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&BSCT. Let S be the class of functions f which are analytic and univalent in

the unit disc E with f(0) 0, f’(O) I. Let C, S and K be the classes of

convex, starlike and close-to-convex functions respectively. The class C of quasi-

convex functions is defined as follows:

Let f be analytic in E and f(O) 0, f’(0) I. Then fEC if and only if

there exists a gC such that, for E

(zf’ (z) )’
Re > O.g’(z)

,
In this paper, an up-to-date complete study of the class C is given. Its

basic properties, its relationship with other subclasses of S, coefficient problems,

arc length problem and many other results are included in this study. Some related

classes are also defined and studied in some detail.

WDDS AD PRABS. Univalent convex, alpha-convex, quasi-convex, alpha quasi-

convex, close-to-convex, arclength, coefficient, radius of convexity, order 8 type Y,

Livingston’ s and Libera’ s operators.

1980 SJE’ SIFITION ODE. 30A32, 30A34.

1. IN1"IODOC’rION.

Denote by S the class of functions f which are analytic and univalent in the

unit disc E and satisfy f(O) O, f’(0) I. The subclasses S and C of

starlike and convex functions respectively are well-known and have been extensively

studied, see [I], [2] and [3]. A function f is said to be in S if and only if

for zE

Re
zf’ (z)
f(z) > 0.

and C are related by the Alexander relation [4], that is

(1.1)

,
fEC if, and only if zf’ES
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Hence a function f is said to be in C, if and only if for zEE

(zf’(z))’
Re f’(z) > 0 (1.3)

The subclass K of S consisting of close-to-convex functions is also well known [5],
and many properties of S can be extended to the wider class K. A function f is

said to be in K if and only if there exists a convex function g such that, for

zeE

f’(z)
Re g’(z) > 0 (*.4)

Since G=zg’ is starlike for g convex, (1.4) can be written as

Re
zf’ (z)
G(z) > 0 (,.5)

,
for zeE and GES Taking G(z)=f(z) in (1.5) one sees that S K, which shows

that
,

CoS CK

2. QUASI-CO FNTIONS.

We proceed now to define and discuss a subclass of S which is related to K by

an Alexander type relation [6].

)KFIIITION 2.I. Let f be analytic in E with f(0) -0, f’(0) I. Then f

is said to be quasi-convex in E if and only if there exists a convex function g

with g(0)--0,g’(0)-- such that, for zE

Re
(zf’(z))’ > 0 (2.1)
g’(z)

,
Denote the class of quasi-convex functions by C ,

It is clear that, when f(z)ffig(z) and geC, then (2.1) holds. Hence CCC We,
show now that C C K, so that every quasi-convex function is univalent.,

TEOREM2.|. Let feC Then, for zE,

Re
zf’ (z)
g(z) > 0, geC

,
and so C K S, thus, every quasi-convex function is close-to-convex and hence

univalent in E.
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PROI. A result of Libera [7] shows that, if s and t are functions analytic

in E with s(0)ffit(0)ffi0 and tS then for zCE,

Re
s’ (z) s(z)
t’(z’) >o Re -f(>O

An immediate application of this with s(z)-zf’(z) and t(z)-g(z) proves the theorem.

It follows at once from the definition (2.1) that

,
fgC if and only if zf’eK (2.2)

,
We now extend some results to the class C which are known to be true for C,

see [1], [2] and [3].
* nTHBOR 2.2. Let fC with f(z) z + Z a z Then, for z r < I,n

(i) [a n=2,3n

2 2(l+r) (l-r)

(Ill) +r

(iv) [m[ , where f(z)a in E.

All inequalities are sharp, equality being attained for

Z
fo(Z) (2.3)

,
PROOF. (i) Since feC there exists a convex function g with g(z)

z + Z b z such that, for zcE
n

n2

(zf’(z))’ h(z) where Re h(z) > O,g’(z)

and h(z) r. c z c I.
n on=O

So

(zf’(z))’ g’(z)h(z)

n-1
Equating the coefficient of z on both sides, we have

2
n a

n
n bn + (n-l) c bn-I + (n-2) c

2 bn_2+ + 2Cn_2 b
2
+ Cn_

ice.

