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ABSTRACT. In this paper, a theorem on common fixed points for a family of mappings

defined on convex metric spaces is presented. This theorem is a generalization of

the well known fixed point theorem proved by Assad and Kirk. As an application a

common fixed point theorem in metric spaces with a convex structure is obtained.
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I. INTRODUCTION.

Some fixed point theorems and theorems on coincidence points in convex metric

spaces or spaces with a convex structure in the sense of Takahashi [I] are obtained

by many authors [I-8 ].

In this paper we shall give a generalization of Theorem from [9] in the case

of a convex metric space and as an application we shall obtain a theorem on

coincidence points in metric spaces with a convex structure.

First, we shall give two definitions and a proposition which we shall use in the

sequel [2].

DEFINITION I. A metric space (M,d) S convex i for each x,y M with
x y there ex2sts z M, x # z # y, such th

d(x,z) + d(z,y) d(x,y).

DEFINITION 2. Let (M,d) be a metric space. The mapping w which maps
M M [0,i] into M iS called a convex structure if for all x,y,u M and
t /0,i]:

d(u,W(x,y,t)) td(u,x) + (I t)d(u,y)

This definition is similar to the definition of metric spaces of hyperbolic

type. The class of metric spaces of hyperbolic type includes all normed linear

spaces, as well as all spaces with hyperbolic metric. Some further results on the

fixed point theory in such spaces are obtained by W.A. Kirk [5] and K. Goebel and

W.A. Kirk [14. It is known that every metric space with a convex structure belongs
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to the class of convex metric spaces. The following result is well known [2].

PROPOSITION. L@A K be a closed subset of a complete and convex metric space
M. If x K and y K, then there exists a point z f_ K such that:

d(x,z) + d(z,y) d(x,y).

Let us recall that a pair of mappings (A,S) is weakty commuve, where (M,d)

is a metric space, K_C M and A,S K-M, if:

Ax,Sx K => d(ASx,SAx) =< d(Sx,Ax) [11].

2. TWO COINCIDENCE THEOREMS.

First, we shall prove a generalization of Theorem from [9 in the case of

convex metric spaces. This theorem is also a generalization of a fixed point theorem

proved by Assad and Kirk in [2], if the mapping is single valued.

THEOREM I. Let (M,d) be a complete, convex metric space, K a nonptg closed

subset of M, S and T conuouS mappings from M into M So tha K C SK N TK,

for every i I At K M conuou mapping such that AIK O K

_
SK C TK, (Af, S)

and (At,T) wy COve and thee e q [0,I) so t for ev
x,y K and evy i,j (i j):

d(Aix,Ajy) < q d(Sx,Ty)

If for every i lq and x K:

Tx K => Alx K and Sx - K => Aix K

then there exists z K SO that:

z Tz Sz AlZ, for every

and if Tv Sv Aiv, for every i e then Tz Tv.

PROOF. Let p K and Po K so that p TPo. Such Po exists since

a K and so we haveKC TK. Further, TPo K implies that for every i , AlP
K andc AIK N K C_SK. Let Pl K be such that SPl AlPthat AlP

A2K KC TK it follows thatIf K then from A2PPl AlPo’ P2 A2PI" P2
there exists P2 e K so that TP2 A2P I. Suppose now that P2 K. Then from the

Proposition it follows that there exists q K so that:

d(SPl,TP) + d(TP2,A2P I) d(SPl,A2P I) where q TP2.
Such element P2 K exists since K

_
TK. In this way we obtain two sequences

{Pi}i ’} so that for every n pn K, Pn+lq and {Pi i e An+IPn and the

following implications hold:

K =>(i) P2n P2n TP2n.
P’ K > Tp K and
2n 2n

d(SP2n_I,Tp2n) + d(TP2n,A2nP2n_I) d(SP2n_l,A2nP2n_l).



COINCIDENCE THEOREMS IN CONVEX METRIC SPACES

Sp(ii) P2n+l K p’
2n+l 2n+l

K => Sp K andP2n+l 2n+l

d(TP2n,SP2n+l) + d ip d(SP2n+I ’A2n+ 2n (TP2n’A2n+IP2n)

Let:

Po {-pzn {Pn In q}’ P2n TP2n’ n ( }

P {P2n # n}{Pnln I}, P2n TP2n
Sp n e}Qo {P2n+l {Pn In e I), P2n+l 2n+l’

# Sp n eIq}{Pn In } P2n+lQ p
2n+ 2n+

Let us prove that there exists z K such that:

z lim TP2n llm SP2n+n+ n/

Suppose that P2n PI" Then TP2n K and so A2n+iP2n Pn+l K which implies

that P2n+l SP2n+I and so P2n+l Qo" So we have the following possibilities:

(P2n,P2n+l) e PoXQo (P2n,P2n+l) PoXQl (P2n,P2n+l) PlXQo

a) (P2n,P2n+l) PoXQo
Then

d(TP2n,SP2n+l) d(A2nP2n_l,A2n+iP2n) q d(SP2n_I,Tp2n).

b) (P2n,P2n+l) PoXQl

Then:

d(TP2n,SP2n+l) d(TP2n,A2n+iP2n) d(SP2n+l,A2n+iP2n) -< d(TP2n,A2n+iP2n)

d(A2nP2n_l,A2n+IP2n) q d(SP2n_I,Tp2n)

c) (P2n,P2n+l) e PlXQo => d(TP2n,SP2n+I) < q d(TP2n_2,Sp2n_ I).
In this case we have:

d(TP2n,SP2n+I) S d(TP2n,A2nP2n_l) + d(A2nP2n_l,SP2n+l)

< d(TP2n,A2nP2n_ I) + d (A2nP2n_l ’A2n+IP2n) <

--< d(TP2n,A2nP2n_l) + q d(SP2n_I,TP2n) <

< d(SP2n_l,TP2n) + d(TP2n,A2nP2n_I) d (SP2n_l,A2nP2n_I)
e Qo and so SP2n_Since P2n e P1 we have that P2n-I A2n_iP2n_2 Further

(P2n-l’P2n) QoxP => d( ,Tp <
o SP2n-I 2n q d(TP2n-2’SP2n-I)’

(P2n-l’P2n) e QIxPo => d(SP2n_l,Tp2n) .< q d(TP2n_2,sp2n_3),
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(P2n_l,P2n) QoXP1 => d(SP2n_1,TP2n)_< q d(TP2n_2,SP2n_ I)

If r max{d(TP2,SP3),d(TP2SPl)} then we can easily prove that:

n-I n
d(TP2n,SP2n+I) =< q "r and d(SP2n+l,TP2n+2) q "r

for every n

This implies that for every n f. l:

d(TP2n,TP2n+2) _< r(qn-I + qn)

Hence, the sequence {TP2n}n is a Cauchy sequence and since M is complete and

K is closed it follows that there exists z e K so that z lim TP2n lim SP2n+I.
We shall prove that Tz Sz A z, for every m . It is obvious that there

m
exists a sequence {nk}ke in such that TP2nk A2n 2nk_ I, for every k

A2nk_lP A2nkP2nkor SP2nk_l 2nk_2,
for every k e . Suppose that TP2nk I’ for

every k . Then for every k we have:

d(STp2nk,AmZ) d(SA2nkP2nk_lmZ) for every m lq. