ON SOME PROPERTIES OF POLYNOMIAL RINGS

H. AL-EZEH
Department of Mathematics University of Jordan Amman - Jordan

(Received February 4, 1986 and in its revised form April 29,1986)

ABSTRACT: For a commutative ring with unity R, it is proved that R is a $P F$ - ring if and only if the annihilator, $\mathrm{a}_{\mathrm{R}}(\mathrm{a})$, for each $a \varepsilon R$ is a pure ideal in R, Also it is proved that the polynimial ring, $R[X]$, is a $P F-r i n g$ if and only if R is a $P F-r i n g$. Finally, we prove that R is a PP-ring if and only if $R[X]$ is a PP-ring.

KEY WORDS AND PHRASES. Polynomial Rings, Pure ideal, PF-ring, PP-ring, R-flatness, and idempotent elements.
1980 AMS SUBJECT CLAESIFICATION CODE: 13B.

1. INTRODUCTION.

All our rings in this paper are commutative with unity. An ideal I of a ring R is called pure if for any $x \in I$, there exists $y \varepsilon I$ such that $x y=x$. A ring is called a PF-ring if every principal ideal aR is a flat R - module. A ring R is called a PP-ring if every principal ideal $a R$ is a projective R-module. One can easily show that aR is projective if and only if the annihilator, $\underset{R}{\operatorname{nnn}(a), ~ i s ~ g e n e r a t e d ~ b y ~ a n ~ i d e m p o t e n t ~ e l e m e n t, ~}$ (see $[1],[2]$).

First, we state a proposition characterizing flat R-modules elementwise. This is a well known result in commutative ring theory, (see [3]).

PROPOSITION 1. An R-module M is a flat R-module if and only if for any pair of finite subsets $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of M and R respectively, such that

$$
\sum_{i=1}^{n} x_{i} a_{i}=0 \text { there exists elements } z_{1}, \ldots, z_{k} \varepsilon M \text { and } b_{i j} \varepsilon R ; i=1,2, \ldots, k
$$

such that $\sum_{i=1}^{n} b_{j} a_{i}=0, j=1,2, \ldots, k$, and $x_{i}=\sum_{j=1}^{k} z_{j} b_{j i}, i=1,2, \ldots, n$.
In the following theorem we establish that R is a PF-ring if and only if $\underset{R}{a n n}(a)$ for each $a \varepsilon R$ is a pure ideal.

THEOREM 1. For any ring R, R is a $P F-r i n g$ if and only if $\underset{R}{\operatorname{ann}}(m)$ for each $m \in R$ is a pure ideal.

PROOF. Let $x_{1}, x_{2}, \ldots, x_{n} \in m R$ and $a_{1}, a_{2}, \ldots, a_{n} \varepsilon R$ with $\sum_{i=1}^{n} x_{i} a_{i}=0$. Then there exists $m_{1}, m_{2}, \ldots, m_{n} \varepsilon R$ such that $x_{i}=m_{i}, i=1,2, \ldots, n$. So $\sum_{i=1}^{n} \mathrm{~mm}_{i} a_{i}=0 . \quad$ Hence $\left.m \varepsilon \underset{R}{\operatorname{ann}(} \sum_{i=1}^{n} m_{i} a_{i}\right)$.
 Now take $m \varepsilon m R$ and $b m_{1}, b m_{2}, \ldots, b m_{n} \varepsilon R$. These elements satisfy $\sum_{i=1}^{n} b m_{i} a_{i}=0$ and $b m_{i} m=m_{i} m=x_{i}, i=1,2, \ldots, n$. Therefore $m R$ is a flat R-module.

Conversely, let $b \varepsilon \underset{R}{\operatorname{ann}(m) . ~ T h e n ~} m b=0$. Since $b R$ is a flat R-module, there exists $c \varepsilon b R$ and $d \varepsilon R$ such that $d m=0$ and $b=c d$. Now $c=c_{1} b$, so $b=c d=b c{ }_{1} d$. Moreover $c_{1} d \varepsilon \underset{R}{a n n}(m)$. Therefore $\underset{R}{\operatorname{ann}(m)}$ is a pure ideal.

LEMMA 1. Let $I_{1}, I_{2}, \ldots, I_{n}$ be a finite set of pure ideals of a ring R, then $J=\sum_{j=1}^{n} \quad I_{j}$ is a pure ideal.

