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ABSTRACT. We extend F. Holland's definition of the space of resonant classes of func-
tions, on the real line, to the space R(qu) (1 £ p, q $ ) of resonant classes of mea-
sures, on locally compact abelian groups. We characterize this space in terms of trans-
formable measures and establish a realationship between R(¢pq) and the set of positive
definite functions for amalgam spaces. As a consequence we answer the conjecture posed
by L. Argabright and J. Gil de Lamadrid in their work on Fourier analysis of unbounded

measures.
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1. INTRODUCTION.

F. Holland (1] defined the space R(¢mq) (1 < q < of resonance classes of func-
tions, on the real line, relative to the space of test functions ¢mq’ and proved that
a function belongs to R(% ) (2 < q £ ) 1iff it is the Fourier transform of an un-
bounded measure [1, Theorem 6]. He also pointed out that the set P(C,) of positive
definte functions in Cooper's sense [2] is included in R(°w1) [1, §1], and proved that
every function in R(¢w1) has the same representation in terms of unbounded measures
as the functions in P(C)) [1, Theorems 7 and 8], [3, Theorems 4.1 and 4.2] (in fact,
as we will prove here, these representations hold for a larger class of functions and
they are equivalent). These results of Holland together with Bochner's theorem on po-
sitive definite functions [4] - a function is the Fourier transform of a bounded measure
iff it is a linear combination of positive definite functions - lead one to speculate
that any function in R(qu) is a linear combination of positive definite functioms.
In the present paper we respond to this conjecture in a more general setting. We define
the space R(qu) (1 < p, q £ =) of resonance classes of measures (on locally compact
abelian groups) relative to ¢P , which includes R(¢wq) as a particular case; we
characterize this space in terms of transformable measures [5], and prove that for
1 < p £, any measure in R(¢pq) (2 < q <« 1is a linear combination of positve de-

finite functions for some amagam space (Lr, ls) [6], and for 1 < q < 2, any measure
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in R(Opq) can be approximated by linear combinations of positive definite functions
for some amalgam (Lr, 25y,

From these results we conclude that P(Cc) is dense in R(¢wl) and <0(CC)>, the
space generated by the set of positive definite measures as defined in [5, §4], is dense
in the space of transformable measures. This answers the conjecture posed in [5].

Throughout the whole paper G will be a locally compact abelian group with Haar
measure m and dual group [. For an element X in T we write [x,R] instead of
R(x) (x € G). Given two sets A and B we denote by A - B the set {x - ylx EA, Yy ¢ B}.
For a function f on G we use f to denote its involution, i.e. f(x) = £(-x). The
space of continuos functions which vanish at infinity, with compact support, will be
denoted by Cy, Cc, respectively, We endow Cc with the inductive limit topology, as
in (51, By a measure (on G) we will mean an element of the continuous dual of Cc(G)'
We let M be the space of measures on G.

A funetion f belongs to Lgoc (1< q<=) if f restricted to any compact sub-
set of G, belongs to Lq, and f belongs to Lz (1 £ q<=) if f has compact support

and belongs to L9,
The amalgam spaces (LP, %), (cq, [ASINe! < p, 9 £ =) and the space of measures
M (1 < s <= will be as defined in [7]. We will make constant use of the following

inclusions and inequalities proven in [7].

@P, 231 < (P, 292) q <aq (1.1)
Pt 29 < @P?, 29 P 2P, (1.2)
@P, 29 1P n L9 P>q (1.3)
el g, < HEl g, 9, <9, (1.4)
HEN, g 2 HEN g P 20, (1.5)

We will assume all the results of duality and convolution product for these spaces,
the Holder and Young's inequalities, and the Hausdorff-Young theorem for amalgams as
given in [8, §1, §2].

The Fourier transform (inverse of the Fourier transform) of a measure u on G
(on T) will be denoted by fi ( ﬁ ). We will denote by {ea} the approximate identity
of the algebra Ll(G) consisting of continuous functions with a fixed support and po-
sitive Fourier transform in LI(F).

