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ABSTRACT. In this paper, we give a complete classification of smooth structures on
a generalized product of spheres. The result generalizes our result in [1] and

R. de Sapio's result in [2].
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1. INTRODUCTION

In [2] a classification of smooth structures on product of spheres of the form

skxsp where 2 <k < p, ktp > 6 was given by R. de Sapio and in (1] this author

extended R, de Sapio's result to smooth structures on sP xs9xs* where 2<p<qXr.
The next question is, how many differentiable structures are there in any arbitrary
product of ordinary spheres. In this paper, we give a classification under the

relation of orientation preserving diffeomorphism of all differentiable structures of
k k k
spheres S " XS X...xS © where 2<k

<k, < ... < kr . S" denotes the unit

n-sphere with the usual differential strucl:t:urezin the Euclidean (mt+l)-space Rn+1 .
en denotes the group of h-cobordism classes of homotopy n-sphere under the connected
sum operation, £®  will denote an homotopy n-sphere. H(p,k) denotes the subset of
6P which consists of those homotopy p-sphere £P  such that prsk is diffeo-
morphic to SPXSk . By [2], H(p,k) is a subgroup of 6P and it is not always
zero and in fact in [1], we showed that if k > p-3 , then H(p,k) = L

By Hauptremutung [ 3], piecewiseklinear homoemorphism will](. be replaced by homeo-

k k k. +k k k
morphism, Consider two manifolds § le 2xS 3xS 4 and I 2 4)(8 ]'XS 3 , we

shall denote the connected sum of the two manifolds along a k2+k4 -1 cycle by
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kl k2 k3 k k, +k k k
(S "xs “xs “xs ) # (o xS " xS 7) . This is geometrically achieved by

e+, K2 % “1“ 3
removing Int(D IS from both manifolds and then identify theirkcomon

k
boundalxc'y.‘:.k Thus nothing else other than taking the usual conﬁected sum of S 2xS 4

4
and T by removing the interior of an embedded disc D 2t 14 from each manifold

k -
and identifz the manifolds along their common boundary S z¥k4 to obtain

ko k4 Kotk
S #z K. * ;l(?his is a well- defmed operation. Wekthen take the cartesian
1

k k2
p{oduct with S 1xS > to have § I xS 3 x (s 4#2 2t 4%
1. .k3 ko kg kotk, k1 k3 k1 k3 Ky Kk

S "xS8 “xS8 “xs 2k8 XS "xS8 T . But S xS xS “xS is diffeomorphic
k; ko k3 k,2 4 ky ko k +
1 2 3 4 k k k k k kot+k,
to S "xS “xS “xS then (S xS 2>(S 3xs ) ik 2 4 1 XS 3=Slxs 3x(S 2xs 4#2 2 4).

We will then prove the following.

l((ILA.‘.‘.SIFIC:’.I'I‘.’ION THEOREM If M" is a smooth manifold homeomorphic to

k
1 .72
S xS “x...xS " where 2<k; <... <K and k-3 Sk ~
- r-1
k1+ 21"‘(3 “'k n-k)
n=k;+kyt...tk then there exists homotopy spheres seeel ,...,2 ,Xn
such that Mt s diffeomorphic to
k k k+ k2 k l& k kr-l
[(s X+ o o XS )k_fk(): xS “X...xs * )ktk(z xS XS 3%...xS )
1~ k1+k2+k3 k4 k 2 n-kr kr
PRSP ¢ XS "X...XS )#"'ntk (2 "xs )
L7273, x r
...t ¢ s 1)] ™.
n-kl

We shall use thekabo]\(re classification theorem to give the number of differentiable
structures on S ]'XS 2X...XS T . We shall lastly compute the number of structures in

some simple cases.

2, PRELIMINARY RESULTS

We shall apply obstruction theory of Munkres [4]. Let M and N be smooth n-
manifolds and L a closed subset of M when triangulated. A homeomorphism
f:M~> N is a diffeomorphism modulo L if f| M-L) 1is a diffeomorphism and each
simplex o of L has a neighborhood V , such that f is smooth on V-L near a .
By [4], if two n-manifolds M and N are combinatorially equivalent them M is
diffeomorphic modulo an (n-1)-skeleton L onto N .

