ON SOME PROPERTIES OF POLYNOMIAL RINGS

H. AL-EZEH

Department of Mathematics University of Jordan Amman - Jordan

(Received February 4, 1986 and in its revised form April 29,1986)

ABSTRACT. For a commutative ring with unity R, it is proved that R is a PF - ring if and only if the annihilator, ann(a), for each a ε R is a pure ideal in R, Also it is proved that the polynimial ring, R[X], is a PF-ring if and only if R is a PF-ring. Finally, we prove that R is a PP-ring if and only if R[X] is a PP-ring.

KEY WORDS AND PHRASES. Polynomial Rings, Pure ideal, PF-ring, PP-ring, R-flatness, and idempotent elements.

1980 AMS SUBJECT CLASSIFICATION CODE: 13B.

1. INTRODUCTION.

All our rings in this paper are commutative with unity. An ideal I of a ring R is called pure if for any $x \in I$, there exists $y \in I$ such that xy = x. A ring is called a PF-ring if every principal ideal aR is a flat R-module. A ring R is called a PP-ring if every principal ideal aR is a projective R-module. One can easily show that aR is projective if and only if the annihilator, ann(a), is generated by an idempotent element, (see $\lfloor 1 \rfloor, \lfloor 2 \rfloor$).

First, we state a proposition characterizing flat R-modules elementwise. This is a well known result in commutative ring theory, (see [3]).

PROPOSITION 1. An R-module M is a flat R-module if and only if for any pair of finite subsets $\{x_1, x_2, \dots, x_n\}$ and $\{a_1, a_2, \dots, a_n\}$ of M and R respectively, such that

 $\sum_{i=1}^{n} x_i a_i = 0 \text{ there exists elements } z_1, \dots, z_k \in M \text{ and } b_{ij} \in R; i = 1, 2, \dots, k$ such that $\sum_{i=1}^{n} b_i a_i = 0, j = 1, 2, \dots, k, \text{ and } x_i = \sum_{i=1}^{k} z_j b_{ji}, i = 1, 2, \dots, n.$

In the following theorem we establish that R is a PF-ring if and only if ann(a) for each a ϵ R is a pure ideal.

THEOREM 1. For any ring R, R is a PF-ring if and only if ann(m) for each m ϵ R is a pure ideal.

PROOF. Let $x_1, x_2, \dots, x_n \in mR$ and $a_1, a_2, \dots, a_n \in R$ with $\sum_{i=1}^{n} x_i a_i = 0$. Then there exists $m_1, m_2, \dots, m_n \in R$ such that $x_i = m_i m$, $i = 1, 2, \dots, n$. So

 $\sum_{i=1}^{n} \operatorname{mm}_{i}a_{i} = 0. \text{ Hence } m \in \operatorname{ann}\left(\sum_{i=1}^{n} \operatorname{m}_{i}a_{i}\right).$

n Since $\operatorname{ann}_{R}(\sum_{i=1}^{n} m_{i}a_{i})$ is a pure ideal, there exists b $\epsilon \operatorname{ann}_{R}(\sum_{i=1}^{n} m_{i}a_{i})$ such that bm = m. Now take m ϵ mR and bm₁, bm₂,..., bm_n ϵ R. These elements satisfy $\sum_{i=1}^{n} \operatorname{bm}_{i}a_{i} = 0$ and bm₁ = m₁ m = m₁ m = x₁, i = 1, 2,..., n. Therefore mR is a flat R-module.

Conversely, let b ε ann(m). Then mb = 0. Since bR is a flat R-module, there exists $c \varepsilon$ bR and $d \varepsilon$ R such that dm = 0 and b = cd. Now $c = c_1 b$, so $b = cd = bc_1 d$. Moreover $c_1 d \varepsilon$ ann(m). Therefore ann(m) is a pure ideal.

LEMMA 1. Let I_1 , I_2 , ..., I_n be a finite set of pure ideals of a ring R, then $J = \bigcap_{i=1}^{n} I_i$ is a pure ideal.

PROOF. Let x ε J. Then x ε I_j for each j. Thus there exists y₁ ε I₁, y₂ ε I₂..., y_n ε I_n with xy_j = x, j = 1, 2,...,n. Then y = y₁y₂...y_n ε J and xy = x.

Let R be a reduced (without nonzero nilpotent elements) ring. Let $h(X) = h_0 + h_1 X + \ldots + h_n X^n \in R[X]$. Then $ann_{R[X]}(h(X)) = N[X]$, where N is the annihilator of the ideal generated by h_0 , h_1 ,..., h_n , that is N = $ann(h_0, h_1, \ldots, h_n) = \bigcap_{i=0}^n ann(h_i)$. Moreover if $f(X) = a_0 + a_1 X + \ldots + a_m X^m \in ann_{R[X]}(h(X))$ then $a_i h_j = 0$ for all $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$ (see [4]).

LEMMA 2. Let R be a PF-ring, then R is reduced.

PROOF. Let a be a nilpotent element in R, $a \neq 0$. Let n be the least positive integer greater than 1 such that $a^n = 0$. Hence $a \in aun(a^{n-1})$. Since $ann(a^{n-1})$ is pure, there exists $b \in ann(a^{n-1})$ with ab = a. Now $o = ba^{n-1} = a^{n-1}$ since ba = a.

Contradiction. Thus R is reduced.

THEOREM 2. The ring of polynomials, R[X], is a PF-ring if and only if R is a PF-ring.

