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ABSTRACT. In this work we generalize a result of Kato on the pointwise behavior of a
P

weakly convergent sequence in the Lebesgue-Bochner spaces LX(fi) (I _< p _< (R)). Then we

use that result to prove Fatou’s type lemmata and dominated convergence theorems for

the Aumann integral of Banach space valued measurable multifunctions. Analogous con-

vergence results are also proved for the sets of integrable selectors of those

multifunctions. In the process of proving those convergence theorems we make some

useful observations concerning the Kuratowski-Mosco convergence of sets.
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1. INTRODUCTION.

In [I] Schmeidler motivated from problems in mathematical economics, proved a set

valued version of Fatou’s lemma, for multlfunctions taking values in n A different

proof and some additional results in this direction were obtained later by Hildenbrand

and Mertens [2].

Finally Artstein in [3] provided the sharpest version of that result. However

all the above authors apparently were unaware of an earlier analogous result of Kato

[4], for Banach space valued functions. The purpose of this note is to significantly

extend the result of Kato [4], use that extension to prove a Fatou’s lemma for Banach

space valued’ multifunctions, extending this way the works of Schmeidler [I

Hildenbrand-Mertens [2] and Artstein [3] and finally prove a dominated convergence

theorem for Banach space valued multifunctions. Then we obtain analogous convergence

results for the sets of Bochner integrable selectors of the multlfunctions. Our

results can have important applications in optimization, optimal control, differential

inclusions, abstract evolution equations and mathematical economics.

2. PRELIMINARIES.

Let (,l,) be a complete, o-flnite measure space and X a separable Banach

space, with X being its topological dual. We will use the following notations:

P (X) {A X nonempty, closed, (convex)}
f(c)
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P (x) {A =-X nonempty, w-compact, (convex)}
wk(c)

acA

function from A i.e. for all x X, dA(X) inf[[x-a[l and by OA(’) the support
a A

function of A i.e. for all x X ,OA(X sup(x ,a).
aA

A multifunction F Pf(X) is said to be measurable if it satisfies any of

the following equivalent conditions:

i) for all x X, m *d (x) is measurable
F()

ii) there exists a sequence {fn ")}n>l of measurable functions

s.t. F() cl{fn()}n> for all (Castaing’s representation).

iti) GrF {(,x) xX x F()} ExB(X), where B(X) is the Borel

o-field of X (graph measurability).

the set of all selectors of F(-) that belong to the Lebesgue-We denote by SF
{f(.) (G) f() F()u-a.e.} It is easy to seeBochner space () i.e. SF

that this set is closed and it is nonempty if and only if inf
xeF(m) L+. We say

that F X Pf(X) is integrably bounded if it is measurable and F(’)I L+.
Using the set SF, we can define a set valued integral for F(-) as follows:

F(m)dM(m) { f(m)du() f(’) S. This integral is known as Aumann’s integral.

If {A are nonempty subsets of X, we define
nn>l

s lira A {x s X x s lira x x s A,n > I}

and w- n+-lim An {x X x lira Xk, x
k

E Ank, k _> I}.

We say that the A’s converge to A in the Kuratowski-Mosco sense (denoted by
n

A _K A) if and only if w- lira A A s lira A For more details we refer to
n n n

the nice works of Mosco [5], [6] and of Salinetti and Wets [7], [8] and [9].

3. CONVERGENCE RESULTS FOR THE AUMANN INTEGRAL.

In this section our goal is to prove a Fatou’s lemma and a dominated convergence

theorem for the Aumann integral. We start with an interesting observation concerning

the w-lira of a sequence of nonempty sets. Assume that X is a Banach space.

PROPOSITION 3.1. If for all n >I A and A -= G where G
wPk(x)

n n

* * * *then for all x e X lira o
A (X) o (x.__._)
n w-lira A

* * *PROOF. Fix x e X and let x g A s.t. (x ,x -O
A (x). Let {Xk}k> be

n n n

a subsequence of {x s.t. (x ,xk) lira o
A

(x) as k . Since {x ---G,
n n>l n n>l

n
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invoking the Eberlein-Smulian theorem and by passing to a subsequence if necessary, we
w

may assume that x
k

x.

* * *Then xew-lim An => (x ,x) < o (x) => lira o
A (x) < o (x)

w-lira A n w-lira A
n n

Q.E.D.

This leads us to the following interesting theorem that generalizes significantly

an earlier result of Kato [4], who had X to be reflexive with a uniformly convex dual,

< p < and the sequence of vector valued functions was uniformly bounded.

Here (,E,V) is a measure space, X a Banach space and < p < .
w-L

p

THEOREM 3.1. If {f (’) f(’)} () fn(") ___x_+ f(.) and
n n>l

fn() e G()-a.e. where G() e Pwk(X),-a.e.

then f() e cony w-lira {fn()}n>l-a.e.

PROOF. From Mazur’s lemma we know that for all k >

f() e cony f ()v-a.e.
n

n>k
,

Let x e X Then for all k > we have:

, ,
(x f()) < o (x) o (x) sup(x f ())-a.e.

n
cony

n>k fn() n>k fn() n>_k

=> (x ,f()) < lim (x ,f ()) lira o (x) ,-a.e.
n {f ()}

n

Using proposition 3.1 we get that

,
lim o (x) < o (x)

{fn()} w-lim {fn()}n>l
-a.e.

,
=> (x ,f()) < 0 (x)

w-lim {f ()}
n n>l

-a. e.

=> f(m) e cony w-li--- {f ()} -a.e.
n n>l

Q.E.D.

Having this theorem we can have the w-lim version of Fatou’s lemma for the

Aumann integral.

Now (,l,) is a nonatomic, o-finite, complete measure space and X a

separable Banach space.
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THEOREM 3.2. If Fn Pf(X)_ are measurable multlfunctions s.t. for all

n _> I, Fn() =-" G()-a.e. where G Pwkc(X) is integrably bounded and

w-lira F () is measurable
n

then w-li--- f Fn()d() cl f w-li--- F ()dB().

PROOF. Let x E w-li--- f F ()d (m). Then there exist
n

f1 Fnk()d() s.t. xu __w_+ x. From the definition of the Aumann integral, we_
and theknow that there exist fk (") SF s.t. x

k f fk()d()" But SF S
G

n
k

fl n
k

w-compact in (fl) [I0]. So by passing if necessary to a further subse-latter is

w-LIx_+
Hence x f f(m)d(m). Butquence, we may assne that fk(’) f(") E SG.

from theorem 3.1 we know that f() cony w-lira {f ()} l-a.e. -> f() e cony w-lira
n n>

F ()-a.e. > x f conv w-li--- Fn()d(). Since by hypothesis w-li- F ()
n n

is graph measurable and (") is nonatomic, we have that

()d(m) f cony w-li-- F ()d(). Thus finally we have thatcl f w-li--’ F
n n

x cl w-li--- F ()d(), which proves Fatou’s lemma for the weak llndt superior.
n

Q.E.D.

Next we w-Ill prove the s-lim version of Fatou’s lemma. This can be achieved

under less restrictive hypotheses on the sequence {F (")}
n n>l"

Here (,l,) is a complete, u-finite measure space and X a separable Banach

space

THEOREM 3.3. __If Fn 2X\{$} are integrably bounded and {IFn(’)l}n>l is

uniformly integrable

then f s-lira F f(a)d(a) s-lira f Fn(t)d().

PROOF. Let x e f s-lira F f(to)d(a). Then x f( to )dl (to with f(’)

S Now consider the multifunctions L ()
s-lira F n

n

{x : F (m) d (f(()) < llx-f(m)ll + !}. Because the function
F ()
n

(,x) d (x) ts ratheodo, it ts superpostttoually easurable and so
()

m d ((f()) s measurable. en (re,x) d (f(m)) If()I Is a Caratheodory
F () ()
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function and so jointly measurable. So {(,x) e xX d (f()) [Ix-f()[[ < n
I-} e

F ()
n

n
F /t

--n
n

GrF e ExB(X). Apply Aumann’s selection theorem to find f X measurable s.t.
n n

fn() e Ln() for all e . From the definition of s-lira__ Fn() [ll] we know that

F ()
n
f()d() x and x F ()d() => x s-lira F ()d(). Hence Fatou’s

n n . n

lemma follows.

Q.E.D.

REMARK. From Kuratowski [II], we know that an equivalent definition of

s-lim F () is: s-lim F () (x e X lim d (x) O} and that s-lira F (m) is a
n n n+ F (m)

n
n

closed set. Note that (,x) d (x) being Caratheodory it is jointly measurable
F ()
n

and then so is lim d (x). Hence {(,x) xX lira d (x) O} ZxB(X) =>
n+ F (a) rr+a, F

n n
Gr(s-lim F (’)) ZxB(X) => s-lim F () is measurable.

n n
Combining the two Fatou’s lemmata we can have a dominated convergence theorem for

the Aumann integral.

So assume that (,Z,) is nonatomic, complete, o-finite mesure space and X a

separable Banach space.

THEOREM 3.4. If F Pf(X)_ are measurable multifunctlons s.t. F (m)
n n

G()-a.e. with G Pwkc(X) integrably bounded and Fn() _K_M_+ F()-a.e.

then Fn()d() _K-_M__+ cl f F()d().