We let {wul U a compact neighbourhood of 0} be the family of functions by in
Ac, the space of functions in Cc whose Fourier transform belongs to Ll, with the

following properties

supp wU cUu (1.6)
_ > 2

wU = BU*BU , where BU € Lc (1.7)

wu >0 and wu >0 (1.8)

lim wU =1 uniformly on any compact subset of g (1.9)

{¢U} *is an approximate identity of Ll (1.10)
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The duality between a Banach space B and its Banach dual B' will be denoted
by <f,F> , Fe B', f € B. As in [5] we call a measure P on G transformable, if the
linear space CZ(G)’ generated by the set {f*E] f e Cc(G)}’ is included in Ll(u), and
there exists a measure fl on I' such that f*f(x) du(x) = |?|2(—i) dfi(x) for all
fe Cc' We denote by l@r the space of transformable measures.
2. POSITIVE DEFINITE MEASURES.

We follow the definition of positive definite measures given by Dupuis in [6], but
using the Segal algebra Sy(G) which is equivalent to the space of translation bounded
quasimeasures [9]. The advantage is that for o € So(G)' 1its Fourier transform G be-

longs to So(I')' [10] and for f e L1 we have, as proven in [8, §2], that
(0*£)" = 6f and (of)Y = Sf (2.1)
g = 0o. (2.2)

We assume all definitions and results about the algebra S,(G) given in [8, §2].
From these it is not difficult to see that the Fourier transform of a transformable
measure U (considered as an element of S¢(G)' [10]) corresponds to the measure ﬁ
associated to H.

As in [10], an element 0 in So(G)' is positive, 0 > 0, if f positive in
So(G) implies 0(f) positive. In this sense a function g in So(G)' is positive
iff g(x) > 0 almost everywhere. Indeed, let U be the measure gdm and suppose g
in S¢(G)' positive. For ¢ € Cc positive, the function ¢*ea is a positive element
of Sp(G) and converges to ¢ in C. [5]. So we have that
u($) = lim <d*ey,u> = lim <¢*ea,g> > 0. Hence U 1is a positive measure and therefore
g(x) > 0 almost everywhere [11, Chp. III].

DEFINITION 2.1. Let E be a subset of functions of Sp(G)'. A measure U is a pos-
itive definite measure for E if

on ecilm

(D2) <h,u> >0 for all heE such that h > 0.

We write A(E) to denote the set of positive definite measures for E, and P(E)
to denote the set of measurable functions in A(E). For a set E as in Definition 2.1
we denote by E+ the set of functions in E whose Fourier transform is positive, and
by <P(E)> the linear space generated by PA(E).

Clearly, Definition 2.1 is equivalent to Dupuis' definition of positive definite
measures [6]. By [10, Theorem Bl] and [8, (1.9)] the set E can be any amalgam space,
hence any LP space [8, (1.4)].

Argabright and Gil de Lamadrid have studied the set A(G), of measures u such
that <¢*$,u> >0 for all ¢ ¢ Cc’ in connection with the space of transformable mea-
sures. We use their results in [5] to prove that A(G) is equal to ﬂ(cc).

PROPOSITION 2.2. A measure [ belongs to P(CC) iff <¢*$,u> >0 for all ¢
in Cc.

PROOF. The inclusion ﬂ(Cc) < P(G) is clear. Take u e P(G). Since Cc is inc-
luded in lﬁ,[S, Theorem 2.2] we have that a function ¢ in Cc+ is a continuous po-
sitive definite function [5, Theorem 4.1], so <¢,u> > 0 by [5, Corollary 4.2] and
therefore u satisfies condition (D2).
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REMARK 2.3, It is clear that if E; € E; (Ei1, E2 as in Definition 2.1), then
P(E,) = P(E;), so by [5, Theorem 4.1], if Cc is a subset of E, then A(E) Cillr.

Dupuis defined the set P of positive definite quasimeasures to be the set of all
quasimeasures 0 such that <¢,0> > 0 for all ¢ in Ac+’ and characterized it as the
set {u| u« MM} [6, Proposition I1].

