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ABSTRACT. We extend F. Holland’s definition of the space of resonant classes of func-

tions, on the real line, to the space R(#pq) (I p, q ) of resonant classes of mea-

sures, on locally compact abelian groups. We characterize this space in terms of trans-

formable measures and establish a realatlonship between R(pq) and the set of positive

definite functions for amalgam spaces. As a consequence we answer the conjecture posed

by L. Argabright and J. Gil de Lamadrld in their work on Fourier analysis of unbounded

measures.
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INTRODUCTION.

F. Holland [I] defined the space R(#q) (I q ) of resonance classes of func-

tions, on the real llne, relative to the space of test functions #ooq, and proved that

a function belongs to R(q) (2

_
q

_
) iff it is the Fourier transform of an un-

bounded measure [I, Theorem 6]. He also pointed out that the set P(Cc) of positive

definte functions in Cooper’s sense [2] is included in R(I) [I, I], and proved that

every function in R(ool has the same representation in terms of unbounded measures

as the functions in P(C c) [I, Theorems 7 and 8], [3, Theorems 4.1 and 4.2] (in fact,

as we will prove here, these representations hold for a larger class of functions and

they are equivalent). These results of Holland together with Bochner’s theorem on po-

sltlve definite functions [4] a function is the Fourier transform of a bounded measure

iff it is a linear combination of positive definite functions lead one to speculate

that any function in R(ooq) is a linear combination of positive definite functions.

In the present paper we respond to this conjecture in a more general setting. We define

the space (#pq) (I p, q ) of resonance classes of measures (on locally compact

abellan groups) relative to pq, which includes R(#=oq) as a particular case; we

characterize this space in terms of transformable measures [5], and prove that for

p , any measure in (pq) (2 q ) is a linear combination of positve de-

finite functions for some amagam space (L r, s) [6], and for q < 2, any measure
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in (pq) can be approximated by linear combinations of positive definite functions

for some amalgam (Lr s)
From these results we conclude that P(C is dense in R(I) and O(C )>, the

c c

space generated by the set of positive definite measures as defined in [5, 4], is dense

in the space of transformable measures. This answers the conjecture posed in [5].

Throughout the whole paper G will be a locally compact abelian group with Haar

measure m and dual group F. For an element in F we write [x,] instead of

(x) (x E G). Given two sets A and B we denote by A B the set {x ylx E A, y B}.

For a function f on G we use to denote its involution, i.e. (x) f(-x). The

space of contlnuos functions which vanish at infinity, with compact support, will be

respectively, We endow C with the inductive limit topology, asdenoted by Co, Cc, c
in [5] By a measure (on G) we will mean an element of the continuous dual of C (G).

c
We let be the space of measures on G.

A funetlon f belongs to Loc (I =< q =< ) if f restricted to any compact sub-

set of G, belongs to Lq and f belongs to Lq (I < q < ) if f has compact support

and belongs to Lq.
The amalgam spaces (Lp q), (Co, q) (I < p, q < ) and the space of measures

M (I < s < ) will be as defined in [7]. We will make constant use of the following

inclusions and inequalities proven in [7].

< q2 (1.1)(Lp ql) = (Lp, q2) ql
> P2 (1.2)(Lpl q) = (Lp2 q) P

(Lp, q) c Lp fl Lq p q (1.3)

< [[f[[ q < q2 (1.4)[[f[[Pq2 Pql

< Ilfll p >p (-

We will assume all the results of duality and convolution product for these spaces,

the Holder and Young’s inequalities, and the Hausdorff-Young theorem for amalgams as

given in [8, I, 2].