(2.4)
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Now, from the known results [7], bn I, n--2,3,..., and c
n

we have

21 2{ n(n-l)} 2
n a

n
n +

2
--n n--2,3,... (2.4)

and this implies la I, n=2,3

Using known [1,2 and 3] distortion theorems for the functions g and h, we have

(l+r)3 (l_r)3
(2.5)

Integrating the right hand side of (2.5) from 0 to z, we obtain

r
i l+r r

3 dr
2

0 (l-r) (l-r)

od= o obtain o= bound fo [f’()[, pro=d foo. L dl b

the radius of the open disc contained in the map of E by zf’. Let z
0

be the

point

increases with {r the image of [z r by w=f’(z) expands and is less than d

Hence the linear-segment connecting the origin with the point _f’(z0) will be

covered entirely by the values of zf’(z) in E. Let be the arc in E which is

mapped by w=zf’ (z) onto this linear-segment. Then

)
l-r

3(l+r)
dr

r

(l+r)

Integrating (ii), we obtain (iii) and by letting r in the lefthand side of

(iii), we have (iv).

Waadeland [8] proved that every starlike m-fold symmetric function g, with

mk+lg(z) z + Z bmk+iZ satisfies
k=l

2
--+k-I

2

r()
(2.6)
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,
In order to extend this result to C we need only to extend Waadeland’s result to,
K and then use the relationship between C and K. However this extension to K,
was done by Pommerenke [9] and so (2.6) is true for fEC,

The following result for the class C follows exactly in the same way as for

the class C in [!0].
* n k

TKORKM 2.3. Let feC with f(z) z + l a z and g(z) z + l bkZ
n=2 k=2

Let g(z) f(z). Then, for all n,

sn([ z) f(z),

where

n

Sn(z) z + l bkZ
k--2

means "subordinate to")

Clunie and Keogh [I0] showed that if fC with f(z)-- z + l a z and f(E)
n

n=2 ,
has definite area then n a o(I) as n (R). This result has been extended to C

n
in [6] as follows.

* n
TJ14 2.4. Let fEC with f(z) z + l a z If f(E) has finite area,

n
n=2

then n a o(I) as n ", the index of n being best possible.
n

Denote by C(r) the closed curve which is the image of f(E and by L(r) the
r

length of C(r). We prove:

TSOM 2.5 [6]. Let fC Then, for 0 r < I,

2 (. A(r) L(r) 2 (. A(-) (I og l-r I/2 (2.7)

Further, if A(r) < for 0 r < I, then

L(r) o(1)(log lr) as r+l

The convex function f(z) log-- shows that the factor (log --ll__r)/2 in (2.7) is the

best possible.

PROOF. The left hand inequality follows at once from the Isoperimetrlc in-

equality. Since fC F(z) zf’ (z) is close-to-convex. Thus

2 2

0 0

r
2. M(P,zf’) --, see [I, p. 451

o
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Z) (A()F{) log I-=r) I/2

(2.9)

We can show (2.8) easily by taking A(r) < =.
2.I. For fgC, it is well-known that L(r) (2M(r). It follows from

--’--Z_)/2 as(2.7) that for fC L(r) O(l) M(r) (log r 1, The question of whether

the factor (log can be removed is still open.

It is well-known [II] that

Re
(zf’(z))’ > 0 + Re

zf’(z)
f’ (z) f(z) > , zeE,

that is, every convex function is starlike of order . It is natural to ask if such,
a relationship exists between C and K. The following example shows that this is

not in fact the case.
z l<a<__"

Then

but

(zf’(z))’ 2
Re Re(l-az) > 0, zE,

g (z)

and

Re
zf’(z) Re(l-az)
g(z)

zf’ (z) I__ zSE.Inf Re g(z) < for < a < I’
Now, following the same method as in [12], we have

* f’(z) I/3
THEOR 2.6. Let fC and g(z) f’(-z)" Then Re(g(z)) > 0, for zZ.