As in [6, Proposition 11] we use the following lemma to prove Theorem 2.5.

LEMMA 2.4. Let A be any of the amalgam spaces (Lp, Qq), (Co, 25)
(l<p,q<® 1<s <™, If fe A+, then there exists a net {fn} in Ac+ such
that 1lim fn = f in A.

PROOF. Since {WU} cC,, we have by [8, Theorem 1.6] thaE the net {fwu*ea} is in-
cluded in Cc’ Thus by (2.1) its Fourier transform (fwu*?a) = (wa)Aéa = (?*@U)Ga
is positive [8, (2.5), (2.6], and since e belongs to L, the net {fwu*ea} is in-
cluded in A_. Finally as in [6, Theorem III c¢)] 1lim fwu*ea = f in A (see also [8,
Proposition 1.8]).

THEOREM 2.5. Let 1 < p, q <, Then P(Lp, lq) is equal to (LP', lq') no.
PROOF. If p is in (Lp', lq‘) NA and f is an element of (Lp, lq)+, then
there is a net {fn} as stated in the previous lemma, so by [7, Theorem 3.2] we have
that <f,u> = lim <fn,u> > U. Therefore u € P(Lp, lq). The other inclusion follows

from [6, Proposition IV].

REMARKS 2.6. From (2.2) and Theorem 2.5 we have that if V 1is a positive measure

in M_ such that Ve (Lp', lq') (1 < p, q <=), then 0 belongs to P(Lp, lq).

3. RESONANCE CLASSES OF MEASURES.

Bertrandias and Dupuis [12] defined the space qu (1 <p, q<® of test func-
tions on locally compact abelian groups based on Holland's definition of the space ¢mq
(1 < q <= for the real line.

DEFINITION 3.1. Let 1 < p, q < ®. The space Qp (G) = ¢pq consists of all func-
tions ¢ in Cc(G) such that & belongs to (Co, £7)(I'), endowed with the norm
o——— [[3]|

The space @ml, used by Bertrandias and Dupuis for their definition of the Fourier
transform is equal (as a set) to Ac [13],[9]. Hence the space C2(G) is included in
¢,1(6) [14]. We will use this in Theorem 4.2.

REMARK 3.2. i) As sets ¢pq = Orq for 1 <p, q, r £, and ¢pq = Cc for
1<p<> 2<q<> by the Hausdorff-Young theorem.

ii) A linear functional T on ¢_(G) (1 < p, q ; ©) is continuous iff there is a

1
unique measure p in Mq,(F) if p = », in (Lp , 2d )(T) 1if p < o, such that

T($) = IF $(-8) du®)

for ¢ € qu [2, 82 ©)].

The next definition extends Holland's definition of the space of resonance classes
of functions [1, §5].

DEFINITION 3.3. Let 1 <p, q <®. Ameasure U on G is resonant relative to
¢ (G) if

pq 1
(R1) qu <L (W
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(R2) The map ¢ b——— <¢p,u> is continuous on ¢pq’ i.e. there exists a constant
C such that [<¢,u>| < c||]]

We denote by R(® q) the space of resonance classes of measures relative to ¢ ,
and by R(® q) the space of functions in R(¢pq). By (1.1) it is clear that k(@Pq) is
included in R(® ) if 1<s<q<w, 1<p, re

H. Feichtinger has given a more general definition of resonance classes of func-
tions relative to the space ¢B’ where B is a Banach space of functions containing
So(G) as a dense subspace (private communication).

THEOREM 3.4. i) A function f satisfies (R1l) iff f € Li et

ii) A measure u belongs to Q(@ ) (1 <p, q<= iff E:Al and U e M (1)
tp=w fea, )@ 1£p<a !

iii) For 2 < q £ © we have that R(¢ ) = (Lq, Ep) if 2 < p <®, and
R( )C(Lq,R) if 1 <p<2.

PROOF The proof of i) is similar to the real case [l, Theorem 1] using [7, Theo-
rem 3.1].