The Fourier transform (inverse of the Fourier transform) of a measure on G

(on F) will be denoted by ). We will denote by {ca} the approximate identity

of the algebra LI(G) consisting of continuous functions with a fixed support and po-

sitive Fourier transform in LI(F).
We let {$U U a compact neighbourhood of O} be the family of functions U in

A the space of functions in C whose Fourier transform belongs to L with the
c c

following properties

supp U = U

U SU*U where U g L2
c

> 0U > 0 and U
lim SU uniformly on any compact subset of g

{U is an approximate identity of L

(1.6)

(1.8)

(1.10)
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The duality between a Banach space B and its Banach dual B’ will be denoted

by <f,F> F B’, f B. As in [5] we call a measure on G transformable, if the

linear space C2(G), generated by the set {f*l f Cc(G)}, is included in LI(), and

there exists a measure on F such that I f*(x)d(x)= |I12(-)d() for all

f C We denote by /_ the space of transformable measures.
c

2. POSITIVE DEFINITE MEASURES.

We follow the definition of positive definite measures given by Dupuis in [6], but

using the Segal algebra S0(G) which is equivalent to the space of translation bounded

quasimeasures [9]. The advantage is that for e S0(G)’ its Fourier transform $ be-

longs to S0(F)’ [I0] and for f e L we have, as proven in [8, 2], that

(*f)^ $ and ()v f (2.1)

(2.2)

We assume all definitions and results about the algebra S0(G) given in [8, 2].

From these it is not difficult to see that the Fourier transform of a transformable

measure (considered as an element of S0(G)’ [10]) corresponds to the measure

associated to .
As in [I0], an element o in S0(G)’ is positive, o O, if f positive in

S0(G) implies o(f) positive. In this sense a function g in S0(G)’ is positive

iff g(x) 0 almost everywhere. Indeed, let U be the measure gdm and suppose g

in S0(G)’ positive. For # e C positive, the function *e is a positive element
c d

of S0(G) and converges to in C [5]. So we have that
c

() lim <*e,> lim <*e,g> O. Hence U is a positive measure and therefore

g(x) 0 almost everywhere [II, Chp. III].

DEFINITION 2.1. Let E be a subset of functions of S0(G)’. A measure is a pos-

itive definite measure for E if

(DI) E c L ()

(D2) <h,> 0 for all h e E such that O.

We write (E) to denote the set of positive definite measures for E, and P(E)

to denote the set of measurable functions in (E). For a set E as in Definition 2.1

we denote by E+ the set of functions in E whose Fourier transform is positive, and

by <(E)> the linear space generated by (E).

Clearly, Definition 2.1 is equivalent to Dupuis’ definition of positive definite

measures [6]. By [I0, Theorem BI] and [8, (1.9)] the set E can be any amalgam space,

hence any Lp space [8, (1.4)].

Argabright and Gil de Lamadrid have studied the set (G), of measures U such

in connection with the space of transformable mea-that <*$,> _> 0 for all e Cc,
sures. We use their results in [5] to prove that (G) is equal to (Cc).

PROPOSITION 2.2. A measure U belongs to (CC) iff <*,U> 0 for all

in C
c
PROOF. The inclusion (C c (G) is clear. Take (G). Since C is inc-

c + c
luded in T [5, Theorem 2.2] we have that a function in Cc is a continuous po-

sitive definite function [5, Theorem 4.1], so <,> 0 by [5, Corollary 4.2] and

therefore satisfies condition (D2).
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REMARK 2.3. It is clear that if El c E2 (El, E2 as in Definition 2.1), then

P(EI) c P(E2) so by [5, Theorem 4.1] if C is a subset of E then (E)
C

Dupuis defined the set of positive definite quasimeasures to be the set of all

quasimeasures such that <,o> > 0 for all in A +, and characterized it as the
C

set {[ M.} [6, Proposition II].

As in [6, Proposition II] we use the following le to prove eorem 2.5.

LE 2.4. Let A be any of the amalgam spaces (Lp, Eq), (Co, Es)
(I < p, q < , < s < ). If f g A+, then there exists a net {f in A +

such

that lira f f in A.
n

PROOF. Since {@U = Cc, we have by [8, Theorem 1.6] that the net {fu*e} is in-

cluded in Cc. Thus by (2.1) its Fourier transform (fu*e) (fu) (*U)
positive [8, (2.5), (2 6], and since ea belongs to L I, the net {fu*ea} is in-is

cluded in A Finally as in [6 Theorem III c)] lim f@u*e f in A (see also [8

Proposition 1.8]).