If £:M — N is a diffeomorphism modulo m-skeleton m < n then Munkres
showed that the obstruction to deforming f to a diffeomorphism g :M® = N" modulo

(m-1)-skeleton is an element X (f) € H o, = ™™, Where ™ is a group of
£

diffeomorphisms of st -1 modulo the diffeomorlhisms that are extendable to diffeo-
morphisms of D™ ., We call g the smoothing of f . If km(f) =0 then g
exists, Recall that in ([1], Lemma 2.1.1) we proved that if q > p then szsq is
diffeomorphic to sPxs? for any homotopy sphere $P . In Remark (1) following that
lemma, we showed further that even when p-3 < qk the result is still true.

k., k

LEMMA 2.1 Suppose f ‘M= s le 2X...)(S T is a piecewise linear homeomorphism

which is a diffeomorphism modulo (n-ki)-skeleton 1 <i<r, then there exists an
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k
homotopy sphere I i and a piecewise linear homeomorphism
k k k. k k k
neM® =5 Ixs 2y, xs lxg ixs Wy xs T

which is a diffeomorphism modulo (n-ki-l) skeleton.
k k
PROOF. Since f:M® =>§ 1 Xeeo XS ¥ isa diffeomorphism modulo (n-k )~

skeleton then by Munkres [4], the obstruction to deforming f to a diffeomorph1sm

modulo (n-ki-1)~ske1et:on is ankelemenlt(: )\k(f) €H k (M"l T ) = T Let

[yl = )\ (f) €T ' where y:s i - is a d1£feomorphism. We define

ki k ki ky ki ky

= D1 UD and a homeomorphism j:S = = I where we have § ™ =

ki ky

Dll UDZi and so j is identity map on Int(D ) and radial extension of 1{
d

Kk I

Dzi . So j 1is a piecewise linear homeomorphism by the definition and the ob-

struction to deforming j to a diffeomorphism is [W-I] = ')‘k (f) . So consider

the map

k1 ki-l ki+1 kr ki kl ki-l ki+1 kr ki
idXj: (8 "X...XS xS XeoeoXS TIXS T=>(S5 "X...XS xS XeooeXS ) XI

The map is a piecewise linear homeomorphism and the obstruction tokdeformmg {t to ak

diffeomorphism is [* ] -in(f) Notice that the manifold (S X...XS ki XeooXS )
k, k k, .k, k k ik N K

xS i = 1x.,f<xs i ixskixs i“"lxi(.. xS T and (S Ix...xs ki Lis 1y xs Ty x

Thogly xs lxpiks L ws T,

Consider the composite (idx j):f=h , the obstruction to deforming h to a
diffeomorphism modulo (n-k -1) skeleton ‘g.s in(h) = ki((idxli() )= )‘k (idxj)+)\k (£)

k
= ey (B + Ny (B = 0 hece iM% —> 5 .8 I b ¢ 8 Hh T 4o s

diffeomorphism modulo (n-ki-l) skeleton, Hence the lemma,

Ky Ky
LEMMA 2.2 Let f:M® =S 'x...xS be a diffeomorptisit modulo n- (k )
skeleton 1 <1i,j < r then there exists homotopy sphere I i and a piecewise

linear homeomorphism
k.+k, k k k k |3 k

k k
£:M" = (S Liooxs ©) # (21 xs .. .xs i-lyg i+l g Il Ml xs )
k +k

k|
which is a diffeomorphism modulo n-(ki+kj)-1 skeleton.

PROOF, Since f 1is a diffeomorphism modulo n-(ki+kj) skeleton, it follows

that the obstruction to deforming f to a diffeomorphism modulo n-(k j) -1

skeleton is

k,+k k,+k k,+k
n~1 3y, _n~1 3§ _ i)
ME) €H (k+k)(u,r )=T . Let [l =) €T
Ktk -1 kytk +k k +k
where b S Koty i j is a diffeomorphism and I i i.pi™h)

i)
k j k j k:l+kj ki kj g ki+kj
We define j:S xS - S xS +Z _Htéo be identity map on S XS ° - Int(D )

and radial extension of b on Int(D i j) hence j is a piecewise linear homeo-
morphism and the obstruction to deforming j to a diffeomorphism is [b-l] =-A(f) .