To prove ii) take U in ﬁ(¢pq) and set the map T(¢) = <p,u> on ¢pq' If T is
continuous, then by Remark 3.2 there exists a measure V as stated in the theorem
such that [ $(-%)dv(®) = / ¢(x)du(x). Since CZ(G) c¢ 1(G) we conclude that u E:”
and {i = v. Conversely if u e #@, and fi € Mq.(F), then for ¢ € ¢ ,belL (F) [8,
Theorem 1.4]. Hence by [5, Corollary 3.1] and Young's inequality we have that
[f oGydulx)| = |f $(-0)diR) | < ||ﬁ||q,||$|]mq. Therefore u € R(¢pq). The proof for
p finite is the same.

Part iii) follows from the Hausdorff-Young theorem and the fact that the spaces
(Lp', Zq') and M, (2 < q <) are included in /ﬁ.[lS, Remark 6.25].

We conclude frgm Theorem 3.4 [5, Theorem 2.5] that R(¢pq) = R(@pq) for 1 <p <,
2<q<°, R 1) 10 nMT and R(@wl) .”T‘

The following corollary is easily deduced from the previous theorem and the

Hausdorff-Young theorem.

COROLLARY 3.5. Let 1 <p<®, 2<q<e A function f belongs to R(¢ ) iff
theri exists a unique u € Mq.(F) if p=wo, ue (Lp . lq Y(T) if p < o, such that
f=u.

Since ¢_ = Cc if q > 2, Corollary 3.5 includes the results of Eberlein [16, Theo-

rem 1] (with p = q = @) and Stewart [7, Theorem 4.4] (with p = ®) as special cases.

We observe that the measure u in Corollary 3.5 is precisely the Fourier trans-
form of f.

We now establish the relationship between R(¢pq) (2 < q <> and the set of posi-
tive definite functions.

PROPOSITION 3.6. Let 2 < q < =. The space R(¢ ) is a subspace of <P(Lp', lq')>
if2<p<w, of <wd, t?)> if 1<p< 2.

PROOF. If f ¢ R(?°° ),'then f =90, -9+ i(0; - 04) where vj >0, vj € Mq' if
p=w, and v e P, 2%) ifp<e (j=1,..,4) [11, Chp. III]). By the Hausdorff-
Young theorem Oj € (Lq, lp) if 2 < p <®, and Oj € (Lq 12) if1<pg2 (j =1,.
.,4). So by Remark ?.6 we conclude that Oj (j = 1,..,4) belongs to P(Lq . kp ) if
2<p<w, to PY, 2H if 1 <p <.
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coroLLARY 3.7. <e(?, 21)> = R(e_)) and <> - Ry

PROOF. By Theorem 2.5, (L%, 21) (L%, 2°) and P(L?) c L?, hence if f is in
P(Lz, 21), then by [6, Theorem II] fe MZ’ so by Remark 2.3 and Theorem 3.4 we conc=
lude that f € R(¢w2) Similarly if f € P(L ), then by Theorem 3,4, fe R(¢22) and
the equalities follow from Proposition 3.6.

For the remaining cases, that is, for 2 < p < ®, 2 <q<®; 1 <p<2,2<qZ<>;
and q = 2, 2 < p < o, the inclusions in Proposition 3.6 are proper because the Fourier
transforms on (L%, £5) (1 <r<2, 1<s<2), on H_ (1<s<2),andon (5, 25
(1 < s <2) are not onto [17, Corollary 6.3]. Indeed if 2 < p <* and 2<q <,
then there exists f € (Lq, 2P) such that f + h for all € (Lp', iq'), hence
f ¢ (Lp', 293) [21, Remark 2.4]. So the function g defined by <¢,g> = |<d,f>| on
(Lq', Zp') belongs to (Lq, 2P)  and clearly to P(Lq', lp'). But é t (Lp', lq'),
otherwise f would be in (Lp', lq'). Therefore g ¢ R(¢pq). The remaining cases are

A A

= A

similar
4. THE SPACE £(¢pq) FOR 1 <q < 2.

We have seen that any measure in R(@pq) (2 < q £°) is a linear combination of
positive definite functions; we want to prove now that for 1 < q < 2, any measure in
k(® ) is approximated by linear combinations of positive definite functions.

He endow the spaces M, and Lioc with the weak*-topology 0W®/,C o)» and O(Lloc,Li)
rispectively [18, Chp. IV]. We consider R(¢pq), and R(¢pq) as subspaces of M, and
Lloc respectively.

PROPOSITION 4.1, Let 1 2p
if p=o, ve (Lp', lq')(F) if p < ©, such that M is a measure and p = lim %*wu in
H#, then u e k(@pq) and fl = v. Conversely, if € R(qu), then 1lim u*wu =p in M.

PROOF. We prove the proposition for p = ®, the proof for p finite is the same.

For ¢ € ¢ 1, the net {¢*w } converges to ¢ in C. [5], so we have that
<$p,p> = lim <¢,v*wU> = lim <¢*wu,v> = <¢, V> = <$,v>. Since C G) <o o] Ve conclude

<®, 1 <q <2, If there exists a measure V € Mq,(P)

that Y 1is transformable and {i = v, so by Theorem 3.4, U € R(¢mq) The converse is
clear.
REMARK 4.2. If f € R(¢pq) (1<p<® 1<q<2), then

£y, (x) = f Yy(x - DE(L) dt = Ir by (0 [x,8] dE(R)
G

because f is transformable and @U € Ll(f) [5, Corollary 3.1]. Hence for ¢ € C. we
have that

I o(x) f(x) dx = lim I d(x) I @U(i)[x,ﬁ] df(®) dx.

G G r

This implies that f£(x) = lim [ $U(§)[x,i] df(R) where the limit exists on L1 on
any compact subset of G (c.f. [1, Theorem 9] and [7, Theorem 4.2]).

THEOREM 4.3. Let 1 < q < 2. Every element in £(¢ ), hence in R(¢ ), can be
approximated by elements in <P(L}, P'ys 1f 2 <p <, in <wwl, 9> if 1<px2.
PROOF. By Proposition 4.1 we only have to prove that for u € £(¢ ), the net

{u*wu} belongs to <P(L , lp )>.

By Theorem 3.4, the measure {I is a linear combination of positive measures uj
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(G =1,..,4) in Mq.. So by [8, (2.5)] for ¢ € ¢,; we have that

[<oruyafi>] = T<ovgau>l < Hugll gl el
< g g ogllgg el Go=1,.0.8

<0, 8>

Since le is dense in Ll [8 Proposition 2.5], we conclude that j*w
(3 =1,..,4). Now, if f e L (G) , then by [8, P5] and the definition of the Fourier
transform we have that <f, uj*w > = <f*wU,ﬁ > = <wa,uj> > 0, therefore ﬁ *w € P(L )
(j =1,..,4), and we conclude that u*w belongs to <P(L )>. 1f e Q(Q ), then
each uj (j =1,..,4) belongs to (LP', lq ) and therefore uij e (LP ,l ) [19, §7 n)],
hence by (2.1) and the Hausdorff-Young theorem we have that ﬁj*wu is in (Lw, lp) if
2<pse din (7, 8% 4f1<p<2. Sofor ¢eA’ wehave that

<¢, ﬁj*wu> = <¢¢U,uJ> > 0, this implies by Theorem 2.5 that ﬁ *w is in P(Ll, lp') if
2<p<w, inpal, 2? if 1 <p< 2.

REMARK 4.4, By Remark 2.3, Theorem 4.3 and Proposition 2.2 we conclude that the
space </)(Cc)> is dense in/f'f,r (c.f. [5, 84]) and <P(C )> is dense in Li oc nlfT.

