s.

PROOF. Let (X,®, q) be a preordered convergence space, and let (X, 6,C) be a
p.c.s. such that q = 9 - Note that cq 2 C. From the fact that (X, &, C) satisfies
(Oc)1 and (oc)3, it is easy to deduce that (X, 6, ¢%) has the same properties.
Furthermore the latter space also satisfies (0C)2, since for complete spaces (OC)2
follows immediately from (OC)3.

The converse argument is trivial. []

THEOREM 1.7. Let (X, 6) be a preordered set, q a convergence structure on X.
Then (X, &, q) is a preordered convergence space iff (X, &, q) is locally convex
and ® is closed.

PROOF. Using Proposition 1.5, it is a simple matter to verify that the two
properties specified for (X, &, q) are equivalent to the assertion that (X, 6, cq)
satisfies (OC)1 and (OC)3. Since (X, 6, Cq) is complete, Theorem 1.4 and
Proposition 1.6 imply the desired conclusion. ]

2. WEAKLY PREORDERED CAUCHY SPACES (WEAK COMPATIBILITY).
As before, we assume that X is a set, ® a preorder on X, and C a Cauchy

structure on X. (X, 6, C) is defined to be a weakly preordered Cauchy space if

there is a quasi-uniform convergence structure 0 on X such that: (1) the uniform
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convergence structure U = g V 0-1 derived from 0 has C as its set of Cauchy filters;
(2) 6=U{NG: G€ o). This definition differs from that of preordered Cauchy
space only in the condition < &> € g, which is required for the latter but not for
our present definition. We abbreviate weakly preordered Cauchy space by "w.p.c.s.".
Given a preorder ¢ on X, let Te be the quasi-uniform convergence structure on
X with base consisting of all finite filter intersections of the form
n{ii x ;'i: (xi, y;) €6, i=1,...,n}. If, in addition, ¢ is a Cauchy structure
on X, let T@’c = U’A Ta » where the lattice meet i taken in the lattice of all
quasi-uniform convergence structures on X. Finally, we define a preorder on filters
in C as follows:
8@$ iff FN& €C, or there is (x,y) € & such that

FNxEC and SNye€C.

As we shall see, Te c and @play the same role in the theory of weak compatibility
’
that GG c and < , respectively, play in that of strong compatibility.
’

PROPOSITION 2.1. Let (X,8) be a preordered set with Cauchy structure € . Then

‘l.'@ e has a base of sets consisting of all finite intersections of the form

n{ :jj X.xvj: j=1,...,n}, where 3j @.&j, j=1,...,n.

PROOF. Consider a composition of the form G = ( C"l o 02°...° Gn) n 5, where
each Gy = F < 4 , and there are two possibilities fo; ¥ and .&i : (1) Fo=xy
where (xi’ yi) €6, or (2) ?’i = l«i, and 3i x 3751 € u (i.e., !;i €C). By
examining four possible cases, it is easy to verify that the existence of the

° G‘i+1 implies that si @'&H—l' Thus if 3 = ;:1 and & = ‘&n’

we obtain for the entire chain of compositions ¥ @ band Fx S = Gl ° 620...0 G'n'

composition G‘i

We thus see that filters of the form indicated in the proposition are in
T&C , and a base for T@.C involves taking finite compositions and intersections of
such filters. It can be shown by a straighttorward set theoretic argument that any
finite composition of filters of the indicated form can again be written as a finite
intersection of filters of the same form, which is the desired conclusion. 0

PROPOSITION 2.2. A triple (X, 6, C) is a w.;l).c.s. iff 6 = U{NF: F ¢ Te.0 },
and (¢ 1is compatible with VS,C = T@,C v (TS,C )y .

PROOF. Given the two conditions, (X, 6, C) is a w.p.c.s. according to the
definition of this term. Conversely, assume that (X, ®6,C) is a w.p.c.s. derived
from a quasi-uniform convergence structure 0, and let U = 0 V 0-1 be the associated
uniform convergence structure. Then it is easy to see that u < V@,C = uc , and
since u and uc are compatible with ¢, so is \)s‘c . Also6=U{NG: G € o} =)

U{nG :G ¢ Tg A u} 2 U{NG:Ge To,C } > 6, since (x,y) € 6=xx7y € Tg S Te,C 0

We next introduce conditions on a triple (X,® ,C ) which lead to a character-
ization of a w.p.c.s. similar to that given for a p.c.s. in Theorem 1.4. It turns
out that only two such conditions are needed (woc)2 and (woc:)3 which are analogous
to (OC)2 and (OC)3, respectively. There is no form of "local convexity'" involved
in the characterization of weak compatibility, and so we shall later use (woc)1 to
describe a single condition (not related to (0OC) 1) which can replace both (woc)2 and

(woc)3.
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(woc)2 ff '.;,.} are in c,x@.&,and &@3,then FN& € C.
(woc)3 X @ y implies (x,y) € &.

PROPOSITION 2.3. If (X,6,CG) 1is a w.p.c.s., then (woc)2 and (woc)3 are
satisfied.

PROOF. Assume JF,% € c,tj@.&, and 3@5. Then, by Proposition 2.1,
FXxX& € TGC and & x F € TS,C . Thus (FNJ) x (FNE)= (Fx&) N (&xF) N
(3x3) N x8) € 7o , and by Proposition 2.2, 3N €C . Next, let x® vy
By Proposition 2.1, x X y € TGC , and so (x,y) € 6. [

THEOREM 2.4. (X,6,C) 1is a w.p.c.s. iff conditions (woc)2 and (woc)3 are
satisfied.

PROOF. Using Proposition 2.2, we must show:

(1) 6=UNG: GE 1y, }s o
(2) c-cu, where u = G,C = ‘l‘s’c v (‘l‘s’c) .

(1). If (x,y) ¢ 6, then x x ;; ¢ Tsc

xy) €ulna: €, b If Gty) €0G for some G € 7o , then xXy-G,
6,¢ ° By Proposition 2.1, x @ y, and so (x,y) € ©® by (wo.:)3
(2) It is sufficient to show Y XY € T@(‘ implies ¥ €C . By
nv »~ .
Proposition 2.1, we may assume ¥ X} DG=( N (7;j X,&j)) N A, where 33 @.&j,
j=1
for j = 1,...,n. Let X, £ be distinct ultrafilters finer than 3 . Then there are
indices i, j such that % x} C¥ x§ and 3, Xﬁj C £x &, where i@.& and
3_'1@ J'j. This implies ¥ @.t and £ @}c , so that XN £€ ¢ by (woc:)2 Thus

JiﬂﬁiﬂlijﬂJjEC

Rearranging the indices if necessary, let 1,...,m be the indices such that, if

, which implies

lmply:mg x X y €T

j <= m, then there are ultrafilters X ,f finer than u such that ¥ x & > 3;] x "j’
where 3_'] @ jj in C. Let Mj = 5 n .8« and M= ﬂ 7/1j The reasoning of the

preceding paragraph leads to the conclusion that 7 € C and that ¥ 2>, for every
ultrafilter X2 ¥ . Thus Y D7 , which implies Y € ¢ , and the proof is
complete. []

We now introduce the condition (woc)1 for a triple (X, &, C).
(woc)l qc(x) = qc(y) iff (x,y) € 6N o1,

It is significant that this condition is formulated entirely in terms of ¢ and
qc , the convergence structure derived from ¢ .

THEOREM 2.5. (X,6,C ) is a w.p.c.s. 1iff condition (woc)1 is satisfied.

PROOF. 1In both directions of this proof, we use the characterization of a
w.p.c.s. given in Theorem 2.4.