Then consider
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k k, k k k k k k
jxid: S ixS Iy (s x...xs ks 1+1x...xs I-lys Ity xs ) —
k k.+k k k k k k

s ixs j#z 173y « (s x...xs i'lxs Wl xs 3L Py xs Ty .

Note that
k k k k k k k k
s Txs 3 x (s Ixu.uxs ks Wy, xs s i xs Ty =
k k k k k
(S xS 2xu.uxS Txe..xS Ix...xs O

and
k k,+k k k, k k
s ixs j#): 173y (s Yxeauxs t le L xs 5=
k k k, +k k k k k, k
s ...xs %) # ('t ij Xewoxs Tlyg WL s Il I ks D)
k. +k
i)
hence the above map is
k1 kr
id X j: (5 "XeeuxXS ) />
k k k. +k k k k k k k
s Weouxs ) # (21 Ixs Woixs ks My xs 37Iks Ml xs )
k,+k,
i;
which is piecewise linear and its obstruction to a diffeomorphism is -A(f) hence
the obstruction to deforming the composite (jxid)*f to a diffeomorphism modulo

n-(kgtk)-1 skeleton is zero. Hemce if £' = (jxid)'f then £ Mt —>
k k k,+k, k Kk k Kipp

k
(s x...xs r)k ik (z 1 dxs Iy ..xs lys Ml ys 371

modphism modul% 3 n-(ki+kj)-1 skeleton,

k
X...XS T) 1is a diffeo-

3. CLASSIFICATION
n kl l':2 kr:
THEOREM 3,1 If M is a smooth manifold homeomorphic to S "XS “X...XS
k1+kr k2+kr k1+k2+k3 n-kr
then there exists homotopy spheres, Z 2 seee s o
n-k
1

z

[ETTTTS L

, and " such that M" is diffeomorphic to
k k k,+k_ k k k,+k_ k., k k
s Sexs T #(2 ! Txs Zxexs ThH #(Z 2 Txs ks x..xs ©hH
k1+kr k2+kr
k1+k2+k3 k ke
#... # (= XS "Xeeu XS )
k,+k, +k
172 3k kr n-k
vee # (2 xs DL (T
n-k n-k
T 1
where 2 gkl < k2 < ... <kr ) 11:1‘-3 < kﬁ'l < kr and n=k1 + l<2+...+kr .
PROOF, Suppose M L> S lx...xS T is the homeomorphism., By Munkres theory

k
s 1) $z®

[4], h is a diffeomorphism modulo (n-1) skeleton. Since the first non-zero homology
appears in dimension n-kl , (apart from the zero dimension) it then means that h
is a diffeomorphism modulo (n-kl) skeleton. The obstruction to defo ing h to a

diffeomorphism modulo (n-kl-l) skeleton is A(h) € H &y (M‘:l T ) = P . By Le{l‘ma
2.1, there exists a piecewilsce linear Eomeomorphism h' and a homotopy sphere T
such that h':M" —> z le 2 X eoe XS T which is a diffeomorphism modulo (n-kl-l)
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shiletﬁg. In [1] Lemma 2.1.1 it was proved that ZT]' xl&‘;;z is dif:eomorphic to
S xﬁl sinc: k1 <k2 . It then lEillows tha: Z XS "Xaeee XS is diffeomorphic
to S "X...XxS hence h':M" => s Xeoo XS is a diffeomorphism modulo (n-kl-l)
skeleton., There is no other obstruction to deforming h' to a diffeomorphism until

the (n-kz-l)-skeleton. This is because
ui(M“, z) =

for n-k2+1 <i< n-kl .

(n-k ) skeleton. The obstruction to de{ormingk h' to a diffeomorphism modulo
(n-k -1) skeleton is k(h ) € H (M T ) = 2 . Again by Lemma 2.1, tkere gxists
a homotopy sphere 2 and a piecewise linear homeomorphism h'" Mt = s XZ

S 3x eee XS T which is a diffeomorphism modulo (n-k -1) skeleton, By the same

So we can assume that h' is a diffeomorphism modulo

argument as above since k2 <k, we see that I xS 3 is diffeomorphic to

3
k. k Kk, k, °k K Kk, k, k k
S 2x5 3 hence S 1xZ 2xS 3X...xS T is diffeomorphic to S IxS 2XS OX...xS T .