This result is sharp as can be seen from the function

zfl(z) [z(l-gz)]/[(l+z)2],

* [-le z]
where (cosY)ei 0<< and flC with respect to the convex function #(z) (l+z),
3. RKIATIONSHII’ OF C WITH OTHER SOBCLASSES OF S.

(i) The class C.

The class C of convex functions is a proper subclass of C In fact if we

write
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F(z) f[(x+z)/(l+xz) -f(x) xeE, zE,

where f(z) z

(l-z)z

then the function f,(z) defined in E by

Z

f.(z) d
0

*belongs to C but not to C, see [6] for more details.

(II) The Class S
*The class C while a proper subclass of the class K of close-to-convex,

functions, is not contained in S For example, the function

l-i z l+i log (l-z)f(z) -- l-z 2

,
belong to C but for sufficiently small e, Re

zf’(z) i0
f()’ < 0, when z e -e<0<0.

This means f is not starlike. Also the Koebe function k(z)
z

is starlike

, (l-z)
but does not belong to C It is clear from the coefficient result and the

*
distortion theorems for the class C

(iii) The Class R

The class R of univalent functions was introduced by Reade [13] and

studied by Pommerenke [9]. We define Ra as follows:

An anlytic function f with f’(z) 0 belongs to Ra, 0’<I, if and only if

0
2

Re {(zf’(z))’ dO ) -a,
0 f’(z)

for all 01, 02 such that 0 ’ 01 < 02 ’ 2,, 0 ’ r < I.,
Before establishing a relationship between C and Re, we need the following,

necessary condition for C
*THEOREM 3.1. Let fEC and z re 0r<l. Then, for

0
2 --(zf’(z))’} d0 ) + 02-01f

f’(z) 2
(3.1)

PROOF. It has been proved in [14] that for zf’ FeK, and for all 01 0
2

such that 001 <0 2’ 2.

02-0
2

0
2 relO io o2-o1,, f Re

F’(re ,).} dO, 2. + 2
O F(re

10
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,
using this and the fact that fEC if and only if zf’eK, we obtain the required

result.
82-8 82-8We note that in (3.1), 2

can be very small and we can take
2

where 0<e I. Thus we conclude that

for some e, (0<a<l).

RKMAK 3.1. It is an open problem to find the exact value of ee(0,1) that goes,
with C It should be some fixed n,-,ber determined by C

(iv) The class of functions convex in one direction.

Robertson [15] introduced the class C of convex functions in one direction.

These are the functions for which the intersection of the image region with each line

of certain fixed direction is either empty or one interval. He has also shown that

if f has real coefficients, then feC if and only if zf’eT, where T is the class

of typically real functions, that is, the functions with real coefficients.

We prove the follwing:,
THKORM 3.2. If fC in E and has real coefficients, then it is convex in

one direction. ,
PROOF. Let C (R), K(R) and CI(R) be the classes of functions which are in,

C K and C respectively and have real coefficients. Let fC (R). This implies,
zf’K(R). But K(R) T. Hence zf’eT and so feCI(R). Hence C (R) CI(R) and

this proves the theorem.

From Theorem 3.2 and the results for the class CI(R) in [15], we have:,
THKORM 3.3. Let fEC (R). Then

(I) Re
f(z) > f(z)

and -----z is subordinate to (l+z) I.

where

i8
(ii)

2
Re

I+21 a21 r+r re

nf(z) z+ r. a z.
n

n=2

(iii) L(r)
(l-r2)

z
equality is obtained for f(z) -z"

(iv) larg f(z)
arcsin Izz

2w r, where L(r) is the length of the closed curve f(E ). The
r

and

arg f’(z) 2 arc sin

,
(v) FC (R), where
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F(z) I f(tz)d#(t) z + l n anZ
0 n=2

(t) is any real function monotonic increasing in the interval (0,I) and the

moments sequence { is given by
n

n-- tn d(t), I0

Thus we have seen that

*() c=c cRacKcS
,

(2) C (R) cO(R) cT

,
We now discuss the relationship of C with other subclasses in a different

way. We have the following: ,
TKORKM 3.4. Let fC in E. Then f maps Izl<r-42-5

_
0.6568 onto a

convex domain, and this result is sharp.

