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ABSTRACT. The concept of reflector curves for convex compact sets of reflecting type

in the complex plane was introduced by the authors in a recent paper (to appear in

J. Math. Anal. and Appln.) in their attempt to solve a problem related to StieltJes
and Van Vleck polynomials. Though, in the said paper, certain convex compact sets

(e.g. closed discs, closed line segments and the ones with polygonal boundaries) were

shown to be of reflecting type, it was only conjectured that all convex compact

sets are likewise. The present study not only proves this conjecture and establishes

the corresponding results on Stleltjes and Van Vleck polynomials in its full generality

as proposed earlier by the authors, but it also furnishes a more general family of

curves sharing the properties of confocal ellipses.
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I. INTRODUCTION.

The present study has been motivated by a recent conjecture (cf. authors [I,

concluding Remarks (1)]) that every convex compact subset of the complex plane is of

reflecting type. This arose while solving a problem related to stleltjes and Van Vleck

polynomials. In this paper we are able to prove this conjecture by the introduction

of a nice function v: R_+ (, and R_+ denote the set of all complex real and non-

negative real numbers, respectively). In fact, Section 2 is primarily intended to

establish some relevant properties of the function v that is solely responsible for

materializing, in Section 3, the family of the so-called co-convexlal reflector curves

needed to prove the said conjecture. Besides, this family of reflector curves does

present an interesting geometrical feature in as much as itprovldes an analogous theory

of confocal ellipses under very general conditions. Finally, section 4 highlights

certain applications of the theory of co-convexial reflector curves by obtaining some

new results on the zeros of stleltjes and Van Vleck polynomials, some of which were only

predicted in [I] and [2].

Before proceeding further, it is desirable to explain certain notations and

terminology to be used later. Unless mentioned otherwise, K denotes a convex compact
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body (i.e. a convex compact set with an interior point) in the complex plane. Given

any nonempty subset S of the complex plane, we denote by K(S), S and ISI the

convex hull, the interior, the boundary and the length of the boundary of S,

respectively. For z K, we shall write (z,K) to denote the angle subtended by K at

z (cf. ). Also, for every z e C, we write K =K(Ku{z}). It may be noted that
z

K zeK,
z

K

K zK.z (i.i)

It is known (cf.[3, Thm. 12.20]) that K has a rectifiable boundary (with length

denoted by IKI). The following special case of a theorem in Valentine 3, Theorem

12.6 is interesting to record for future references.

THEOREM I.I. If K,K’ are convex compact bodies in such that KK’, then

In view of this and (I.I) we have

IKI V

> IKI V zK. (1.2)

2. THE REFLECTOR FUNCTION.

We begin with the following definition.

DEFINITION 2.1. Given K, we define the function v: C (0 + =) by v(z) IKz
for every zC and call v the reflector function for K.

Here we remark (cf [3, Theorem 12.7]) that v is continuous with v e IK and

v(z) as z aiong any continuous path in . Since a continuous image of a

connected set is connected, we observe that v(C_) [IKI, * =).

LEMMA 2.2. If G i__s r_ with base at an interior point a of K and cutting K a__t b,

then v(z) increases strictly and continuously from 1SKI t__o + a__s z moves awa[ from b

along G.

PROOF. If z, z’ eG such that z’ a > z a then K Kz, and Theorem I.I
z

implies that lKzl < lKz,l. Consequently, v(z) < v(z’) and the lemma is established.

We shall often use the following notations. Given z K (a convex compact set),

we let a a’ denote the unique extreme points of K closest to z on the respectivez z
supporting lines (possibly coincident) of K through z (cf.[l] or [4] ), labelled in

such a manner that the movement along K from z to a via a’ gives a clockwise
z z z

orientation to K We then let A (resp. A’) denote the supporting ray with base at z
z z

which passes through a (resp. a’). Also B shall denote the ray with base at z that
z z z

bisects the angle between A and A’ i.e. B bisects the angle (z,K). A line through
g z z

z perpendicular to B will be denoted by T and the closed half-plane (not containing

K) determined by T will be denoted by H
z z

DEFINITION 2.3. Given a convex compact subset K of C and a line L (not cutting K),

we say that a point z e L is a reflector point of K in L if T =L. We write such a
z
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point as z z(K,L).

Observe that z z(K,T for all zK. However, the fact that every line L (not
z

cutting K) has a unique reflector point of K in L follows from the following lemma.