This shows that h" :M" => s 1x...xS ¥ js a diffeomorphism modulo (n-kz-l)-skeleton.

By the same argument since M® has no homology between n-k3-1 and n-kz-l we can
assume that h" is a diffeomorphism modulo (n-k3) -skeleton, Proceedingk;h:.s wa

using the same argument we can construct a homeomorphism say h'":M > S "X...XS T

which is a diffeomorphism modulo (n-k )-skeleton., However, to deform h" to a
diffeomorphism modulo (n-k -1)-ske1eton, there is an obstruction A(h") 6 Hn ke (M ,T )—
T T . It also follows by Lemma 2,1 that there exists a homotopy sphere 2 r and a
piecewise linear homeomorphism £ ‘M® = s 1x...xS r-1 XE which is a diffeomorphism
modulo (n-k -1)-skeleton, Now in Remark (1) of [1l] it was shown that even when
p-3<r, S XZP is diffeomorphic to S xSp and so by our assumption that

k-3 <k_; <k_ it follows that $r1, KT L giffeomorphic to KT
skix ... XSkr‘le‘kr is diffeomorphic to S 1)(... xSk""lekr and so £ : M® —>

Sklx xskr is a diffeomorphism modulo (n-k -1)-skeleton. The next obstruction

1y S . Hence

to deforming f to a diffeomorphism is on n-(k +k1) -1 skeleton and it is
A(E) € Hn-(k1+k )(Mn I‘k1+kr) k1+kr . By Lemma 2,2, there exists a piecewise linear
homeomorphism

£ om0 = (sFlxs¥2 %, xs*T) # (TTRr sk, xsF-1y

k1+kr

which is a diffeomorphism modulo n-(k +k ) -1 skeleton for some homotopy sphere
2k1+kr defined using A(f) € I‘k1+kr .
k1+k -3 < max(k ,..., 1) and suppose k = max(kﬁ,..., then it follows from
Remark (1) of [1] since kot -3 Sk e 2THEr, ki diffeomorphic to
k1+erSkJ and so Z.'k1+erSk2X ..XSkr'l is diffeomorphic to skl"'ersklx...xskr'l.
This then implies that (SXlx...xs* 9 $e (skrtkrygka, o gkr-1y  i¢ 4iffeomorphic to
kq+k ke

At this point, we want to remark that if

l:'XSkZX...)(S 1y and this is diffeomorphic to
kptky _ gk ke

k1. ko Ky
(s 1xs 2x,,.xs )kltk(s

T
Sklxskzx...xskr because Sklekr#S So this means that the factor
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Zk1+kr X Sk2 Xeoa XSkr‘l will disappear in the above sum if we have the condition
k +kr-3 < max(kz, . "’kr-l) .

1
Anyvay, we have £':M® = (s1x.,.xs*T) # (ZTMrxs* 2., .xs"T-1) which 1s a
1 r
diffeomorphism modulo n-(k1+kr)-1 skeleton, Since Hi(Mn, Z) = 0 for n-(k2+kr) <

i< n-(k1+kr)-1 then there is no obstruction to deforming f' to a diffeomorphism
modulo n-(k2+kr) skeleton and the obstruction to deforming f' to a diffeomorphism

- - ' D pkotkyy  pkotke
modulo n (k2+kr) 1 skeleton is A(f') € Hn-(k2+kr)(M 5 ) =T . Using the

same technique as in the proof of Lemma 2,2 it can be easily shown that there exists
an homotopy sphere zkz+k,_. = Dkz.'-kr Dk2+kr where {=A(f') € I"k2+kr and
¥ Sk2+kr-1 —_> Sk2+kr-1 is a diffeomorphism and a piecewise linear homeomorphism
3085k xskT — Mk, xskT) p (TR, ks
k2+kr

where obstruction to a diffeomorphism is -A(f') . We now define a map

j': (Sklx...xskr) # (Zk1+ersk2x...xskr'1)

kyHe
— (. xstny # (TR, xskrely 4 (gRTPRegsRox, L xseeTy
k,+k k,+k
2 r 1 r
where j'=j on (sklx...xskr) -Ind(Dk1+kr) xskzx...xskr-l and identity on

k k

gkitk r-1._ Inc(Dkl'H‘r) xs¥2y ... xskr-1 |

tysk2y . xs
Clearly j' 1is piecewise linear and its obstruction to a diffeomorphism is