This follows at once from the result of Lewandowskl [16] where he proved that the

exact radius r such that the image of Izl<r by fEK is a starshaped domain

(with respect to the origin) is

r 4- 5

_
0.6568

We see that, from this result fC zf’K zf’S for z <4/-5 fC for

Lewandowski’s method yields the existence of an extremal function which maps E

onto the w-plane cut along a half-llne not passing through the origin consequently we

have the extremal function for theorem 3.4.
* zf’(z)

THEOREM 3.5. Let fC and gC in K. If Re g(z) > 0, zE, then

Re
(zf’(z)) > 0 for Izl < For the proof see [17].
g’(z)

4. APPLICATIONS OF THE CLASS C

(a) The Class KI.
We now introduce a new class K by replacing convex function g in (1.4) with

quasl-convex function. This generalizes the concept of qasi-convexlty and close-to-

convexity both.

I}FIIITIO 4.1. Let f be analytic in E and f(0) 0, f’(0) I. Then feKI,,
if and only if, there exists a gEC such that for zEE,

f’(z)
g,z) > 0.

,
Clearly C KcKI.

We state some basic properties of the class KI. We refer to [18] for the proofs.
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THEOREM 4.1. Let feK and be given by f(z) z + r. a z Then
n

n2

(i) a In, for all n.
n

(+/-+/-1 (-r) if,(z)l (,+1
3 3(l+r) (i-r)

(iii)

(iv)

I
(i+r)

2
(i-r)

2

All inequalities are "sharp, equality being attained for

z
fo (z) 2

e K
(l-z)

(v)

where 0(I) denotes a constant.

Or<l.

The question whether the factor (l_--Ir)I/2 can be improved is unsettled and remains open.

(vii) For feK implies that zf’ is univalent in Izl < o-g"

(b) Alpha-quasi-convex functions.

Mocanu [19] introduced the class M of alpha-convex functions as follows:

n
Let a be real and suppose that f:f(z)-z + Z a z is analytic in E with

n
n2

f(z).f’(z)O. Then feM if, for zeE,

Re {(i-a) zf’(z) (zf’(z)) > 0.f(’Z) + a
f’(z)

It has been shown [20] that all a-convex functions are univalent and starlike and

they unify the classes of starlike (affi0) and convex (affil) functions.

Using the concept of quasl-convexlty, we now define the following:

z
nDEFINITION 4.2. Let a be real and f:f(z)=z + Z a be analytic in E.

n
n=2

Then f is said to be alpha-quasi-convex, if and only if there exists a convex function

g such that, for zEE
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Re [(l-a) f’(z) (zf’(z))}g,(i) + a
g’(z) > O.

We denote the class of a-quasl-convex functions as Qa" We note that Qo-K and,
QI=C Thus alpha-quasl-convex functions connect the classes K and C in the same,
way as alpha-convex functions do S and C.

In [21], we proved:

(1) Let F(z) (l-a) f(z) + azf’(z), and a be real, a ) O, zeE. Then feQa
if and only If, FeK.

(ii) feQa’ if and only if, for a > O, there exists a close-to-convex function F

such that, for zeE

---z -2+--
f(-) z

0
F(t) dt

(iii) Every a-quasi-convex function, for 0 a is close-to-convex.

(iv) Let FeK in E. Then F will be a-quasi-convex in Izl<r0 I/(2ad4(4a2- 2a + I)).

This result is sharp.

n(v) Let fQa and be given by f(z) z + r. a z Then, for n 2,
n

n

This result is sharp as can be seen from the function

1---z ---1a ta -2
f0(z) z (l-t) dt

0

,
(c) The class C (8,Y) of quasl-convex functions of order 8 type

A function fgS is called a convex function of order 8, 0 8 if, for zE,

(zf’ (z))’
Re f’(z) > 8,

We note this class by C(8).

Also feS is a starlike function of order 8, 0 8 I, for zcE

Re
zf’ (.z)
f(z) > 8,

and we call this class as S (8). These two classes were introduced by Robertson [22].