THEOREM 2.5. Let p, q < . Then P(Lp Eq) is equal to (Lp q
PROOF. If is in (Lp’, Eq’) and f is an element of (Lp, q)+, then

there is a net {f as stated in the previous lena, so by [7, Theorem 3.2] we have
n

that <f,> lm <f D> > O. Therefore g P(Lp, Eq). The other inclusion follows

from [6, Proposition IV].

S 2.6. From (2.2) and eorem 2.5 we have that if is a positive measure

in such that (Lp Eq (I p, q < ), then 0 belongs to P(Lp Eq)

3. RESONCE CLASSES OF ASUS.

Bertrandias and Dupuis [2] defined the space (I p, q ) of test func-
Pq

tions on locally compact abelian groups based on Holland’s definition of the space

(I q ) for the real line.

DEFINITION 3.1. Let p, q ! . The space (G) consists of all func-

tions in C (G) such that belongs to (C0, Eq)(F) endowed with the norm

The space i’ used by Bertrandias and Dupuis for their definition of the Fourier

transfo is equal (as a set) to A [13] [9] Hence the space C2(G) is included in

I(G) [14]. We will use this in eorem 4.2.

RE 3.2. i) As sets @ for ! P, q, r , and C for
pq rq pq c

p , 2 q by the Hausdorff-Young theorem.

ii) A linear functional T on (G) (I ! p, q ) is continuous iff there is a
pq

unique measure in M ,(F) if p , in (Lp q )(F) if p < , such that
q

T() r $(-) d()

for g [2, 2 c)].
Pq

e next definition extends Holland’s definition of the space of resonance classes

of functions [I, 5].

DEFINITION 3.3. Let p, q . A measure on G is resonant relative to

(G) if
Pq

L(R) = ()
Pq
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(R2) The map <,> is continuous on i.e. there exists a constant
Pq

pq
We denote by ( the space of resonance classes of measures relative to

Pq Pq
and by R(pq) the space of functions in (pq). By (I.I) it is clear that (pq) is

included in (# if < s < q <

H. Feichtinger has given a more general definition of resonance classes of func-

tions relative to the space B’ where B is a Banach space of functions containing

S0(G) as a dense subspace (private communication).

THEOREM 3 4 i) A function f satisfies (RI) iff f e Lloc"
ii) A measure belongs to ?(pq) (1 =< p, q =< =o) iff U and e Mq,(F)

if p o, e (Lp’, q’)(F) if p < oo.

iii) For 2 < q _--< we have that (pq) c (Lq, P) if 2 _<-- p _<_ =0, and

(pq) c (Lq 2) if < p < 2

PROOF. The proof of i) is similar to the real case [I, Theorem I] using [7, Theo-

rem 3.1].

To prove ii) take in (#pq) and set the map T() <,> on If T is
Pq

continuous then by Remark 3.2 there exists a measure 9 as stated in the theorem

such that I (-)dg() / #(x)d(x). Since C2(G c #=of(G) we conclude that eT
and . Conversely if #T and e M ,(r) then for e , e nl(r) [8

q
Theorem 1.4]. Hence by [5 Corollary 3ol] and Youngs inequality we have that

Therefore I ( ). The proof forII (x)d(x)l I $(-)d()l _< IIllq, ll$11q q
p finite is the same.

Part iii) follows from the Hausdorff-Young theorem and the fact that the spaces

(Lp q and M (2 < q < ) are included in T [15, Remark 6 25]

e conclude from Theorem 3.4 [5, Theorem 2.5] that R(pq) (Opq) for p

2 =< q =< ’ R(I) LIIoc nT and (*i =T.
The following corollary is easily deduced from the previous theorem and the

Hausdorff-Young theorem.

COROLLARY 3.5. Let ! p ! , 2 ! q ! . A function, f belongs to R(pq) iff

there exists a unique e M ,(F) if p , (Lp q )(F) if p < , such that
v q

f =.
Since q Cc if q => 2, Corollary 3.5 includes the results of Eberlein [16, Theo-

rem I] (with p q ) and Stewart [7, Theorem 4.4] (with p o) as special cases.

We observe that the measure in Corollary 3.5 is precisely the Fourier trans-

form of f.

We now establish the relationship between R(#pq) (2 < q < ) and the set of posi-

tive definite functions.

PROPOSITION 3.6. Let 2 _<--q _--< oo. The space R(pq) is a subspace of <P(Lp’, q’)>
if 2 < p < oo, of <P(Lq’ 2)> if < p < 2

PROOF If f e R(=o ), then f 0l 92 + i(O 9) where j > O, j E Mq, if
p’ q ?p =o, and . e (L q if p < (j 4) [II, Chp. III] By the Hausdorff-

Young theorem ’3 e (Lq, P) if 2 =< p =< =o, and 9j (Lq, 2) if =< p =<,2 (J, I,.

.,4). So by Remark 2.6 we conclude that 9. (j 4) belongs to P(Lq P if

2 < p < oo, to P(Lq’ 2) if < p < 2
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COROLLARY 3.7. <P(L2 1)> R(Ooo2 and <p(L2)> R(22).
PROOF. By Theorem 2.51 p(L2, I) c (L2, 0o) and P(L2) c L2, hence if f is in

p(L2, I), then by [6, Theorem II] g M2, so by Remark 2.3 and Theorem 3.4 we conc-_

lude that f e R(oo2). Similarly if f e p(L2), then by Theorem 3,4, E R(22) and

the equalities follow from Proposition 3.6.

For the remaining cases that is, for 2 <_ p _< =o, 2 < q _< oo; <_ p < 2, 2 _< q _<

and q 2, 2 < p < , the inclusions in Proposition 3.6 are proper because the Fourier

transforms on (Lr, s) (1 < r < 2, =< s =< 2), on Ms (1 =< s =< 2), and on (L2, s)
(1 _< s < 2) are not onto [17, Corollary 6.3]. Indeed if 2 _< p _< and 2 < q <

then there exists f e (Lq, P) such that f + for ali h e (Lp’, q’), hence

f (Lp’ Eq;) [21, Remark 2.41. So the function g defined by <,,g> l<o,f>l on

(Lq EP belongs to (Lq, P) and clearly to P(Lq P ). But g (Lp Eq ),

otherwise f would be in (Lp Eq ). Therefore g R(pq). The remaining cases are

s imi lar

4. THE SPACE ( FOR < q < 2.
pq

We have seen that any measure in (pq) (2 < q < oo) is a linear combination of

positive definite functions; we want to prove now that for < q < 2, any measure in

( is approximated by linear combinations of positive definite functions.
Pq
We endow the spaces , and Llloc with the weak*-topology oI,Cc), and O(Llloc,L1c)

respectively [18, Chp. IV]. We consider (pq), and R(pq) as subspaces of ., and

L
loc respectively.

PROPOSITION 4.1. Let -_=<,< 0o, ==< q < 2. Ifv there exists a measure EvMq,(F)
p oo, g (Lp gq )(F) if p < oo, such that is a measure and lim *Uif in,, then g ( and fl . Conversely, if V E (pq), then llm *UPq
PROOF. We prove the proposition for p 0o, the proof for p finite is the same.

For g Cml’ the net {*$U converges to in Cc [5], so we have that

< > lim < v
,*U> llm <*U,> <,> <,>. Since C2(G) = oo we conclude

that is transformable and , so by Theorem 3.4, (q). The converse is

clear.

REMARK 4.2. If f g R(pq) (I < p < =o, < q < 2), then

f**u(X) I *u(X-t)f(t)dt I U()[x’] d()
G

because f is transformable and U LI() [5, Corollary 3.1]. Hence for e Cc we

have that

IG (x)f(x)dx lira IG(X)IF *U()[x’] d() dx"

This implies that f(x) lira I U()[x,] d() where the limit exists on L on

any compact subset of G (c.f. [I, Theorem 9] and [7, Theorem 4.2]).

THEOREM 4.3. Let q < 2. Every element in it(Opq), hence in R(pq), can be

approximated by elements in <P(L I, P’)> If 2 < p < =o, in <p(L I, 2)> if < p < 2.

PROOF. By Proposition 4.1 we only have to prove that for IIe (1), the net

{*U belongs to <P(L P’)>
By Theorem 3.4, the measure is a linear combination of positive measures llj
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(j 4) in M So by [8 (2.5)] for E $o we have that
q

[[j][q,[]U[]q[][[ (j 4)

Since oo is dense in L [8, Proposition 2.5] we conclude that PJ*U E L

(j I..4). Now, if f E LI(G) +, then by [8, P5] and the definition of the Fourier

transform we have that <f,Oj*@U> <f*@u,Oj> <U,Pj> > O, therefore OJ*U E P(LI)
(j 4), and we conclude that *. belongs to <p(LI)>. If (nn), then

u ’each j (j 4) belongs to (Lp Eq and therefore jU g (L ’ [19, 7 h)],
hence by (2.1) and the Hausdorff-Young theorem we have that j*U is in (L==, EP) if

2)2 < p < =o, in (L if < p < 2 So for A +
we have that

<, j*U> <U_,Pj> > O, this implies by Theorem 2.5 that j*U is in P(L I, EP’) if

2 < p < o, in P(L I, E2) if < p _<__ 2.

REMARK 4.4. By Remark 2.3, Theorem 4.3 and Proposition 2.2 we conclude that the

space 9(Cc)> is dense in/
T (c.f. [5, 4]) and <P(Cc)> is dense in Lfloe T"

PROPOSITION 4.5. i) Let q ___< 2. The spaces <p(LI)> and R(q) are dense in

,q
ii) Let < q < 2. The spaces <P(L 2)> and R(O2q) are dense in (2q)
PROOF. In view of Theorem 4.3, we have to prove that <p(L1)> = R(q) and

<p(L I, 2) R(O2q). First of all we recaii (Remark 2.3) that P(L 1) ’#T and

P(L 2) = ’T
(LLet f e P By Theorem 2.5 and [6, Theorem II],its Fourier transform f belongs

to Mq,, hence f R(oo), since f Llloc" If f p(L I, 2), then again by Theo-

rem 2.5, f e (Lq, l’) and by the Hausforff-Young theorem, (L2, 1q’), hence

f g R(2q).
We finally point out that for 2 p < oo, the space <P(L I, P’)> is not included

in (pq), because as in [20, Theorem 5.5.1] using [21 Theorem 5] and [15,

Theorems 5.6 and 15.9], we can prove that there exists a function f in (L, 1p)
such that is not a measure hence the function g defined by

( E (L P’)) belongs to P(L P’) and g Is not a measure so (Lp q
Also if < p < q < 2, then <p(L I, 2)> is not included in (0 ). Indeed, let

Pq
p’/q’ + p’. Since m is a inner measure there exists I = [n,n+l) such that

n
m(Jn) (I/n) a, where J {x e [n,n+l)Ix I }. So for each integer n we define the

n n
function f to be the product of n times the characteristic function of the set J

If f f then lfllp,q,-- . (np (l/n) I/n, therefore f is not

in (Lp’ q’). Since each f belongs to (L2 I) c (L 2) so by the
nv n

2)Hausdorff-Young theorem fn converges in (L to a function f’, because

fni I0o2 ;< 7. Illnllo2 < 7. cllfnl121 7. c n2(1/n) Of’= c(1/n)
0-2 < since > 3.

By the Lebesgue Convergence theorem and the fact that So (R)
v v

in S0(R) we have <*,f> <$ f> . <,f > I <*,f > < f’> hence f’ f. Let g
n n

be the function on (L I, 2) defined by <,g> I<,>I Clearly g is in e(e I, 2)
and is not in (Lp’, q’) because for E S0(R) we have that

<,> <$,g> l<$,f>l thls shows that c (Lp’ q’) iff f E (LP’,q’).
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Therefore g ( ).
Pq

The construction of the function f can be extended to G using the partition of

disjoint relatively compact subsets as in [7, 3]. Probably the same is true for

< q < p < 2, but we were unable to decide the matter.