PROPOSITION 4.5. i) Let 1 % q < 2. The spaces <P(L )> and R(%_ ) are dense in
k(¢mq)- .
ii) Let 1 < q £ 2. The spaces <P(L, l )> and R(¢ ) are dense in R(¢ q)

PROOF. In view of Theorem 4.3, we have to prove that <P(L )»>c R(¢ ) and
<P(Ll 2, )> < R(?, ) First of all we recall (Remark 2.3) that P(Ll) cl/: and
pt, 2% <A,

Let f ¢ P(L ). By Theorem 2.5 and [6, Theorem II],its Fourier transform 3 belongs
to Mq,, hence f eqR(qu), since f ¢ L}oc' If f ¢ P(Ll, 12), then a%ain by Theo-
rem 2.5, f € (Lq, 27) and by the Hausforff-Young theorem, fe (Lz, X ), hence
fe R(¢2q). . ,

We finallyv point out that for 2 < p < », the space <P(L’, 2P )> is not included
in R(¢Pq). because as in [20, Theorem 5.5.1] using [21, Theorem 5] andm[15,
Theorems 5.6 and 15.9], we can prove that there exists a function f in (L , 2Py
such that f 1is not a measure, hence the function g defined by <¢,g> = |<¢,f>|
(¢ € (Ll, lp')) belongs to P(Ll, lp') and § is not a measure, so g ¢ (Lp', lq').
Also, if 1 < p < q < 2, then <P(L!, 29> 1is not included in R ). Indeed, let
a =p'/q' + p'. Since m is a inner measure there exists I, < [n,n+1) such that
n(J ) = (1/n)%, where 3, = {x € [n,n+1)|x ¢ I }. So for each integer n we define the
function f to be the product of n tlmes the characteristic function of the set J .

If f = an , then |[f|| [z (np (1/my*H19 K ] e' _ ) l/n , therefore f is not
in (Lp', Zq'). Since each f belongs to (L2, 21), ¥n € (L . 2 ), so by the

Hausdorff-Young theorem Zf converges in (Lw, 22) to a function f', because
2 a a-2
‘IZ fnl|m2 < Y ,lfnllmz <71 C||fn||21 =) ca“(1/n)” =) c(1/n) < o gince a > 3.

By the Lebesgue $onvergence theorem and the fect that So(R) © (Ll 22),vfor any ¢
in So(R) wehave<¢,f>-<$f>-2<¢f>—2<¢f>—<¢f>,hence £' = £, Let g
be the function on (Ll, Z ) defined by <¢,g> = |<¢ ¥>| Clearly g is in P(L 2)
and g 1is not in (Lp', lq ) because for ¢ € Sp(R) we have that
<b,8> = <d,g> = [<§,£>| = |<¢,¥>| , this shows that § € (LP', lq') iff f e (Lp',lq').
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Therefore g ¢ R(¢pq)

The construction of the function f can be extended to G wusing the partition of
disjoint relatively compact subsets as in [7, §3]. Probably the same is true for
1 <q < p <2, but we were unable to decide the matter.

5. REPRESENTATION THEOREMS.

We will prove in this section (Theorem 5.4) that the representation theorems for
R(@ml) and P(Cc) in El, Theorems 7 and 8] and [3, Theorems 4.1 and 4.2] respectively,
hold for the space Lloc n R(®pq) (1<q<2,1<pZ<=®, and they are equivalent. We
first give a remark easily deduce from [5, Theorem 3.3].

REMARK 5.1. Let gerd . n R )(l<p,q<°°)

i) If ¢ € L (G), then ¢*f exists and ¢ €L (f) Therefore for locally almost

all x € G we have that

frp(x) = f £(y)P(x - y) dy = f $(%) [x,%] dE(R).
G T

ii) If the integral on the left is a continuous function of x in a neighbourhood
of 0, then the formula in i) is valid for x = 0. Hence under this hypothesis

f £(y)o(-y) dy = [ $(R) dER).
G r

The next theorem includes [1, Theorem 3] as a particular case.

THEOREM 5.2. Let 1<p, q<®. If fe L] R(® ), then

[ £(x)¢(x) dx =I b(-8) dE(®)
G r

for all ¢ ¢ L such that e (P, 4 1fp <=, $e (Co, D i£ p = .