In [23], Libera introduced the close-to-convex functions of order 8 type
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DEFINITION 4.3. A function f analytic in E, normalized by the conditions

f(0)=0, f’(0)=l, is said to be close-to-convex of order 8 type Y where 0 4 8 4,
and 0 4 Y 4 I, if and only if there exists a function gS (Y) such that, for zeE

Re
zf’(z) > 8.g(z)

We denote such a class of functions as K(8,Y). It is clear that K(0,0)=K. ,
We now introduce terminology of order and type together in the class C as:

DEFINITION 4.4. A function f, analytic in E, normalized by the conditions

f(0)=0, f’(0)=l, is said to be quasi-convex of order 8 type y, if and only if

there exists a function geC(Y) such that for zcE

(zf’(z))’
Re > 8g’(z)

,
where 0 8 and 0 Y I. We call such a class as C (8,). Clearly,
c (0,0)=c ,

We shall now state some results on the class C (8,Y). For the proofs, we refer

to [24].

llOll]i 4.3. Every quasi-convex function of order 8 type Y is close-to-convex

of the same order and hence univalent. ,
RKM 4.1. From the definition of C (8,Y), we can see that an Alexander-type,

relation holds between the classes C(8,Y) and K(8,Y), that is

,
feC (B,Y) if and only if zf’gK(B,Y). (4.1)

THEOREM 4.4. Let fC (8,Y) and be given by f(z) z + 7. a z Then we have
n

n=2

I]an (2(3-Y) (n-2Y)[n(l-8)+(8-Y)](i) n.n!

,F 1-r)d_r(ii)
0 (l+r)2-2Y[l+(l-28)r]

r(l-Y)(1-28) + (8-Y)[l-(l-r) 2-2Y]
Y#2, Yl

2(I-8)
( (I-28) T log(l-r) +-------r Y

2(8-1) log(l-r) + (28-I), Y=l,

where Izl=r, 0<r<l. The first result and rlght-hand side of the second are sharp.
zf’ (z) *THEOREM 4.5. Let feS and gEC. Let Re g(z)’ > 8, for zE. Then fEC (8,0)

*for Izl<ro= , and feC for Izl<rl 3-48"
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We can also define the class Q(e,8,7) of alpha-quasi-convex functions of order

8 type Y as:

DKFIITIOM 4.6. Let ’0. A function f, analytic in E, is said to be alpha-

quasi-convex of order 8 type Y, if and only if there exists a function gC(Y)

such that

f’(z) (zf’ (z))’Re[(l-) g, (z) + e
g’(z) > 8,

for zeE, and 8,7e[0,I]. We denote this class of functions as Q(e,8,7). It is

clear that Q(s,0,0) Qe. For different values of , 8, and 7, we have

Q(0,8,) K(8,) Q(0,0,0) K
,

Q(I,8,’) C (8,’), Q(I,O,O) C

We notice that this class unifies the two classes K(8,Y) and C (8,Y), and it

follows from the definition that

feQ(e,8 ,) if and only if (l-)f + s zf’} K(8,7

Integral representation and coefficient problem can be solved in the same way as we

did for the class

(d) oPgaTos os mmssgs c (8 ,v ).

Let f=T(F), where T is an operator. Now we shall be dealing with the mapping

properties of f when FC (8,Y), 8, [0,I] and T is a differential or integral

operator.

Here we shall discuss the case when T is an integral operator I. In [7], Libera

considered the operator I

n
u-H^(E) Iflf(z) z + l a z and analytic in E

n
n=2

where for FHo, I(F) f and

2
z

f(z) " f F(t) dt.
0

He proved that

I(C)= c

I(S) s

I(m) m

(4.2)
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A generalization of (4.2) has been considered in [25] by taking operator I
n

defined as In H0 H0’ In(F) f and

f(z) nz
-n+l i tn-2 F(t) dt, nffil,2,3

0
(4.3)

A simple proof of (4.2) is given by Mocanu, see [19], where it is also shown that

i(s s (T)

(4.4)

where (-3 + /4 and is the same in both expressions.