-A(f') hence the obstruction to deforming the composite g = j'e+ f' where

g > (S¥lx...xskn) b (S Rrskan L xske-l) g (22 RrksMIx L xsteel) s
k1+kr k2 kr
A(3'£f') = A({') + A(f') = 0. Hence g= j'*f' 1is a diffeomorphism modulo n-(k2+kr)-1

skeleton. Proceeding in this way, we see that the next obstruction to a diffeomorphism
will be on (n-(k3+kr))-ske1eton. Using the above technique continuously, we can con-

struct a piecewise linear homeomorphism

g' M —> (s¥ly...xs¥r) 4 (sKItkry ke, xs¥r-1)

ket
K, 4otk K K
L A e T D OO S o>l L2xs M., xs by
k2+kl' k11+ cese +k1‘

jl')s # i,

which is a diffeomorphism modulo n-(kr_1+...+k1) =kr skeleton. The obstruction to
extending g' to a diffeomorphism modulo (kr-l) skeleton is A(g') € l-lkr(Mn,I‘n'kr) =
I"n-kr . By using the same technique as in the proof of Lemma 2.1, there exists a
piecewise linear homeomorphism j and homotopy sphere f‘-kr such that

ko — (s*x,..xs*r) # (ST xskT)

u-kr
has an obstruction to a diffeomorphism to be -A(g') . From this we define the map,

j: sklx...xs
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TG TP xskl‘)k _itk (ke gk2 skl

1 r
k, +...+k k k
i (2k2+ersk1xsk3x. LoxskTly 4oL 4 (z i1 Laxs jlx. .o XS j1’)
k. +k
2 r k, +...+k
i i
§ Ain,ip...id
p il 20001y
—> (s¥lx...xs¥r) 4 (5P Krgskry # (sErtkeygkay | ygkr-1y
11-1(r k1+kr
kil+. Lok, k k

#...# (T J"xsjlx...xsjf’)
ki +...+k

1 iy
where j'=3j on (Sklx...xskr) - (Int(Dk1+kr)XSk2X...xSkr'l) and identity elsewhere.
It is easily seen that j' is piecewise linear homeomorphism and the obstruction to
deforming the composite j'*®g' to a diffeomorphism is zero. Hence the map h'=j''g'
where

1+k. Ky

Rt = (M xstn g (E TR xsh2y sl
kl kr

b2 krgskrys 3y, L xske-ly .. 4 (R xskn)
k,+k
2 r n-k
r
is a diffeomorphism modulo (kr-l) skeleton, However, since Hi(Mn,Z) =0 for
kr-l <i< kr-l , there is no more obstruction to deforming h' to a diffeomorphism
modulo kr_l-skelet:on. To deform h' to a diffeomorphism modulo (kr_l-l) skeleton,
there is an obstruction and this equals A(h') € Hp I(Mn,l"n-kr"l) = T‘n-kr'l .
= -
Applying the above technique again, we can get an homotopy sphere = k-1 and a

piecewise linear homeomorphism

nra = (L xskn, Fo (PR sty
1 r

r -tk (K2 rygkLgk3y | gkr-ly ¢ | (gFURZFR3  gKa sk

2'r ky e,k
# (T Rryghry # (g kr-ly Skr-l)
°°° n-k n-k
r r-1
which is a diffeomorphism modulo kr_l-l skeleton. The next obstruction will be on

kr_z-l skeleton. Proceeding this way gradually down the remaining skeleton, we can

construct a map

g:Mt = (Sklx. . .xskr)k tk (Zk1+k" X Skzx. . .xSk“l)
1 r

K tk (DT orygklygkdy | yskr-ly ¢ |, ¢ (gFrtkatks, gkay sk
2 r k1+k2+k3

cee B (PErskry o (PR gsRely 44 (PR
n-kr n-kr_l n-k
which is a diffeomorphism modulo kl-skeleton. Since Hi(M“, 2) =0 for 0<i<k,

then g is a diffeomorphism modulo one point., It therefore follows that there exist
an homotopy sphere £™ such that M" is diffeomorphis to
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1 2+r

$ ... # (SRR R Ry g (2R s

k1+k2+k 3 n-kr

... 4 (z‘"“lxskl)] F
n-kl

Hence the theorem.