PROOF. It is clear that the convolution ¢*f exists for ¢ € Lq and f € Lgo
1f $ is in either (Lp, lq) or (Co, 29 ), then ¢ €L (f) So by our previous remark
we have to prove that f*¢ is continuous on a neighbourhood U of 0. Let E be the
support of ¢, and s € U. If 1 < q < =, then the map xF— ¢x , where
¢x(y) = ¢(x - y), is continuous on G. So given € > 0 there exists a neighbourhood V
of 0 such that for all x € V we have that ||¢x - ¢y||q, < €/||fo_E||q » where X, o

is the characteristic function of U - E. So for x € UN V we have that

A

ltxoG0 - exoe)] < | 1E | 16,0 - 0,1 dy < [lexy_gll e, - o 11,

Therefore f*$ is continuous at s.

If q = 1, then the map x (fo_E)x is continuous on G, and as before,
there exists a neighbourhood of zero V such that for x in U N V we have that
| £xd(x) - £x¢(s)| < II¢II”|I(fXU—E)x - (fo_E)sH1 < €. This ends the proof.

We need now to introduce Simon's generalization of Cesaro summability on locally
compact abelian groups [22]. This consists of a family of functions {¢U} (U being a
compact neighbourhood of 0) in (Co, 2 ) with the following properties

0520, oyl = (5.1)
is an approximate identity for L .
(6,} d for L! (5.2)
$U € CC and 1lim $U(ﬁ) =1 for all % e . (5.3)
U

The following representation theorem is an extension of [1, Theorem 7] (c.f. [3,
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Theorem 4.1]).

THEOREM 5.3. Let 1 <
= loc

q
(c.1) f B(x)£(x) dx = f oy CONG)E(x) dx = I h(-%) dE(%)
G r

for all h e (LP, 21 (M) if p <=, h € (Co, LH(T) if p =
Furthermore if r = 2q/(2q - 1) and 2 < p < =, then

< ,1< <o If fell NR@® ), then
P_ Pq

II f(x - y)o(x)P(y) dx dy = I dRVE) at®)
T

for all ¢, ¥ in (Lr, Qp'). The double integral exists not necessarily as a Lebesgue in-
tegral but as the sum of the convergent series
zz[vk £(x - Y)O()V(y) dx dy
aB ‘al’B
where Va, VB are finite union of the sets La’ as dsfined in [7, §3]. , ,
PROOF. Suppose p < ®. If h € (Lp, Qq)(F), then h belongs to either (Lq 2p )(G)
if 1 <p <2, 0r (Lq', 12)((;) if p > 2. Since {cp }cc (G), we have that h¢ € 1.cl

and therefore h*¢ _ = (h¢ ) . So by Theorem 5.2 we conclude that

U
f ¥U(x)h(x)f(x) dx = f hxo, (-2 dE(R).
¢ r

Since f ¢ (Lp', lq') and 1lim h*¢U =h in (LP, 29) [8, Proposition 1.8] the inte-
gral on the right converges to J h(X) df(%) and this proves the first part of the
theorem.

Let ¢, y in L . Since r =2q/(2q - 1) and 1 < q < 2, we have that 1/r = 1 - 1/2q,
hence 1/2 < 1/r < 3/4 and therefore 1 < r < 2, If ¢ € L , then ¢ € (Co, 2 r') and

*) " € (Co, lq) because r' = 2q [12, §7]. So by Theorem 5.2

[Jﬂx-wmewdx®=[$@W@)&&x (5.4)
Set B(¢,P) to be equal to the left side of (5.4). So by Holder's inequality
1BCo,ud | < HTEI o 1801 g < TN o 1O o [TVl therefore

A

IBo. 0| < c Il illoll, v if 1<p <2 and [BWI| < IVl ,ll0ll, 1£p> 2,
where C is a constant depending on f, p and q.

If g e @', 2P'), then ]|gll = () ||3 ||p ) where g = gx, . So for o, ¥
in (Lr lp ) we have that |B(¢ ,wB)| C ||¢ Il ,Ilwell .+ So 2 z B(¢ ,wB) is abso-
lutely convergent and the left side of (5.4) exists as stated in the theorem.