Pascu [26] considered the operator 11, 04141, I H
0 HO, 11(F)ffif,

f(z) z F(z) dz (4.5)
0

which generalizes the results in (4.2) and (4.4).

In [27], Salagean studied the operators (4.5) for the classes S ($) and C(Y).

By using the same techniques used in [26] we obtain the similar results for the

classes K(B ,$) and thus consequently we have:

THEOREM 4.6. Let 0<141. Let f be defined by (4.5) where FeC (B,$),B,$[O.I].

Then feC (,) where B4<I and is defined as follows:
I

4y<l, then(i) If 0<14 and 2(I-I)

<ffio ---[21"f+k-2+44k2f2-1212’+81T+9k2-41+4]/41> 0

and

I-I 31-8 4 y, then(ii) If <141 and 4
21

offio
2

[21T+l-,/412TZ-1212T+912-81]/41 > 0

and

(ill) If <141 and < <Y<I, then

Special Cases:

(i) For 1 1/2, =0, I:0, we obtain a known result for the class C see [16].

(ii) For 8ffi0, Yffi0, we see that

FE C fE C
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TF)JM 4.7. Let 0<II and 08<1. Let f be given by (4.5) and FeQ(a,8,y)

where 0Y I, >0. Then feQ(e,8 ,).

For the proofs of the above results, we refer to [28].

Special Cases:

(I) For , =0, 8=0, we obtain this result for the class Qa, see [21].

(ll) For =0, 8=0, we see that

FeQe feQe

4.2. Using the integral representation of fgQ(s,8,) and theorem 4.7,

we notice that, for 0<

Q(s,8,Y) K(8,).

In [29], Livingston has studied the converse question considered by Libera [7].

In fact he studied the mapping properties of the function f defined by

f(z) D(F(z)) (zF(z))’, (4.6)

where D is a differential operator and F is one of the subclasses of S. For

example he has proved that if FeS then f, given by (4.6), is starlike for z "2
and, in general, in no larger disc centered at the origin.

Padmanabhan [30] has refined the results of Livingston by imposing further

restrictions on the character of F. His main theorem shows that if FeS (Y),

for OY , then f’1, defined by (4.6), is starlike of the same order for

izl<{_2 + (y2 + 4e}/2T. He obtains analogous result when F is a convex function

of order . Libera and Livingston [31] extended and generalized the results of

Padmanabhan in the following ways. They extended to include the range of Y when
zf’ (z) >}and the radius of the disc in which {Regeneralized by finding, sharp f(z),

when FgS (), 0<I, 0<I and ). They were not able to obtain suitable results

for the complimentary case when <Y, but in [32] Bajpal and Slngh gave a method

which covers both of the cases and their result is the best possible.

We can generalize the Livingston differential operator D as following:

Dl(f) f(z) (l-l) F(z) + IzF’(z), (4.7)

where l>O and zE. The mapping properties of the function f, when F is in one of

the subclasses of S have been studied in [33].

We generalize Libera and Livingston’s result by replacing Livingston’s operator

(4.6) by the operators (4.7) and have the following:
,

TKORKM 4.8. Let 081, 0’l, ’1 and 8il. Let FeC (8,’) and f be

given by (4.7). Then feC (U,) for Izl<r where r is given as
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r min (rO,r2)

where r
0

is the smallest positive root of

(I-o) + 2{(y-o) + X(l-Y) (o-2)}r + (2Y-o-l)(l-2k(l-Y))r
2

O,

and r
2

is the smallest positive root of the equation

[l-(l-2X(l-Y))r][(l-) + 2{(B-p) + X(B+Y+(l-Y) -2)}r

+ (213-p-1)(1-2),(1-Y))r2] 0

For B=O, this result reduces to one for the class C see [34].

R 4.9. Let >0 and %>0. Let , YI, BI and yol. If

FQ(,B.) and f is given by (4.7), then feQ(,p,o) for Izl<r where r is

defined as in theroem 4.8.

When =Y=O, we obtain this result for the class , see [34]. For the proofs

of the above theorems we refer to [35].

We can demonstrate the relationship between all the subclasses of S as follows:

Set inclusion, O<a;l, and B,yc[O,I].
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