5. REPRESENTATION THEOREMS.

We will prove in this section (Theorem 5.4) that the representation theorems for

R( and P(C in [I Theorems and 8] and [3 Theorems 4.1 and 4.2] respectively
C

hold for the space L
loc R(pq) (I =< q < 2, =< p _< oo), and they are equlvalent. We

first give a remark easily deduce from [5, Theorem 3.3].

REMARK 5.1. Let f e Lq+/-oc R(pq) (I =< ^P’ q ___< =o).A
i) If g LI(G), then *f exists and e LI(). Therefore for locally almost

all x e G we have that

f*(x) I f(y)(x- y)dy I ()[x,] d().
G r

ii) If the integral on the left is a continuous function of x in a nelghbourhood

of 0, then the formula in i) is valid for x 0. Hence under this hypothesis

[ f(y)(-y)dy [ ()d().
G r

The next theorem includes [I, Theorem 3] as a particular case.

THEOREM 5.2. Let =< p, q =< . If f L’qloc R(pq), then

/ f(x)(x)dx I (-) d()
G r

for all e L
q’

such that $ e (Lp q) if p < $ (Co q) if p
c

PROOF. It is clear that the convolution *f exists for L
q’

and f e L,q
c oc

If $ is in either (Lp, q) or (C0, q), then e L I(). So by our previous remark

we have to prove that f* is continuous on a nelghbourhood U of 0. Let E be the

support of , and s g U. If < q < 0o, then the map x x where

x(y) (x y), is continuous on G. So given e > 0 there exists a nelghbourhood V

of 0 such that for all x e V we have that II,x *yl lq, fXu_E q XU_E
is the characteristic function of U E. So for x e U 8 V we have that

If(y) lx(y) s(y) dy < IIfXu_EIIqlIx yllq, < e.[f*(x) f*(s)[ <_ ]U-E
Therefore f* is continuous at s.

fXu E
is continuous on G, and as before,If q I, then the map x

x
there exists a neighbourhood of zero V such that for x in U N V we have that

f*(x) f*(s) < II lll(fU_E) x (fU_E)sl 11 < . This ends the proof.

We need now to introduce Simon’s generalization of Castro summabillty on locally

compact abelian groups [22]. This consists of a family of functions {U (U being a

compact neighbourhood of O) in (C0, I) with the following properties

u-->’ II%llx__<
{U is an approximate identity for L

U Cc and lira U() for all F.
U

The following representation theorem is an extension of [I, Theorem 7] (c.f. [3,

(5.2)

(5.3)
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Theorem 4.1]).

THEOREM 5.3. Let =< q < 2, =< p =< . If f e Lq
1oc R(#pq), then

(C.I) (x) f(x) dx lira u(x)h(x)f(x) dx h(-) d?()
G G F

for all h (Lp q)(F) if p < h e (Co q)(F) if p

Furthermore if r 2q/(2q I) and 2 < p < oo, then

for alI q, q in (Lr, P’) The double integrai exists not necessarily as a Lebesgue in-

tegral but as the sum of the convergent series

I I f(x Y)(x)*(Y) dx dY
a v8

where Va, V
8

are finite union of the sets L, as definedv in [7, 3].

PROOF. Suppose p < oo. If h e (Lp, q)(F), then h belongs to either (Lq ,P’)(G)
i2 V VV Lqif < p < 2, or (Lq (G) if p > 2. Since {#U} c C (G), we have that huVV C C

and therefore h*u (hU) So by Theorem 5.2 we conclude that

u(x)h(x)f(x) dx- h**u(-) d(.).
G F

Since e (Lp’, q’) and lim h*u h in (Lp, q) [8, Proposition 1.8] the inte-

gral on the right converges to f h() d() and this proves the first part of the

theorem

Let qb, q in L
r

Since r 2q/(2q 1) and < q < 2, we have that l/r ll2q,
c

L
r r’hence I/2 < I/r < 3/4 and therefore < r < 2. If e then e (Co, andC’

