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I. TYPICALLY REAL FUNCTIONS WITH A TYPICALLY REAL FIRST DERIVATIVE.

Let D {z: [z[ < I}. Rgoslnsk [I] defined the class, T, of typically real

z+a2z2+functions as follows: If fT, then f is regular on D, f(z) and Im{z}

0 if and only if Im{f(z)} O. (See Goodman [2], p. 184.) The last part of this

definition is equivalent to the statement that Im{z} 0 if and only if

Im{z}Im{f(z)} > 0. If leT, then f must be one-to-one on the real interval, (-I,1).

So, if leT, if z,z’eD with z - z’, and if f(z) f(z’), then Im{z}Im{z’} > O. These

establish the following:

LEMMA I. Let fT. Let D
+

DO {z: Im{z} > O} and let D- DO {z: Im{z} < 0}.

Then f is univalent on D if and only if f is univalent on each of D
+

and D-
separately.

The notion of a function which is typically real on D has nothing to do with

its normalization. In what follows, it is convenient to say that a function, g,

regular on D, is typically real on D if the following holds: Im{z} 0 if and only

if Im{g(z)} O. This is equivalent to saying that g is typically Peal on D

provided that, for x(-I,1) and for zcD, then Im{z} , 0 if and only if

g’(x)Im{z}Im{g(z)} > O.
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As is known, it is not necessarily the case that a function in T is univalent

on D, e.g., f(z) z+z3. The following will show, however, that a simple additional

requirement on functions in T will insure such unlvalence.

DEFINITION I. Let T’ {leT: f’ is also typically real on D}.

Barnard and Suffridge [3] have shown that if f(z) z+a2z2+-., e T’, then la21
< (3+2)/2 1.8183-.. and that the result is sharp. We show the following:

THEOREM I. If leT’, then f is univalent in D.

PROOF. It is enough to show that f is univalent in each of D and D as

defined in Lemma I. Since f’ is typically real in D it follows that f"(0)Im{f’(z)}

> 0 for zeD Hence, f’ maps the convex set, D into a half-plane whose boundary

passes through the origin. By a result of Noshlro [4] and of Warschawski [5], f is
+

univalent on D (See Goodman [2], p. 88.) Similarly, f is also univalent on D

2. TYPICALLY REAL FUNCTIONS, ALL OF WHOSE DERIVATIVES ARE UNIVALENT.

In [63, Shah and Trimble introduced the class, E, of functions, normalized in

D, such that fEE if and only if f(n) is univalent in D for n 0,1,2,.... ([73

provides a survey of results about E.) Among other things, they showed that if fEE,

then f is entire. Here, we wish to study results about functions in E which are

typically real.

DEFINITION 2. Let ER be those functions in E such that if f(z) z+a2z2+--.,
then an is real for n 2,3,’’’. Let ER be those functions which are uniform limits

on compact subsets of D of sequences in ER. Let ERP be those functions in ER such

that a > 0 for n 2,3,....n

THEOREM 2. leER if and only if f(n) is typically real on D for n 0,1,2,....

PROOF. If every f(n) is typically real on D, then Theorem implies that each

f(n) is univalent on D. Hence, leER.

On the other hand, if a function, univalent on D, has real Maclaurin

coefficients, it is well-known that the function is typically real on D. Hence, if
(n)

leER, then f is typically real on D for n 0,1,2,....

LEMMA 2. ER ER is the set of polynomials with real Maclaurin coefficients

such that each derivative of each polynomial including the polynomial itself, is

either constant or univalent on D.

PROOF. Let f e (ER ER). Then there is a sequence, {fk}k.1 in ER which

converges to f uniformly on compact subsets of D. Since the Maclaurin coefficients

of each fk are real, the Maclaurin coefficients of f must also be real. If

ne{0,1,2,--.}, then {f n)Ik. converges to uniformly on compactf(n) subsets of D.

By Hurwitz’s Theorem, f(n) is either univalent or constant on D. If f(n) is

univalent on D for all n, then fEE, which is impossible. Hence, there is some N

such that f(N) is constant on D. So, if n > N, f(n)(z)" 0 on D. It follows that f

is a polynomial of degree at most N.
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Now let P be a polynomial with real Maclaurin coefficients such that each

derivative of P, including P itself, is either constant or univalent on D. For

kE{1,2,...}, let r
k

I-I/(k+I). Let g(z) (eZ-1)/. (Note that gERP.) Let N

be the degree of F. Let {6k}k= be a sequence of positive numbers tending

monotonically to 0. Define

P(rkz)+6kg(z)
rk+6 k

Then {Fk}k= converges to F uniformly on compact subsets of D. We now show that

FkCER for all k.

The Maclaurin coefficients of each F
k

are all real, so it is sufficient to show

that, if k{I,2,...} and if n{0,I,2,...}, then Fn)
is univalent on D. If n > N,

then Fn)(z) 6kg(n)(z)/(rk+6k) which is univalent on D. Since rkNp(N)(z)/(rk+6k)
is constant, FN)

is also univalent on D. Suppose n < N. To show that Fn)
is

univalent on D, it is enough to show that, if 0 < p < I, then Fn)
is one-to-one on

{z: Izl p}. Let 0 < p < and let Izl II p, z m. Recall that, if h is

nivalent on D, then

h(z)-h(u) > 1-02 l(h(z)-h(O))(h()-h(O))
z-m 2 lh’ (0)I

(See Duren [8], p. 127.) So,

(n) (z)_Fn) () r n (n) (rkZ)_p(n) (rkm)

rk+6k z-m

> (1/2)N ’lp(n*l}(o)l(1-)- 61 max Jg
1*61 (1.p)

, (1/2) Il-,
(n+1)(;)

> IP(n*l)(O)!(1-o) 26 e
I+61 (i+p)3

Choose 61 so that this last expression is positive for 0 n < N. Then Fn)

one-to-one on {z: zJ p}. The proof of the lemma is done.

will be
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k

In what follows, it is convenient to wrlte functions in ER as z + lk.pbkZ
even though some of them may be polynomials.

THEOREM 3. Let leER and geE’-{. Let e(0,1 ). Suppose f(z) Z+lk.pakzk and

g(z) Z+Ek.2bkzk. Assume akbk >_ 0 for all k. If h(z) Af(z) (1-)g(z), then

hER. Hence, ERP is a convex set.

(n+1)(O), f(n+)(O), and g(n+1)(O) arePROOF. Since akbk > O, the signs of h

all the same. So, if zcD, h(n+l)(o)Im[z}Im{h(n)(z)} Ah(n+1)(O)Im{z}Im{f(n)(z)}
(1-)h(n+1)(O)Im{z}Im{g(n)(z)} > 0 if and only if Im{z} O. Hence, h

(n)
is

typically real on D. By Theorem 2, bEER. If f,gEERP, then akbk > 0 and so [Af +

(1-)g] ERP, i.e., ERP is convex.

REMARK. Suffrldge [9] has shown that, if feERP and if f(z) z+a2z +..., then

a2k+1 <_ 2k/(Pk+1)! for k 1,2,... and a2k < 2a22(k-1)/(2k)!. The inequalities

are sharp. It is interesting that a
2

is necessarily involved in the bounds for the

even coefficients but not for the odd.
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