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ABSTFCT. For a commutative ring with unity R, it is proved that R is a PF ring if

and only if the annihilator, an(a), for each a e R is a pure ideal in R, Also it is

proved that the polynlmial ring, R[X], is a PF-ring if and only if R is a PF-ring.

Finally, we prove that R is a PP-ring if and only if R[X] is a PP-ring.
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1. INTRODUCTION.

All our rings in this paper are commutative with unity. An ideal I of a ring R is

called pure if for any x e I, there exists y e I such that xy x A ring is called a

PF-ring if every principal ideal aR is a flat R-module. A ring R is called a PP-ring

if every principal ideal aR is a projective R-module. One can easily show that aR is

projective if and only if the annihilator, an(a), is generated by an idempotent element,

(see

First, we state a proposition characterizing flat R-modules elementwise. This is a

well known result in commutative ring theory, (see [3]).
PROPOSITION I. An R-module M is a flat R-module if and only if for any pair of fi-

nite subsets {x1, x2, Xn and {al, a2,... an of M and R respectively, such that

n
Y. x.a. 0 there exists elements z zk

e M and bij e R; i 1,2,...,k
i=l

1 1

n k

such that E b a
i

0 j=l 2, k, and x
i

E z b
i’

i 2 n.

i=l j j=l
j

In the following theorem we establish that R is a PF-ring if and only if ann(a)
R

for each a e R is B pure ideal.

THEOREM I. For any ring R, R is a PF-ring if and only if an(m) for each m e R

is a pure ideal.
n

PROOF. Let x I, x2,...,xn e n and al, a2,... an e R with i=IIxiai 0. Then

there exists mI, m2,... mn e R such that x
i mim i I, 2,..., n. So

n

i=Z! mmiai 0. Hence m e ann(R i=Imiai )"
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n n

Since ann(iElmfai) is a pure ideal, there exists b e ann(=imiai)_ such that bm m.
R R n

Now take m e mR and bmI, bm2,..., bmn R. These elements satisfy II=l bmlai 0 and

bm.m m m x
i

i 2 n Therefore mR is a flat R-module

Conversely, let b ann(m). Then mb O. Since bR is a flat R-module, there exists
R

c E bR and d e R such that dm 0 and b cd. Now c Clb, so b cd bCld. Moreover

Cld e ann(m). Therefore ann(m) is a pure ideal.
R R

LEMM I. Let I.i, 12 In be a finite set of pure ideals df a rin R, then
n

J n I. is a pure ideal.
j=1 J

PROOF. Let x e J. Then x e I. for each j. Thus there exists Yl II’ Y2 e 12J

Yn e In with xyj x, I, 2, n. Then y ylY2...yne J and xy x.

Let R be a reduced without nonzero nilpotent elements) ring. Let

h(X) h0 + hIX + + h xn e R[X]. Than and h(X)) NIX] where N is the annihilator
n R[XJ

of the ideal generated by h0, h hn, that is N ann(h0’R hI’’’’’ hn --i--0an(hi).
Moreover if f(X) a0

/ alX + .+ a X
m

e ann (h(X)) then a h 0 for all i 2 m
m R[X] i j

and I, 2 n (see [4]).

LEMMA 2. Let R be a PF-ring, then R is reduced.

PROOF. Let a be a nilpotent element in R, a O. Let n be the least positive
n

integer greater than such that a 0. Hence a ann(an-l). Since ann(a
n-l)- is

(an_ R n-1 R
pure, there exists b e ann with ab a. Now o ban- a since ba a.

R
Contradiction. Thus R is reduced.

THEOREM 2. The ring of polynomials, R[X], is a PF-ring if and only if R is a

PF-ring.

PROOF. Let f(X) a
0
+ alX + +amXm e ann (h(X)) where h(X) ho+hiX+...+ hnXn"

R X

Since R[X] has no nonzero nil.potent elements,

a e J N ann(h ) i o, I, 2, ,m

By Lemma I, J is pure. Hence there exist b I, b2,..., bm e J such that aibi ai,

i i, 2, m. Now our aim is to find c e J such that c f(X) f(X). We construct

this element inductively.

First, a0b0 a0. Consider

a
0
+ alX )( b

0 + b blb0
a0b0 + aob a0bob + alb0X + alblX alboblX
a
0
+ a0b aob + alboX + alX alboX

a
0
+ a iX’

Let c b
0
+ b blb0, then

a
0 + alX + a2X2 )( c + b

2 Clb2
(a0 + alX)C + b2(l Cl)(ao+alX) + a2ClX2 + a2b2x2 a2b2ClX2
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a0
+ alX + a2ClX2 + a2b2X2 a2clX2

a
0
+ alX + a2X2

Similarly, c 2
c + b

2 Clb2,...

c c + b c ibm and
m m-i m m-

a
0
+ alX + ...+ aiXi) c

i
a
0
+ alX +...+ aiX

I

i O, I, 2,..., m. Moreover co Cl,..., Cm e J.

Thus there exist c c e J with cf(X) f(X).
m

Conversely, assume R[X] is a PF-ring. Let a e P and b e ann(a).
R

Then b e ann (a). Since R is a PF-rng there exists
R[X]

g(X) co + ClX + + ckXk e ann (a)
R[X]

with b g(X) b. Hence bc0
b and COa O.

Consequently, R is a PF-ring.

THEOREM 3. R is a PP-ring if and 8nly if R[X] is a PP-ring.

PROOF. It is enough to show that ann (f(X)) is generated by an idempotent
R[X]

element in R] where f(X) a0
+ alX + +a Xn. Since R is reduced

n

ann (f(X)) N[X] where N is the annihilator of the ideal generated by
R[X3

a0, al,... an.
N ann al,R(aO a

n

n
n_ann(ai)i=0 R

2
e.R, e. e. because R is a PP-ring.

i=0 1 1 I

ele2...en )R

eR, where e ele2...en
2

Hence ann (f(X)) eR[X], e e
R[X]

Conversely, let R[X] be a PP-ring, let a e R, then consider ann(a). Since R[X]
R

2
PP-ringa an mis RxJ(a)L g(X)R[X] where g(X) g(X) If g(X) b

0
+ blX +...+ b xm

2
bothen b

0

Thus b b
o

We claim ann(a) boR. Let b e anD(a), then ba 0. So b e g(X)R[X3.
R

blX +...+ bmXm )( Co + ClX +’’’+ ctxt )" Therefore b b0cO, that is+

be bR-
o

For the other way around, let b e b0R. Then b boC0
boa O. That is b e and

K
(a). Thus ann(a) b0R.R

for some co e R. Since
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