M-QUASI-HYPONORMAL COMPOSITION OPERATORS

PUSHPA R. SURI and N. SINGH

Department of Mathematics Kurukshetra University Kurukshetra - 132 119, India

(Received November 12, 1985)

ABSTRACT. A necessary and sufficient condition is obtained for M-quasi-hyponormal composition operators. It has also been proved that the class of M-quasi-hyponormal composition operators coincides with the class of M-paranormal composition operators. Existence of M-hyponormal composition operators which are not hyponormal; and M-quasi-hyponormal composition operators which are not M-hyponormal and quasi-hyponormal are also shown.

KEY WORDS AND PHRASES. M-hyponormal, M-quasi-hyponormal, M-paranormal, normal composition operators.
1980 AMS SUBJECT CLASSIFICATION CODE. 47

1. PRELIMINARIES.

Let (X,S,m) be a sigma-finite measure space and T a measurable transformation from X into itself (that is one $mT^{-1}(E) = 0$ whenever m(E) = 0 for $E \in S$). Then the equation $C_T f = fo T$ for every f in $L^2(m)$ defines a linear transformation. If C_T is bounded with range in $L^2(m)$, then it is called composition operator. If X = N the set of all non-zero positive integers and m is counting measure on the family of all subsets of N, then $L^2(m) = \ell^2$ (the Hilbert space of all square summable sequences).

Let $f_0 = \frac{dmT^{-1}}{dm}$ be the Radon-Nikodym derivative of the measure mT^{-1} with

respect to the measure m,

 $\frac{dm(ToT)^{-1}}{dm^{T}} = g_{o'} \qquad \frac{dm(ToT)^{-1}}{dm} = h_{o'}$

Then $h_o = f_o \cdot g_o$.

Let B(H) denote the Banach algebra of all bounded linear operators on the Hilbert space H. An operator T ε B(H) is called M-quasi-hypornormal if there exists M > 0 such that

$$M^{2}T^{*T}T^{2} - (T^{T}T)^{2} \ge 0$$

or equivalently $||T^{*}Tx|| \le M ||T^{2}x||$ for all x in H [1]. T is said to be M-paranormal [2] if for all unit vectors x in H

$$|\mathbf{T}\mathbf{x}||^2 \leq \mathbf{M} ||\mathbf{T}^2\mathbf{x}||.$$

T is said to be M-hyponormal [2] if

$$||T\hat{x}|| \leq M ||Tx||$$
 for all x in H.

The purpose of this paper is to generalize the results on quasi-hyponormal composition operators in [3] for M-quasi-hyponormal composition operators.

2. M-QUASI-HYPONORMAL COMPOSITION OPERATORS.

In this section we obtain a necessary and sufficient condition for M-quasihyponormal composition operators and then show that the class of M-quasi-hyponormal composition operators on ℓ^2 coincides with the class of M-paranormal composition operators. We also show the existence of M-hyponormal composition operators which are not hyponormal, and M-quasi-hyponormal composition operators which are not M-hyponormal and quasi-hyponormal.

THEOREM 2.1. Let $C_T \in B(L^2)$. Then C_T is M-quasi-hyponormal if and only if $f_0^2 \leq M^2 h_0$.

PROOF. Since for any f in L^2 ,

$$(C_{T}^{*2}C_{T}^{2}f,f) = (C_{T}^{2}f,C_{T}^{2}f) = \int h_{o} |f|^{2} dm,$$

= $(M_{h_{o}}f,f),$

where M_{h_o} is the multiplication operator induced by h_o , therefore $C_T^{*2}C_T^2 = M_{h_o}$. Similarly it can be seen that $C_T^{*}C_T = M_{f_o}$. C_T is M-quasi-hyponormal if and only if

$$M^{2}C_{T}^{*^{2}}C_{T}^{2} - (C_{T}^{*}C_{T})^{2} \ge 0.$$

This implies that

$$M^2 M_{h_o} - M_{f_o}^2 \ge 0,$$

that is $f_0^2 \leq M^2 h_0$.

Hence the result.

COROLLARY. Let $C_T \in B(\ell^2)$. Then C_T is M-quasi-hyponormal if and only if $f_o \leq M^2 g_o.$

PROOF. Since $h_0 = f_0 \cdot g_0$ and f_0 is positive, therefore, by above theorem we get the result.

THEOREM 2.2. Let $C_T \in B(\ell^2)$. Then C_T is M-quasi-hyponormal if and only if C_T is M-paranormal.

 $^\circ$ PROOF. Necessity is true for any bounded operator A. For the sufficiency, let $C_{\rm T}$ be M-paranormal, then

M-QUASI-HYPONORMAL COMPOSITION OPERATORS

Hence $f_0^2 \leq M^2 h_0$; C_T is M-quasi-hyponormal.

THEOREM 2.3. Let $C_T \in B(\ell^2)$ and $T:N \to N$ be one-to-one. Then the following are equivalent.

(i)	Normal
(ii)	M-hyponormal
(iii)	M-quasi-hyponormal.

PROOF. (i) implies (ii), (ii) implies (iii) are always true for any bounded operator A. We show that (iii) implies (i). Let C_T be M-quasi-hyponormal. Then $||C_T^* C_T^f|| \leq M ||C_T^2f||$ for all f in ℓ^2 . Now T is onto because if T is not onto then N|T(N) is non-empty and for $n \in N|T(N)$

 $||C_{T}^{*}C_{T}X_{\{n\}}|| = 1 \text{ and } ||C_{T}C_{T}X_{\{n\}}|| = 0.$

There exists no M>O such that C_T is M-quasi-hyponormal which is a contradiction. Since T is one-to-one, therefore, T is invertible, by Theorem 2.2 [4] C_T is invertible and C_T is normal by Theorem 2.1 [3].

Here we give an example of a composition operator on l^2 which is M-hyponormal but not hyponormal.

EXAMPLE 1. Let T:N N be the mapping such that

$$T(1) = 2$$
, $T(2) = 1$, $T(3) = 2$ and
 $T(3n+m) = n+2$, $m = 1,2,3$ and $n \in N$.

Then C_{T} is not hyponormal as $f_{O}OT \leq f_{O}$ for n = 1. C_{T} is M-hyponormal for $M \geq \sqrt{2}$.

EXAMPLE 2. Let $T:N \rightarrow N$ be defined by T(1) = 2, T(2) = 1, T(3n+m) = n+1, m = 0,1,2 and n $\in N$. Then C_T is $\sqrt{2}$ - quasi-hyponormal but C_T is not $\sqrt{2}$ -hyponormal. C_T is not quasi-hyponormal also.

REFERENCES

- SURI, P.R. and SINGH, N. M-Quasi-Hyponormal Operators, <u>Bull. Austral. Math. Soc.</u> (Communicated).
- ARORA, S.S. and KUMAR, R. M-Paranormal Operators, <u>Publications De L'Institut</u> <u>Mathematique Nouvelle Serie</u> 29(1981), 5-13.
- SINGH, R.K., GUPTA, D.K. and KOMAL, B.S. Some Results On Composition Operators on l², <u>Internat. J. Math. and Math. Sci.</u> <u>2</u>(1979), 29-34.
- SINGH, R.K. and KOMAL, B.S. Composition Operator on l^P and its Adjoint, Proc. Amer. Math. Soc. 70(1978), 21-25.