PROOF. Let
$$f(X) = a_0 + a_1 X + \dots + a_m X^m \epsilon$$
 and $(h(X))$ where $h(X) = h_0 + h_1 X + \dots + h_n X^n$.

Since R[X] has no nonzero nilpotent elements,

$$a_i \in J = \bigcap_{j=0}^{n} \operatorname{ann}(h_j)$$
, $i = 0, 1, 2, \dots, m$

By Lemma 1, J is pure. Hence there exist b_1 , b_2 ,..., $b_m \in J$ such that $a_i b_i = a_i$, i = 1, 2,..., m. Now our aim is to find $c \in J$ such that c f(X) = f(X). We construct this element inductively.

First, $a_0b_0 = a_0$. Consider

$$(a_{0} + a_{1}X)(b_{0} + b_{1} - b_{1}b_{0})$$

= $a_{0}b_{0} + a_{0}b_{1} - a_{0}b_{0}b_{1} + a_{1}b_{0}X + a_{1}b_{1}X - a_{1}b_{0}b_{1}X$
= $a_{0} + a_{0}b_{1} - a_{0}b_{1} + a_{1}b_{0}X + a_{1}X - a_{1}b_{0}X$
= $a_{0} + a_{1}X$.

Let $c_1 = b_0 + b_1 - b_1 b_0$, then

$$(a_0 + a_1 X + a_2 X^2)(c_1 + b_2 - c_1 b_2)$$

= $(a_0 + a_1 X)c_1 + b_2(1 - c_1)(a_0 + a_1 X) + a_2 c_1 X^2 + a_2 b_2 X^2 - a_2 b_2 c_1 X^2$

312

$$= a_0 + a_1 X + a_2 c_1 X^2 + a_2 b_2 X^2 - a_2 c_1 X^2$$

= $a_0 + a_1 X + a_2 X^2$

Similarly, $c_2 = c_1 + b_2 - c_1 b_2, ...$

$$c_{m} = c_{m-1} + b_{m} - c_{m-1}b_{m}$$
 and
 $(a_{0} + a_{1}X + ... + a_{i}X^{i}) \quad c_{i} = a_{0} + a_{1}X + ... + a_{i}X^{i}$
 $i = 0, 1, 2, ..., m.$ Moreover $c_{0}, c_{1}, ..., c_{m} \in J.$

Thus there exist $c = c_m \epsilon J$ with cf(X) = f(X).

Conversely, assume R[X] is a PF-ring. Let a
$$\epsilon$$
 R and b ϵ ann(a) R

Then b ε ann (a). Since R is a PF-r'ng there exists R[X]

$$g(X) = c_0 + c_1 X \div \dots + c_k X^k \varepsilon \operatorname{ann}_{R[X]} (a)$$

with b g(X) = b. Hence $bc_0 = b$ and $c_0 a = 0$.

Consequently, R is a PF-ring.

THEOREM 3. R is a PP-ring if and only if R[X] is a PP-ring.

PROOF. It is enough to show that ann (f(X)) is generated by an idempotent R[X]element in R[X], where $f(X) = a_0 + a_1X + \ldots + a_nX^n$. Since R is reduced, ann (f(X)) = N[X] where N is the annihilator of the ideal generated by R[X]

$$a_{0}, a_{1}, \dots, a_{n}.$$

$$N = ann(a_{0}, a_{1}, \dots, a_{n})$$

$$= \bigcap_{i=0}^{n} ann(a_{i})$$

$$= \bigcap_{i=0}^{\infty} e_{i}R, e_{i}^{2} = e_{i} \text{ because } R \text{ is a PP-ring.}$$

$$= (e_{1}e_{2}\dots e_{n})R$$

$$= eR, \text{ where } e = e_{1}e_{2}\dots e_{n}$$

Hence ann $(f(X)) = eR[X], e^2 = e$ R[X]

Conversely, let R[X] be a PP-ring, let a ε R, then consider $\operatorname{ann}_{R}(a)$. Since R[X] is a PP-ring, $\operatorname{ann}_{R[X]}(a) = g(X)R[X]$, where $g(X)^2 = g(X)$. If $g(X) = b_0 + b_1 X + \ldots + b_m x^m$; then $b_0^2 = b_0$. We claim $\operatorname{ann}(a) = b_0 R$. Let b ε $\operatorname{ann}(a)$, then ba = 0. So b ε g(X)R[X]. Thus b = $(b_0 + b_1 X + \ldots + b_m X^m)(c_0 + c_1 X + \ldots + c_t X^t)$. Therefore b = $b_0 c_0$, that is b ε b_0 R.

For the other way around, let $b \in b_0 R$. Then $b = b_0 c_0$ for some $c_0 \in R$. Since $b_0 a = 0$. That is $b \in ann_R (a)$. Thus $ann(a) = b_0 R$.

H. AL-EZEH

REFERENCES

- 1. EVANS, M. On commutative PP-rings, Pac. Jour. Math., 41(1972) 687-697.
- VASCONCELOS, W. On finitely generated flat modules, <u>Trans. Amer. Math. Soc.</u>, <u>138</u> (1969) 505-512.
- LARSON, M. and MCCARTHY, P. <u>Multiplicative Ideal Theory</u>, Vol 43 in pure and applied Nathematics, Academic Press, New York and London (1971).
- 4. BREWER, J. <u>Power series over commutative rings</u>, Lecture notes in pure and applied Mathematics 64, Marcel Dekker, New York and Basel (1981).