LEMMA 2.4. Given .convex compact subset K o_f, le__t L be a directed lin___e (no__

cuttin K with a preassigned positive direction. For each zeL, i_f a(Az), a(A) and
a(Bz) denote the angles which Az, A’z ---and Bz, respectively, make with the positive

direction of L, then

(a) each of a(Az), a(A) and a(Bz) increases strictly and continuously with range

(0,w) a_s z traverses the whole line L in the positive direction,

(b) there exists a unique eL such that (K,L).

PROOF. (a) If z,w L such that w # z and w is in the positive direction from z,

then a(Aw) > a(Az). For, otherwise, AzOAw and Az would not cut K. Hence (Az)
increases strictly as z moves along L in the positive direction. Next, if w z along

L from either direction, the monotonicity of (Aw) forces the expression

to approach zero. For, otherwise, A would cease to be a supporting ray of K for w
w

sufficiently close to z. Hence (Az) is continuous on L. This Proves the assertion

about a(Az) if one observes that a(Az) approaches 0 and as z approaches the negative

and positive ends of L, respectively. The proof for a(Ai) is similar and the one for

a(Bz) is immediate, since the sum of two increasing functions is increasing.

(b) Since the range of a(Bz) is (0,), the property of a(Bz) in part (a)

establishes the statement in part (b)

This completes the proof of Lemma 2.4.

For proving our next lemma, we introduce the following notations: Given a,b K,

we write (a,b) for the portion of K from a to b described in the clock-wise

direction of K. The length of (a,b) will be denoted by

LEMMA 2.5. If z K, then
O

(a) v(z) increases strictly and continuously from v(zo) to + a_s z moves awaZ
from z along Tz

O O

(b) v(z) > V(Zo for every z e Hz {Zo}’
(c) v(zo) rain v(z) min v(z). o

zeH zcT
z z
0 0

PROOF. (a) let z, w e T such that Iw z I>lz zl and z,w do not lie on oppositeZ 0

sides of z Here z may coincide with z Let the directed line segment from z to wO O
be taken as the positive direction of T Suppose A’o A’ {bz}Z Z W
Then o

v z)= +

Z Z

r + s (2.1)

In case a’w A’z (resp. az Aw) the convex body K((a’z, aw)U{z}) (resp. K{w, aw, az}
is contained in the convex body K{z, bz, a} (resp. K(8(az, aw)U{w})). Application of

Theorem I.I yields
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lz-’l / !<:’z, %>i Iz- lz +

and

w (az’ aw)

z

Therefore (cf.(2.1))

>--Iw-bl Iz-blz z

Hence

Z Z Z Z

m’-m. (2.2)

Observe that m’,m are the lengths of the major axes of the confocal ellipses E,E’

passing through z,w, respectively, and belonging to the family of all confocal

ellipses with focii at a and b If o K(a ,b }, then (z,o) a(z,K) and so B is
z z z z z

also0 the bisector of (z,o), where (Bz) (Bz /2 by Lemma 2.4 applied to K and
o

T The same lemma, when applied to and T provides a unique point w T such
z z o z

o
that w w _(o,T

z
and such that either w z or w and w lie on opposite sideso--- z.

o o o o
o

If E is the member of through w then T is tangent to E at w and any other
O O Z O O

member (cutting T of must interest T n exactly two distinct points on opposite
z z

o
sides of w Sinc z and w do not lie on opposite sides of w the ellipse E is

o o
enclosed by E’. Consequently (cf.(2.2))

v(w) v(z) => m’ m > 0

which establishes part (a) of the lemma.

(b) Let a K nB Given z H {z }, consider the directed ray G
z z o

o
through z with base at a. Let G cut T at w. If w z we are done by Lenas 2.2.

In case w # Zo, Lema 2.2 and part (a) above gives v(z) v(w) > V(Zo). Part (b) is

thus established.

(c) The same technique as in the proof of part (b) above confirms that,

for each w T there exists a z H T such that v(w) < v(z). Now part (c)
z z z

follows from pat (b).
o o

The proof of Lemma 2.5 is thus complete.

In view of Lemma 2.4(b) and Lemma 2.5(c), we remark that the function v attains a

minimum on every line L, not cutting K, at the reflection point of K in L. However
for any other line L’, v attains a minimum at every point in KOL’.

3. REFLECTOR CURVES.

Given K, we define a relation ’~’ betweem elements of C as follows:

z z’ if and only if v(z) v(z’).

Then ’~’ defines an equivalence relation on C and the equivalence class C containing z,
z

is given by

c {wC Iv(w) v(z)}.
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Thus, v partitions , via the equivalence relation ’~’, into mutually disjoint

equivalence classes C (zeC), one of them being K itself (Note that C =K if and only
-1

if zeK.) For each zeC, we see that C v {k}, where k v(z) e[IKl,+ )o So each

Cz is a closed and bounded set, because v is continuous and v(zn) + as the sequence

z . Also, since v(C) [IKI,+ ), for each ke[lKl,+ ) there exists a point aC
n

-l{ksuch that the class C v Al1 this can be sumned up in the following.