Recall that H(p,k) denotes the subgroup of 6P consisting of homotopy p-spheres

P such that ¥P x sP 1is diffeomorphic to sP x Sk .

[(Sklx. ..xskr 5 fk (sKrtkrygkay | ygkr-1y X #k (K2t gkiygk3y | yske-1y

THEOREM 3.2 The number of differentiable structures on Skl Xaooo XSkr where

2 < k1 < k2 <...< kr-l and kr-3 < kr-l < kr equals the order of the group
ek1+kr 9k2+kr
X X eoe X
l-l((k1+kr), (k3, .e "kr-l)) H(k,tk , (kl’kii’ . .,kr_l))
k,+k +k n-k n-k
i * e % W ¢ e X <
176283 Wy een’y e X S T |

PROOF  Let (OCky+k ),0(kytk ), ..., 00k +hytky), .., 0(n-k ), 0., 0(n"k;),0(n))

represent the trivial elements of 0k1+kr B ekzﬂz‘r, cesy 9k1+kz+ k3, cees Gn-kl, " , then

we define a map
B: (¥ ITkrygkatkr, | cgkitkatka,  yen7kry | xg™K1xg®, 0 (et ), oee,0(00k)),0(0))
—> (Structures on Sklx...xSkr,O)

where O represents the usual structures on sklx...xskr . If Zk1+kr € 9k1+kr,
oo, Rtk ¢ glpthatky | onckp ¢ gckp k) ¢ g2kl g £P€ 6 then

we define
+k. k. +ko+k -k -k
parthr ghztky | gkitkgtks oencke o gntky gy o
[(sklx...xskr) t(grtkr, gkay | gkr-1y x -tk (FTkrygR1ygksy | xskr-1y

k1+k
r 2 r
$ .. 4 (kR gkay skny g g (B Frxskn
k1+k2+k3 n-k
r
... 4 (f"klxs‘“)] $z® .
n-kl

B 1is well-defined because if
21;1+kr , ér"kr € ek1+kr ; El](.z*'kr , zl;2+kr € ek2+kt D ZJ{1+k2+k3 s ¢1+k2+k3 €
AT S e T T T L e o

are h-cobordant respectively then they are diffeomorphic, It then follows that
sRIHer  gK2y | ys*T-1 5 diffeomorphic to S5k 552y xs*r-1  and

z‘{z“‘r x €1 x s*3y, . xs¥T-1 g diffeomorphic to }:“;1+kr x s¥1 x s34, . . xs®

-1 and
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Zl;1+k2+k3 X Sk" X SkSX. . .xSkr is diffeomorphic to Z.'k1+k2+k3 X Sk4x. .. XSkr . Also
Z‘l"kr x skt is diffeomorphic to z“z"kr x ST and Z‘{'kl X sk1 is diffeomorphic to

Zg-klxskl and so this means that

[(Sklx. .. xSk")k tk ( Zk1+ersk2x. .. xskr‘l) + ( 2k2+ersk3x. .o xskr'l
1k, k2+kr 1

Fooeo it (Zl{1+k2+k3xsk4x...xskr) # ...
17273

... ¢ (Zn-erskr) ... # (Zn-klxskl) # 0 is diffeomorphic to
n-kr 1 n-kl 1 1

[(sklx...xskr) # (z'gl‘q‘rxskzx...><skr-1)k f_k(¢2+ersk1xsk3x...xskr-l)
2 r

k1+kr
1Hkgtks, kg, k k2 ok
... k1+k42f+k3(2‘; xSSx xS b (57

# Bukn) 455

#
vee n-kl(

Hence B 1is well-defined map.

Clearly B takes the base points 0(k1+kr) R 0(l<2+kr ),...,0(k1+k2+k3),...,O(n-kr),
...,O(n-kl) , 0(n) to the base point 0 . This is because if all the homotopy spheres

s are standard spheres, then all the summands involving Zis in the image of B

will vanish leaving only Sklx...xskr . By Theorem 3.1, B is onto.