PROOF. Let $x \in J$. Then $x \in I_{j}$ for each j. Thus there exists $y_{1} \varepsilon I_{1}, y_{2} \varepsilon I_{2} \ldots$, $y_{n} \varepsilon I_{n}$ with $\mathrm{xy}_{\mathrm{j}}=\mathrm{x}, \mathrm{j}=1,2, \ldots, \mathrm{n}$. Then $\mathrm{y}=\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{n}} \varepsilon \mathrm{J}$ and $\mathrm{xy}=\mathrm{x}$.

Let R be a reduced (without norizero nilpotent elements) ring. Let $h(X)=h_{0}+h_{1} X+\ldots+h_{n} X^{n} \varepsilon R[X]$. Then $\underset{R[X]}{\operatorname{ann}}(h(X))=N[X]$, where N is the annihilator of the ideal generated by $h_{0}, h_{1}, \ldots, h_{n}$, that is $N=\underset{R}{\operatorname{ann}}\left(h_{0}, h_{1}, \ldots, h_{n}\right)=\bigcap_{i=0}^{n} \underset{R}{\operatorname{ann}}\left(h_{i}\right)$. Moreover if $f(X)=a_{0} \neq a_{1} X+\ldots+a_{m} X^{m} \underset{R[X]}{\operatorname{ann}}(h(X))$ then $a_{i} h_{j}=0$ for all $i=1,2, \ldots, m$ and $\mathrm{j}=1,2, \ldots, \mathrm{n}$ (see [4]).

LEMMA 2. Let R be a PF-ring, then R is reduced.
PROOF. Let a be a nilpotent element in R, $a \neq 0$. Let n be the least positive integer greater than 1 such that $a^{n}=0$. Hence a $\varepsilon \underset{R}{\operatorname{ann}\left(a^{n-1}\right)}$. Since $\underset{R}{a n n}\left(a^{n-1}\right)$ is pure, there exists $b \varepsilon \underset{R}{\operatorname{ann}\left(a^{n-1}\right)}$ with $a b=a$. Now $\circ \stackrel{R}{=} b a^{n-1}=a^{n-1}$ since \quad ba $=a$. Contradiction. Thus R is reduced.

THEOREM 2. The ring of polynomials, $R[X]$, is a PF-ring if and only if R is a PF-ring.

PROOF. Let $f(X)=a_{0}+a_{1} X+\ldots+a_{m} X^{m} \underset{R}{\operatorname{ann}} \underset{X}{ }(h(X))$ where $h(X)=h_{0}+h_{1} X+\ldots+h_{n} X^{n}$.
Since $R[X]$ has no nonzero nilpotent elements,

$$
a_{i} \varepsilon J=\bigcap_{j=0}^{n} \underset{R}{\operatorname{ann}}\left(h_{j}\right), i=0,1,2, \ldots \ldots, m
$$

By Lemma 1 , J is pure. Hence there exist $b_{1}, b_{2}, \ldots, b_{m} \in J$ such that $a_{i} b_{i}=a_{i}$, $i=1,2, \ldots, m$. Now our aim is to find $c \in J$ such that $c f(X)=f(X)$. We construct this element inductively.

First, $\mathrm{a}_{0} \mathrm{~b}_{0}=\mathrm{a}_{0}$. Consider

$$
\begin{aligned}
& \left(a_{0}+a_{1} x\right)\left(b_{0}+b_{1}-b_{1} b_{0}\right) \\
& =a_{0} b_{0}+a_{0} b_{1}-a_{0} b_{0} b_{1}+a_{1} b_{0} x+a_{1} b_{1} x-a_{1} b_{0} b_{1} x \\
& =a_{0}+a_{0} b_{1}-a_{0} b_{1}+a_{1} b_{0} x+a_{1} x-a_{1} b_{0} x \\
& =a_{0}+a_{1} x .
\end{aligned}
$$

Let $c_{1}=b_{0}+b_{1}-b_{1} b_{0}$, then

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+a_{2} X^{2}\right)\left(c_{1}+b_{2}-c_{1} b_{2}\right) \\
& =\left(a_{0}+a_{1} X\right) c_{1}+b_{2}\left(1-c_{1}\right)\left(a_{0}+a_{1} X\right)+a_{2} c_{1} x^{2}+a_{2} b_{2} x^{2}-a_{2} b_{2} c_{1} x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =a_{0}+a_{1} x+a_{2} c_{1} x^{2}+a_{2} b_{2} x^{2}-a_{2} c_{1} x^{2} \\
& =a_{0}+a_{1} x+a_{2} x^{2}
\end{aligned}
$$