PROOF. This follows from theorem 3.2 and 3.3 if we recall that F ()
n

F()-a.e. <=> w-lira F () F() s-lim F (m) and F(") is closed valued and
n n

measurable.

Q.E.D.

REMARK. If we assume that F(" is convex valued (which is the case if the F’s

are) then we have that Fn()dv(m) _K-_M__+ F()dv() [I0]. Furthermore in this

case we can relax the nonatomlcity hypothesis on V(’).

We will close this section with a dominated convergence theorem for the Hausdorff

metric h(’,’) on Pf(X).
Let (li,Z,V) be a complete, o-finite measure space and X a separable Banach space.

THEOREM 3.5. If F ii P (X) are measurable multifunctlons, {IFn(’)l}n>ln f
is uniformly integrable and F () __h_+ F() in measure

n
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then cl f Fn()d() h_+ clf F()d. (m).

PROOF. Recal 1 that h(c 1 f Fn(m)d (m), cl f F()d (m)) _< f h(Fn(m) F(m))dB (m).

Also h(F () F())< IF ()1 + IF()I" Then using the extended dominated
n n

theorem [12] we get f h(Fn() F(to))di(a) + 0 => h(cl f F (a,)d(a)convergence

cl f F()d()) + 0 as n ".

Q..E.D.

4. CONVERGENCE RESULTS FOR THE SETS OF INTEGRABLE SELECTORS.

In this section we prove analogous convergence theorems for the sets SF
n

As before we will start with two Fatou’s type theorems. But first we need the

following auxiliary result about the Kuratowski-Mosco convergence of sets.

Here X is any Banach space.
* * ,

PROPOSITION 4.1. l__f for all x e X lim o
A (x) < OA(X
n

then w-lim A c__ cony A.
n

x. So forPROOF. Let x w-lira A Then there exist A s t. x_----+

all x e X (x ,xk) (x ,x) ffi> (x ,x) <_ lim o
A
(x) _< OA(X => x conv A.

n

Q.E.D.

Now we are ready for the first Fatou’s type convergence result. So let (fl,l,)

be a complete, o-finite measure space and X a separable Banach space

THEOREM 4.1. __If Fn fl Pf(X)_ are measurable multifunctlons

s.t. {IFn(’)l}n>l is uniformly integrable and s-lira__ Fn

then S = s-li.__ms-i im F SF
n n

PROOF. Let u(’) e (). Then we have:

d (u) +/-. I-ul inf f lf(to) u(m) Idu) f
fS fe S FS

F
n n n

xF (
n

f d (u())d().
F
n

So using Fatou’s lemma [12] we get that:
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li--- d (u) li---- f d (u())d() < li--- d (u())d().
F () F ()SF n n

n

But from theorem 2.2 (i) of Tsukada [13] we have that for all

lira d (u()) < d (u())
F () s-lira F ()

=> f li--- d (u()) < f d (u(o))di() d (u)
F () s-lira F ()
n n S

s-lira F
n

=> lira d (u) < d (u)

SF Ss-1 im F
n n

Note that s-li____m Fn() s Pfc(X)-a.e. So S s Pfc(LxI) and since u(’) s
s-lira F

L() was arbitrary we can apply theorem 2.2 (li) of Tsukada [13] and conclude that

S

___
s-li___m SF

s-lim F n
n

Q.E.D.

We have the analogous result for w-lira. The assumptions on the spaces (,E,)

and X remain the same.

THEOREM 4.2. __If Fn Pfc(X) are measurable multifunctions s.t. for all

> F (m) c_. G(m)-a.e. where G I Pwkc(X) is integrably bounded and
n

w-lira F () is graph measurable
n

c Sthen w-lim SF
cony -li-- F

n n

If in addition w-lira Fn() s Pfc(X) for all s

c Sthen w-lira S
F w-lim F

PROOF. From the Dinculeanu-Foias theorem [14], we know that (Li)*
Let u(’) s L , Then we have:

X *w

a (u) sup (u(),f())d()
SF

f(’)s S
F

a
n n

sup (u(o) ,x)dl (ul) ; a (u(u) )di (u).
xF (m) f/ F()

n n
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Then using Fatou’s lemma we get that

li-- (u) li--- I (u(m))d(m) < lim (u(m))d(m).
F () F ()SF n n

n

But from proposition 3.1 we know that for all m E

lim (u()) < (u())
F () w-lira F (m)
n n

and since w-lira F (m) is by hypothesis graph measurable we have that:
n

f 0 (u())dv() o (u).
i w-li--- F () S F

n w-lira n

So finally we have that:

lim o (u) < o (u).
SSF w-lim F

n n

Since this is true for every u(-) L ,
conclude that X

w

C conv Sw-lira S
F w-li--- F
n n

from proposition 4.1 we

If in addition w-li-- F (.) is Pf (X)-valued then S
n c

c__ S1of course closed and so w-lim S
F -lim F
n n

w-lira F
n

Q.E.D.