Suppose TX1tEr ¢ H((ky ), Gy oesk__ 1)) T en( eyt ), (k) kg0 nsk 1)),
ooy BT €R(GeHGHKG), UKy va kD), ey BYNE €HGaK K, L ul, B EL €U (oK, )

+k N +k " ky k

then for Zkl ren((k?:kr)’(k2""’kr-1)) this means Ekl XS 2X...XS -1 is
diffeomorphic to S’1Krys¥2y. . xs*r-1 hence s¥lx...xs*r ¢ 21 *rysk2y. . xs®
diffeomorphic to (s¥Ix...xs¥T) # sKTrysk2y, | yskr-1= s¥2xs%3y, . xs¥r-1x(s*1xsrs
which is diffeomorphic to S<2xs¥3yx,..xs¥ kr since sKlyxs®r gskrtkr -
Sk]-xskr . This means that for Zk1+kr € H((k1+kr), (k,, ""kr-l)) then
(s*1x. . .xs®

r-1 is

k1+kr)
r-1xs¥lys
r)k Ik (Zkl".erskzx. . .xSkr'l) is diffeomorphic to S 1x.. .XSkl‘ and so

1+£ kr-1 in the image B vanishes, Similar arguments

the summand rys¥2y . xS
show that all other summands involving the Zis in H(i,n-i) vanish hence in this
case

paEirtkr ghotky | glatkotks gtk stk ey s¥lys®2y, ,  xs¥r |

Then B induces a map.

ek1+kr 9k1+k2
3 X X ees X
Hkytk, (kpyeonsk 1)) 7 Hlkgtk, (kyykoseees k1))
ek1+k2+k3 en-kr n-kj

(i Ptk y, (e, ey K

X eoo XT3 X eee X
s, ) H(n-k_ k) H(n-ky, k)

r

X Gn) —>(structures on Sklx...xskl')
which is onto since B is onto.

If & (Zk1+kr,0(k2+kr),...,O(k1+k2+k3),...,O(n-kr),...,O(n-kl),O(n)) = 0 then
it follows by an easy generalization of Theorem 2.2,1 of [1] that
zkl+kf€ﬁ((k1+kr), (kys+eesk 1)) and by the same method if &(0(k;+k ),0(k,+k.),
e, Ty L, Z‘“-ﬁr,...,o(n-kl),o(n)) =0 then P ¥re H(n-k k) . Also in
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[[5], Theorem A], Reinhard Schultz showed that the inertial group of product of any
number of ordinary spheres is trivial. This result implies that if §(0(k1+kr),
0Ckytk ), ...,0(ak),...,0(n-k;) , Z) = 0 then " is diffeomorphic to S . It
then follows that & 1is one to one and onto hence the number of differentiable
structures on sklxskzx...xskf is equal to the order of
gk1+kr ) okatky o krtkotks
H(kFk_, (yp a0 k1)) u(k2+kr,k1,k3,...,kr_1)?‘ RS TR I I PRI )
. ek1+kz+k3
T T H((k kgt g), (Kyy el k)

en-kl n-ky

n
e cee K e Y e
H(n-k k) H(n-kp, k)

Xeeo X

EXAMPLES

We recall that in Table 7.4 of [5], GE denotes the number of homotopy spheres

which do not embed in Rm'k . We shall use the values computed in that table in some

of the examples given here. Since I‘i =0 for 1<1i<6, then the number of smooth

structures on 82x82x82x32 is the order of 98=2 . Also since 9g=2= |98| then
H(8,2) = 0 and so the number of smooth structures on 82x82x32x52x32 = 12, By
similar reasoning, the number of smooth structures on Szxszxszxs4 = 12,

" Since 8 =0 and H(9,3) = 4 then the number of smooth structures on
S3XS3XS3XS3 = 2 whereas since 915 = 16256 and 09 = 8 combined with the fact that
612 =0 and H(9,3) = 4 it follows that the number of smooth structures on
83>(83)<S3><S3xs3 is 32512, From [3] we see that eg =1 and H(8,4) = 68 and 1"12=0,

then the number of smooth structures on s"xs"xsl'xs‘* = 2, By a similar argument, it

is easily seen that the number of smooth structures on S4XS4X54XS4XS4 is the order
16

H(+64—).x 920 . Also since H(10,5) = 910 then the number of smooth structures on
b

L I - )

S7XS”xS”xS~ is the order of X 920 .

6"
H(15,5)
I am grateful to Professor P, Emery Thomas, University of California, Berkeley,

for very useful communications.
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