Similarly, $\quad c_{2}=c_{1}+b_{2}-c_{1} b_{2}, \ldots$

$$
\begin{aligned}
& c_{m}=c_{m-1}+b_{m}-c_{m-1} b_{m} \text { and } \\
& \left(a_{0}+a_{1} x+\ldots+a_{i} x^{i}\right) \quad c_{i}=a_{0}+a_{1} x+\ldots+a_{i} x^{i} \\
& i=0,1,2, \ldots, m . \text { Moreover } c_{0}, c_{1}, \ldots, c_{m} \varepsilon J .
\end{aligned}
$$

Thus there exist $c=c_{m} \varepsilon J$ with $c f(X)=f(X)$.
Conversely, assume $R[X]$ is a PF-ring. Let $a \varepsilon R$ and $b \varepsilon \underset{R}{a n n(a) . ~}$
Then $b \in \underset{R[X]}{a n n}(a)$. Since R is a $P F-r^{*} n g$ there exists

$$
g(X)=c_{0}+c_{1} X+\ldots+c_{k} X^{k} \varepsilon \underset{R[X]}{\operatorname{ann}}(a)
$$

with $\mathrm{b} g(\mathrm{X})=\mathrm{b}$. Hence $\mathrm{bc}_{0}=\mathrm{b}$ and $\mathrm{c}_{0} \mathrm{a}=0$.
Consequently, R is a PF -ring.
THEOREM 3. R is a PP-ring if and only if $R[X]$ is a PP-ring.
PROOF. It is enough to show that $\underset{R[X]}{\operatorname{ann}}(f(X))$ is generated by an idempotent element in $R[X]$, where $f(X)=a_{0}+a_{1} X+\ldots+a_{n} X^{n}$. Since R is reduced, $\underset{R[X]}{\operatorname{ann}}(f(X))=N[X] \quad$ where N is the annihilator of the ideal generated by

$$
\begin{aligned}
a_{0}, a_{1} & , \ldots, a_{n} \\
N & =\underset{R}{\operatorname{ann}\left(a_{0}, a_{1}, \ldots, a_{n}\right)} \\
& ={ }_{i=0}^{n}{\underset{n}{n}}_{\operatorname{ann}\left(a_{i}\right)} \\
& =\bigcap_{i=0}^{\infty} e_{i} R, e_{i}^{2}=e_{i} \text { because } R \text { is a PP-ring. } \\
& =\left(e_{1} e_{2} \ldots e_{n}\right) R \\
& =e R, \text { where } e=e_{1} e_{2} \ldots e_{n}
\end{aligned}
$$

$$
\text { Hence } \underset{R[X]}{\operatorname{ann}}(f(X))=e R[X], e^{2}=e
$$

Conversely, let $R[X]$ be a PP-ring, let a εR, then consider $\underset{R}{a n n}(a)$. Since $R[X]$ is a PP-ring, $\underset{R}{\operatorname{ann}} X_{X}(a)=g(X) R[X]$, where $g(X)^{2}=g(X)$. If $g(X)=b_{0}+b_{1} X+\ldots+b_{m} X^{m}$; then $b_{0}^{2}=b_{0}$. We claim $\underset{R}{\operatorname{ann}}(a)=b_{0} R$. Let $b \varepsilon \underset{R}{a n n}(a)$, then $b a=0$. So $b \varepsilon g(X) R[X]$. Thus $b=\left(b_{0}+b_{1} x+\ldots+b_{m} x^{m}\right)\left(c_{0}+c_{1} x+\ldots+c_{t} x^{t}\right)$. Therefore $b=b_{0} c_{0}$, that is $b \varepsilon b_{o} R$.

For the other way around, let $b \varepsilon b_{0} R$. Then $b=b_{0} c_{0}$ for some $c_{0} \varepsilon R$. Since $b_{0} a=0$. That is $b \varepsilon \underset{R}{a n n}(a)$. Thus $\underset{R}{a n n}(a)=b_{0} R$.

REFERENCES

1. EVANS, M. On commutative PP-rings, Pac. Jour. Math., 41(1972) 687-697.
2. VASCONCELOS, W. On finitely generated flat modules, Trans. Amer. Math. Soc., 138 (1969) 505-512.
3. LARSON, M. and MCCARTHY, P. Multiplicative Ideal Theory, Vol 43 in pure and applied liathematics, Academic Press, New York and London (1971).
4. BREWER, J. Power series over commutative rings, Lecture notes in pure and applied Mathematics 64, Marcel Dekker, New York and Basel (1981).