Assume that (X,@ c) satisfies (woc:)2 and (woc)3 .If ? (x) = qc(y), then
x y in qc . Thus x N y €, which implies x < y and y ? X. By fwoc)3,
(x,y) € ¢N @ 1f (x,y) €N 9 and F € q (x), then y @sﬂ x and
g n x @ ;'. By (woc)z, y Nxna3e c, implying F € qc(y). By the symmetric
argument, & € qc(y) implies .& € qc(x), and so qc(x) = qc(y). Thus (woc)1 is
established.
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Conversely, assume that (X,6,C ) satisfies (woc)l. Let & @3‘ and & @3 ,
where ¥, % € C. Considering only the nonobvious case, we can assume that there
is (X,y) €6 such that 3N x € C and &N ; € C. We can also assume there is
(b, a) € 6 such that FNa €Cand€ Nbh €C . Then 3 € qc(a) N qa(x) = qpta) =
ae(x). Likewise, qq(b) = d(y). By (woe),, (a,x) €6N6 ! and (b,y) €6 016 -1
Thus (x,a), (a,b), (b,y) are all in 6 1, Whlch implies (x,y) € 6 Thus
(x,y) €6 n G-l, and again by (woc) we conclude qc(x) = qc(y) Consequently,

FN &€ qc(x) qc(y), 1mp1y1ng 3 n 3 € C, and so (woc)2 is established.

To prove (woc)3, let x C) y. If x N y €C, then q (x) = q (y), and (x,y) €6
follows by (woc)l. Otherwise there are elements a, b in X such that (a,b) € 6 and
xNa€C,yNbe . But this implies q (a) = q (x), so that (x,a) € 61 &1,
and qc(y) = qc(b), so that (y,b) € 6N G-l. Thus (x,a), (a,b), (b,y) are all in & ,
and so (x,y) € 6. [l

Next, we consider weak compatibility for convergence spaces. Let (X,0 ) be a
preordered set, and let q be a convergence structure on X. The triple (X, %, q) is a

weakly preordered convergence space if there is a Cauchy structure @ on X such that

(X,6,C) is a w.p.c.s. and q = qc.

If (X, 6, q) is a weakly preordered convergence space, then it is an immediate
consequence of Theorem 2.5 that every Cauchy structure ( compatible with q has the
property that (X, 6, (C) is a w.p.c.s.; in particular (X, ¢, cq) has this property.
Thus we obtain

COROLLARY 2.6. For a preordered set (X,86 ) with convergence structure q, the
following statements are equivalent.

(a) (X,6, q) is a weakly preordered convergence space.
(b) (X,6, cq) is a w.p.c.s.
(c) If @ is a Cauchy structure on X such that q = qc , then (X,6 ,C) is a w.p.c.s.

One final characterization of weakly preordered convergence space which makes no
reference to the notion of Cauchy structure is given in the next theorem.

THEOREM 2.7. The triple (X,6 , q) is a weakly preordered convergence space iff
the following conditions are satisfied:

() (6y) € 60 67 implies q(x) = a(»);
) (x,y) F 60 67 implies a(x) N q(y) = 4.

PROOF. If (X,6,q ) is a weakly preordered convergence space, then (a) follows
immediately from Corollary 2.6, and (b) follows from Corollary 2.6 and the fact that
q = qc for some Cauchy structure €.

Conversely, assume the two conditions; it suffices to show that (X, ¢, cq)
satisfies condition (woc)l. From (a) and (b), we see that for any x, y € X, q(x) and
q(y) are either equal or disjoint; thus cq is a Cauchy structure. Also (a) gives
"half" of condition (woc)l, and the other "half" comes from (b), since q(x) = q(y)
implies q(x) N q(y) # ¢, and so (x,y) €6 N S 1]

In case 6 is a partial order, it is appropriate to speak of a weakly ordered

Cauchy space or a weakly ordered convergence space in the case of weak order

compatibility. 1In this case the compatibility is indeed '"weak', since any triple

(X, 6,C) where (X, ) is any poset and ( any T, Cauchy structure will constitute

1
a weakly ordered Cauchy space, and likewise if q is any T2 convergence space then
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(X, 6, @) will be a weakly ordered convergence space. It is well known that, in
general, every T1 Cauchy space has a variety of Tl completions. Thus if (X, 6,C)
is any weakly ordered Cauchy space and (X', ¢') is any Tl completion of (X,C ), then
a partial order @' can be defined on X' in many ways so as to make (X', &', C') a
weakly ordered Cauchy completion of (X, &, C).

In the case of strong compatibility the completion theory is much more compli-
cated. Not all ordered Cauchy spaces have ordered Cauchy completions. A detailed

treatment of this topic may be found in [2].
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