PROPOSITION 3.1. The family {Cz}zC
has the following properties:

(a) C is compact and zeC for every zeC;

(b) Either C a C (which happens if and only if v(z)
Z Z Z Z

(which holds if and only i_[.f v(z) v(z

(c) The family of all isjoint_ equivalence classes, {Cz}zeC’ is in 1-1 correspondence

with the interval[lK I, + ).

Next, we prove the following results. By a curve we mean a continuous arc whose

initial point coincides with its terminal point.

PROPOSITION 3.2. (a) Every C (zK) is a Jordan curve enclosin K (For K, C K).

(b) Cz is enclsed by Cz, if and only

PROOF. (a) Choose ae and a ray g with base at a, as the initial line for
o

measuring angles. For each e[0,2], let denote the ray, with base at a making an

angle with For a fixed zK, so that v(z)k iKt, consider
o

c (wlv(w) k.

Lena 2.2 allows us to choose a unique point w on each ray such that v(w) k. This

enables us to define a mapping r[0,2] such that r()e C0 and v(r()) k for all

[0,2]. Continuity of v then implies that r is continuous. Observe that F(l)r( 2)
if 12 and that F(O)K for all 0. Furthermore, application of Lem 2.2 to the ray

Go G2 yields r(0) r() and completes the proof.

(b) The proof follows from Propositions 3.2(a) and 3.1(b), together with

Lemma 2.2.

PROPOSITION 3.3. Each C (zK) is a convex curve.z
PROOF. For each zgK, let H’ (resp. H") denote the closed (resp. open) llf plane

determined by T which contains K. Now consider C for a fixed zK. By Lemma 2.5,
z z

C nil’ C wC.
Z W Z Z

That zs,

C n {H’lweCz w z

But (since wH" for all weC
w z

c n {"[wc} c
w z

Therefore, every point of Cz is a boundary point of K(Cz). That is, Cz is a convex

curve, and the lemma is established.

A regular Jordan curve C, lying outside a nonempty convex compact set K, is called

a refiector curve for K (cf.[l, Definition 2.1]) if the normal at every point cC is

along B the bisector of the angle a(c,K). A nonempty convex compact subset K of C

is said to be of reflecting type (cf.[l, Definition 2.3]) if It has a unique convex

reflector curve, enclosing K, through every point zK (it may be noted that any two such
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reflector curves for K must necessarily be either identical or disjoint). The family

of all nonempty convex compact subsets of C of reflecting type will be denoted by F.
It is known [i, Remark 2.4] that F contains closed discs and closed line segments (the

only convex sets without interior points) and also convex bodies with polygonal

boundary. In the remainder of this section we establish that F contains all nonempty

convex compact subsets of C.

PROPOSITION 3.4. Every C zK, is a reflector curve for K.

PROOF. Given zK, let wC By Lemma 2.5(b) we know that C n T {w} and
z z w

C H’ where H’ is as in the proof of Proposition 3 3 To prove regularity of C
z w w z

it is sufficient to prove that any line L through w, not cutting K and different from

T must cut C at precisely one more point other than w. Let us assign a positive
w z
direction to such a line L so that the resulting directed line L makes a positive acute

angle with the ray Bwo By Lemma 2.4, there exists a unique reflector point of K in

L, with # w, such that lies on the positive side of L from w. Since K and

T L, we apply lemma 2.5(a) to and obtain a unique point w’L such that w and w’

lie on opposite sides of and such that v(w) v(w’). Since w,z C we conclude
z

that w’e C Moreover, we further conclude that v(c) # v(w) for any c E L, c # w, w’.

That is L cuts C at only one point w’ (#w). Consequently, T is tangent to C at w.
z w z

Now Proposition 3.2(a) completes the proof,

Propositions 3.3 and 3.4 assert that, for each zK, C is a convex reflector curve
z

for K passing through z and enclosing K. In fact, we claim that if C’ is any reflector

curve for K passing through z then C ’= C For, otherwise, we obtain a point z’e C’-C
z z

Now consider C Since {C is a nonintersecting family of convex regular curves
z z zK

which is everywhere dense (cf Propositions 3 1-3 3) in the region between C and C
Z Z

and, since C’ is a convex regular curve passing through z and z’, we conclude that

there exists a point eC’ such that C’ cuts C at a positive angle. This contradicts

the fact that C’ and C must touch each other at (both being reflector curves for K).