is convex and

Combining theorems 4.1 and 4.2 we can have a dominated convergence theorem for

Our assmptions on (fl,r. ,V) and X remain as before.the sequence {SF n>l"n
THEOREM 4.4. __If Fn l Pfc(X) are measurable multifunctions s.t. for all

n _> Fn(m) _c G(m)v-a.e. where G Pwkc(X) is integrably bounded and Fn(m) __K-M-+

F()v-a. e.

K-Mthen S
F

SF.
n

PROOF. Note that because for all n _> Fn() _c G()-a.e. with G() Pwkc(X)
w-lira F () # -a.e. But w-lira F () F() # -a.e. Also since s-lira F ()

n n n
F()-a.e., we have that F() Pfc(X)-a.e. and / F() is measurable (recall (’)

K-M_+is complete). So using theorems 4.1 and 4.2, it is easy to see that S
F

SF.
n

Q.E.D.

We would like to have such a dominated convergence theorem for the Hausdorff mode

of convergence. In this direction we have the following rusult. The spaces (,E,B)
and X remain as before.
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THEOREM 4.5. If F P (X) are measurable multifunctions s.t.
n fc

{IF (.)I} is uniformly integrable and F ()__h_, F() in measure
n nl n

h
then F I Pfc(X) is integrably bounded and SF F

n
PROOF. First note that since (Pfc(X), h) is a complete, metric space, we have

that F() Pfc(X)-a’e" By modifying F(’) on a -null set we can have

F() Pfc(X) for all and since (’) is complete, the modified multi-

function is still going to be measurable. Also from the properties of the Hausdorff

metric we have that llFn()l-IF()II <_. h(Fn() F())-a.e. => lFn()l IF() in

measure and since by hypothesis {IFn )l}n>l is uniformly integrable, we deduce that

IF(’)1 L+ i.e. F(’) is integrably bounde as claimed by the theorem.

Next note that {S
F

S }n>I are convex, closed and bounded subsets of (a).

So recalling that L , and using Hormander’s formula we have that
X

SlF) sup i

f (o (u()) ff (u()))dl()sup

lul I<i F
n
() F()

f sup._ I0 (x)- O (x){d()
n

h(F (), F())d().
n

Since by hypothesis {IFn(")l}n>l is uniformly integrable and Fn() __h_ F()

(), F())du() 0 --> h(SF S 0.in measure then f h(F
n

Q.E.D.

We will conclude our work with an important observation about the Kuratowski-Mosco

convergence of closed, convex sets. It is a very useful necessary condition for K- M

convergence of such sets.

Assume that X is a reflexive Banach space.

THEOREM 4.6. If {A C P (X) sup [An[ <" and A _K-M_+ A
n n>l fc n

n>l

then A and for all x X o
A
(x) OA(X ).

n

PROOF. Let M suplAnl and let BM(0) be the M-ball centered at the origin.
n>

tThen BM(0) is weakly--compac and by the Eberlein-Smullan theorem sequentially

w-compact. Let x A n > I. Then {x c Bin(0 and so we can find a
n n n n>l

subsequence
w ,

Xk---+ x. Then x w-lira A A => A #. Next fix x X and let
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*
Xn e An s.t. (x ,Xn A (x). By passing to an appropriate subsequence {Xk}k>

* * w *we can assume that (x xk) lim o
A

(x) and Xk--- x A. Then (x x) < OA(X =>

lira o
A

(x) _< OA(X ). On the other hand from Mosco [6] we know that
n K-Mo

A
(’) OA(’) i.e. epi o

A epi OA(’) and this implies that
n , , n

lim o
A (x) _> OA(X [6] and [7]. So finally we have that o

A
(") o

A
(’).

n n

Q.E.D.

REMARK. The converse of the above result is not true. Namely polntwlse con-

vergence of the support functions does not imply the Kurtowski-Mosco convergence of the

corresponding closed, convex sets. Here is a counter example. Let {x C X
n n>l--

and assume that x x but it does not converge strongly. So {x do not con-
n , n , ,

verge to {x} in the K M sense. On the other hand for every x E X (x x, , , n
o (x)+ (x x) O (x). So in corollary 2E of [I0], it mmst be added that X is

n
finite dimensional or otherwise the result is not true as the previous counterexample

ilustrated.
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