(*)^ (Co, q) because r’ 2q [12, 7]. So by Theorem 5.2

II f(x- y)(x)*(y)dx dy / ()()d(). (5.4)

Set B(,@) to be equal to the left side of (5.4). So by Holder’s inequality

< I111 !1511 I111 thereforeIB(b,)l < 111 Ip,q, 1151 [pq p,q, pr’ pr’

]B(,)] =< C ]]@[[rp,[[][rp, if _<_ p < 2 and [B(,)] __< C [][]r2[[][r2 if p > 2,

where C is a constant depending on f, p and q.

If g (Lr, P’) then Jig[ [rp’ [Iga[ lp’)r lip’
where ga gXLo" So for #,

in (er, zP’) we have that [B(,)[ < C l[a[ [rp, [@8[ [rp’" So I . B(e,@8) is abso-

lutely convergent and the left side of (5.4) exists as stated in the theorem.

Finally, since I ga converges in the norm of (Lr, P’) to g we have that

[ . B(a,8) f $()() d(). The proof for 2 < p < is similar.

THEOREM 5.4. If =< q < 2, =< p < and f e Lloc,q then the following are equi-

valent

i) f e R(pq)
ii) There exists a unique U in M ,(F) if p m, in (Lp q )(F) if p < o, such

q
that for all , in (Lr P’)(G) where r 2q/(2q- I)

the double integral exists as in Theorem 5.3.

iii) There exists a unique measure as in part ii) such that
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f(x) li, qu(.)[x,] du(.)
F

where the limit exists as in Remark 4.2.

PROOF. By Theorem 5.3 part i) implies part ii) and by Propsttton 4.1 part tit) t-

piles part ).

L
2

Suppose that ii) holds. Since U 8U*SU and 8U e
c

for all t in G we have

The left side is equal to

f(x)8U*U(t- x)dx f(X),u(t- x)dx f**u(t),
the right side is equal to I U()[t,] du(), and u*f converges to f in the sense

of part iii). Hence we conclude that ii) implies iii).

6. RTHER RESETS.

In this last section we want to give a characterization of the set of Fourier mul-

tipliers from the space #q (I q ) to L and MI. This will allow us to extend

Dupuis’ characterization theorem [6, Theorem IIl].

Folling the notation in [23] we denote by M() ((q)) the space of Fourier

multipliers from to L (MI). that is M(#) ((#q)) is the space of all func-

tions (measures) f on F such that f is in L1 (MI) for all q(G)
Since q Cc for 2 =< q =< , we consider the characterization of these spaces

for ! q 2.

EOREM 6.1. Let q 2. Then S(#,) (L q’) and (q)__ Mq,
PROOF. By the Young’s inequality (n I, q’) c M(q) and M_,c(# ).

Let {(q) and suppose that lira n in # and lira n h in MI, so

for f e C we have that
C

l<f,$ h’[ l<f,$
n

$’1 + [<f’$n
< c Ilfllll$n $ IIq

where C is a constant depending on the support of f. Since C is dense in C, we con-
C

clude by the Closed Graph theorem that the map from #q to M is con-

tinuous. Hence by Remark 3.2, e Mq,(F). If f M(q),__ then the measure If[din be-

longs to M (F) and therefore f e (L I. q’)(F).
q’

From Theorem 6.1 we see that M(Cc (L 2) as proven in [23] and (C M2
We write F*q to denote the set

EOREH 6.2. Let q 2. Then P(Fq) (L

Hence P(Fq) P(C0, q) and (mq) (C0, q).
PROOF. By [6. Proposition IV] and eorem 6.1, P(Fmq) (L I, q) and

O(Fq) c Mq, O P.
Take g M N and $ g (Fq)+. Since

q
$*e_ g A and (’e_) v > 0 we have that $, lim $*ea, > O. erefore

g (F_). Since (L Eq is included in M [8, (1.9)] we conclude that
-’ q q’

(L E = P(Fq). The last equality follow from Remark 2.3 and an argument like

that of Theorem 2.5.
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