Thus, we have established the following theorem which answers affirmatively the

conjecture made earlier in I, Concluding Remarks(1) ].

THEOREM 3.5. l__f K is a nonempty convex compact subset of C, then K belongs t__9_o F.

REMARK. Though we have proved Theorem 3.5 for a convex body K, but it remains valid

also for a convex set K without interior points (see the paragraph immediately preceding

Proposition 3.4).

It is interesting to note that the family of co-convexial reflector curves (for a

given K) generalizes the notion of confocal ellipses, which we obtain by taking K to

be a closed line segment. In this direction we refer the interested reader to

Hartman and Valentine [5].

4. APPLICATIONS.

The theory of reflector curves discussed in Section 3 finds its application in

predicting the location of the zeros of stieltjes and Van Vleck polynomials which

arise as polynomial solutions of the generalized Lame’s differential equation

d2w p ]dw (z)+ I j/(z-aj) z +
dz

2
j=i 3P. (z-aj)

W O, (4.1)
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where (z) is a polynomial of degree at most (p-2) and where aj, aj are complex

constants. It is known (cf.[6],[7,p.36]) that there exist at most C(n + p 2, p 2)

polynomial solutions V(z) (called Van Vleck polynomials) such that, for #(z) V(z),

the equation (4.1) has a polynomial solution S(z) of degree n (called stleltjes

polynomials. ).

The differential equation (cf.[2],[8],[9])

n.-I
d
2 P [

t31 (z-b..j t dw_w / d--
dz

2 Z aj
n.j=l [ 3 (z-aj)
s=l

s

(4.2)

#(z)
+ p n.

(z-aj)
w=O

rl
j=l

rl s
s=l

where (z) is a polynomial of degree at most (nl+n2+...+np-2) and where aj,ajs,bjt are

complex constants, can always be written in the form (4.1) by expressing each fraction

(in the coefficient of dw/dz) into its partial fractions. In fact, (4.2) is surely of

the form (4.1) if n.=l for all j. It may also be observed (as in case of (4.1)) that
3

there exists at most

C(n + n + n
2
+ + np 2, n + n

2
+ + np 2)

polynomials V(z) such that, for (z)=V(z), the differential equation (4.2) has a

polynomial solution S(z) of degree n. That is, there do exist StieltJes polynomials

S(z) and Van Vleck polynomials V(z) associated with the differential equation (4.2).

For convenience, we shall write

q max{nl,n2 n }. (4.3)
P

Throughout this section, unless mentioned otherwise, K will denote a nonempty convex

compact subset of C. We write R K(Cz) for each z K and call it the reflector
z

region for K determined by z (cf.[l],[2])o Given K and (0 < N ), we recall

(cf.[7,p.31][l],[2]) that the s>arrg_haped region S(K,) is given by

S(K,) {ze a(z,K) Z @}.

Given K, y e [0, w/2) and an integer q a I, we write (cf.[2])

S S(K, (w-2y)/(2q-l))
Y,q

and denote by K the intersection of all the reflector regions R con6aining S
y,q z y,q

Then (cf.[2]) K is a convex compact subset such that

K S K
Y,q

In particular, KC# S
,q forY >0, K S0,I, and K S0,1 K0,1"

we shall write

Sometimes, for q I,

S S and K m K
y,l y,l y

Now the main theorem of this paper (e.g. Theorem 3.5) answers an earlier conjecture
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(cf. concluding Remark(i) in the affirmative and we obtain the following result.

THEOREM 4.1. In the differential euation (4.1), if

larg =jl < Y < /2 j=l,2 ,p

and if th___e points a. (j=l,2,...p) lle in a convex compact subset K, then the zeros of

each nth degre.e Stieltjs (res_ Van Vleck) polynomial lie in the region K

Similarly, we get the following general version of Theorems (2.3) and (2.4) in [2]

concerning the differential equation (4.2).

THEOREM 4.2. In the differential equation (4.2), i_f

larg ajl -< Y < /2 j=l,2, p

and if all the points ajs and bjt (occuring i__p_n (4.2) lie in a convex compact subset K,

then the zeros of each stieltjes (resp. Van Vleck) polynomial lie in K q, where q is

as in (4.3).

REMARK 4.3. (I) For q=l, Theorem 4.2 reduces to Theorem 4. I.

(II) Theorem 4.1 (resp. Theorem 4.2) is a generalization of Theorem 3.

(resp. Theorems (2.3) and (2.4) in [i] (resp. [2]).
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