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ABSTRACT, For a commutative ring with unity R, it is proved that R is a PF - ring if
and only if the annihilator, aﬁn(a), for each a ¢ R is a pure ideal in R, Also it is
proved that the polynimial ring, R[X], is a PF-ring if and only if R is a PF-ring.
Finally, we prove that R is a PP-ring if and only if R[X] is a PP-ring.
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1. INTRODUCTION.

All our rings in this paper are commutative with unity. An ideal I of a ring R is
called pure if for any x € I, there exists y € I such that xy = x. A ring is called a
PF-ring if every principal ideal aR is a flat R- module. A ring R is called a PP-ring
if every principal ideal aR is a projective R-module. One can easily show that aR is
projective if and only if the annihilator, aﬁn(a), is generated by an idempotent element,
(see [1], [21).

First, we state a proposition characterizing flat R-modules elementwise. This is a
well known result in commutative ring theory, (see [3]).

PROPOSITION 1. An R-module M is a flat R-module if and only if for any pair of fi-

nite subsets {xl, Xos aees xn} and {al, yseees an} of M and R respectively, such that

2’
n
L xa; = 0 there exists elements Zys ~++s Zp € M and bij e Ry 1 =1,2,...,k
i=1
n k
such that I b,ai =0, j=1,2, ..., k, and X = z zjbji’ i=1, 2, ..., n.
i=13 j=1

In the following theorem we establish that R is a PF-ring if and only if ana(a)
for each a ¢ R is a pure ideal.
THEOREM 1. For any ring R, R is a PF-ring if and only if ana(m) for each me R

is a pure ideal.

n
PROOF. Let Xys XgsreeerX € mR and as az,..., a_ e Rwith I x,a

n sE %% = 0. Then

there exists My Myseeey, M € R such that X; = mm, i=1, 2,..., n. So

n

) =
iZy mma. 0. Hence m ¢ anﬁ(iglmiai ).
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n

n
Since ann( Zlmi i) is a pure ideal, there exists b ¢ ang(§=lmiai) such that bm = m.
n
Now take m € mR and bml, bmz,..., bmn € R. These elements satisfy 121 brniai = 0 and

bmim = mm = X, i=1, 2,..., n. Therefore mR is a flat R-module.

Conversely, let b € ang(m). Then mb = 0. Since bR is a flat R-module, there exists

ce bR and d € R such that dm = 0 and b = cd. Now c = Clb’ so b =1cd = bcld. Moreover

cld € ana(m). Therefore anE(m) is a pure ideal.

LEMMA 1. Let Il, 12, cans In be a finite set of pure ideals of a ring R, then

n )
J=n I. is a pure ideal.

j=1 ]

PROOF. Let x € J. Then x ¢ Ij for each j. Thus there exists v € Il’ ¥y € 12...,
yn € In with xyj =%, j=1, 2,...,n. Then y = Y1¥p--eV € J and xy =

Let R be a reduced ( without nonzero nilpotent elements) ring. Let

h(X) = hg + BX + ... + han ¢ R(X]. Then aﬂ&dh(){)) = N[X], where N is the annihilator

n
of the ideal generated by hO’ hl""’ hn’ that is N = anR(hO, hl”"’ hn) =i£Banﬁ(hi).

Moreover if f(X) = + a,X +...+ ame e ann (h(X)) then a.,h, = 0 for all i = 1,2,...,m

o0 R[X] 13
and j = 1, 2,..., n (see [4]).

LEMMA 2. Let R be a PF-ring, then R is reduced.

PROOF. Let a be a nilpotent element in R, a # 0, Let n be the least positive
integer greater than 1 such that a" = 0. Hence a ¢ ann(an-l). Since anﬁ(an_l) is

n-1 n~-1
= a

pure, there exists b ¢ ann(an-l) with ab = a. Now o = ba since ba = a.
R

Contradiction. Thus R is reduced.

THEOREM 2. The ring of polynomials, R[X], is a PF-ring if and only if R is a

PF-ring.
PROOF. Let f(X) =a, +a X+ ... +a ™ ¢ ann (h(X)) where h(X) = h,+h . X+...+ h x".
0 1 m R X 01 n
Since R[X] has no nonzero nilpotent elements,
a; ed = n ann(b,) , 1 =0, 1, 2yecceee,d

j=0o R

By Lemma 1, J is pure. Hence there exist bl’ b2,..., bm € J such that aibi =a,

i=1, 2,..., m. Now our aim is to find ¢ € J such that ¢ f(X) = £(X). We construct
this element inductively.

First, aobo = ag. Consider

( a, + alx )( bo + b1 - blb0 )

= aobo + aob - aobob1 + albOX + albIX - a b b X
= a, + aob1 - aob1 + albOX + alx - albOX

= a, + aIX;

Let ¢y = b0 + b1 - blbO’ then

2
( a, + alx + aZX )( <y + b2 - Cle )

- 2 2 _ 2
= (a0 + alx)c1 + b2(1 - cl)(a0+a1X) + azclx + azbzx aZbZCIX
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2 2 2
ag + alx + azclx + a2b2X - azclx

2
ao + alx + 32X

Similarly, cy = ¢ + b2 - c1b2""

c =_c¢ +b =-c and
m-1 m

m—lbm
i i
X+ ...+ aX ) ¢, =a,+a,X+...+ aX

(ay+a 1% %3 1

1

i=0,1, 2,..., m. Moreover Cgs Cpseses € € J.

Thus there exist c = cn € J with cf(X) = £(X).
Conversely, assume R[X] is a PF-ring. Let a € R and b € ann(a).
R

Then b € aEEX](a). Since R is a PF-r*ng there exists

g(X) = <y + clx » ...+ cka e ann (a)
R(X]

with b g(X) = b. Hence bc0 = b and cgd = 0.

Consequently, R is a PF-ring.
THEOREM 3. R is a PP-ring if and énly if R[X] is a PP-ring.
PROOF. It is enough to show that an? (f(X)) is generated by an idempotent
R[X]

element in R[X], where f(X) = ag + alx + ... +aan. Since R is reduced,

ann (f(X)) = N[X] where N is the annihilator of the ideal generated by
R[X]

ags @pseees A.
N = an;(ao, apseees an)
n
=n .
i=oan;(al)

=n e,R, e% = e, because R is a PP-ring.
j=0 1 i i

( ee,.-e )R
= eR, where e = e_e

1 2...en

Hence ann ( f(X)) = eR[X], e2 =e
R[X]

Conversely, let R[X] be a PP-ring, let a € R, then consider ang(a). Since R[X]

. _ 2 _ - m.
is a PP-ring, aEEX](a) = g(X)R[X], where g(X)° = g(X). If g(X) b0 + bIX +...+ me N

2 _
then b0 = bo.

Thus b = ( bo +b

We claim ann(a) = bOR. Let b e anﬁ(a), then ba = 0. So b e g(X)R[X].
R

t -
lX +...+ mem )( <, + clx +...+ ctX ). Therefore b = boco, that is

be bR-
o
For the other way around, let b ¢ bOR. Then b = boc0 for some cq € R. Since

b.,a = 0. That is b ¢ anﬁ (a). Thus anR(a) = boR.
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