Finally, since 2 g converges in the norm of (Lr, lp') to g we have that
z 5 B(¢ ,ws) =/ ¢(x)w(x) df(R). The proof for 2 < p <« {is similar.

THEOREM 5.4, If 1<q<2,1<p<>® and f € Li o’ then the following are equi-
valent

i) f e R(qu) , ,

ii) There exists a unique P in M ,(T') if p = @, in @P, 29)() if p < =, such
that for all ¢, P in wr, lp')(G), whege r = 2q/(2q - 1),

fr £(x - y)O()V(y) dx dy = J PRVR) du®

the double integral exists as in Theorem 5.3.

iii) There exists a unique measure U as in part ii) such that
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£(x) = lim f B, [x,R] ()
r

where the limit exists as in Remark 4.2,
PROOF. By Theorem 5.3 part i) implies part ii) and by Proposition 4.l part iii) im-
plies part i).

Suppose that ii) holds. Since d}u = SU*éU and BU € Li , for all t in G we have

[[ t6 -9 8,00 - 0 By ax 4y = [ 16,208, 08,® ww.
The left side is equal to
I £(x) Bu*éu(t - x) dx = I £, (t - x) dx = £xy (),

the right side is equal to [/ $U()’E)[t,§] du(x), and wU*f converges to f in the sense
of part iii). Hence we conclude that ii) implies iii).
6. FURTHER RESULTS.

In this last section we want to give a characterization of the set of Fourier mul-
tipliers from the space ¢mq (1 <q<® to Ll and M. This will allow us to extend
Dupuis' characterization theorem [6, Theorem III].

Following the notation in [23]) we denote by M(¢mq) (M@ )) the space of Fourier
multipliers from q>°°q to L} (M), that is, M(d’ ) (lf(‘l> )) is the space of all func-
tions (measures) f on T such that f¢ is 1n L (M) for all ¢ € ¢mq(G)

Since (bmq = Cc for 2 < q < », we consider the characterization of these spaces
for 1<q< 2.

THEOREM 6.1. Let 1 < q < 2. Then M(%_ ) = (Ll 2q') and M(®_ ) = H '

PROOF. By the Young's inequality (Ll, gq ) © M, ) and M Cﬂ(d? )

Let u s//('bmq) and suppose that 1lim d)n ¢ in d’coq and lim u¢ =h in Ml’ so
for f € Cc we have that
l<gud - m>| < <608 - u>| + [<€ud - b>| < [<E@ - D] + 1€l |1, - bl

¢ Hell 18, = 8 1 + Nelll 16, - nll

where C is a constant depending on the support of f. Since Cc is dense in Co, we con-
clude by the Closed Graph theorem that the map ¢+F—— pé¢ from O”q to Ml is con-
tinuous. Hence by Remark 3.2, u e M ,(T). }f fe M(‘b@q), then the measure |f|dm be-
longs to Mq.(r‘) and therefore f € (Ll, L3y,

From Theorem 6.1 we see that M(Cc) = (Ll, 12), as proven in [23], and lf(Cc) = MZ.

We write F‘bwq to denote the set {$| ¢ e o}

THEOREM 6.2. Let 1< q < 2. Then P(F9,) = !, 29 0P and (FO_) =M, 0P
Hence P(F® ) = P(Cy, 29)  and p(qu) = A(Co, 29y, ,

PROOF. By [6. Proposition IV] and Theorem 6.1, P(Ffbwq) [= (Ll, [ ) NP and
P(Fd> ) Mq, np.

Take peM, NP and ¢ e (Fo ) . Since {¢*e } converges to ¢) in (Co, 29 ),
$*ea € Ac and (¢*e )v = ¢e >0, we have that ¢ M = lim d)*e s > 0. Therefore
u e A(Fo_ ). Since (L q ) is included in Mq' [8, (1.9)] we conclude that

L]
(Ll, 24 ynpc P(F(bwq). The last equality follow from Remark 2.3 and an argument like

A

that of Theorem 2.5.
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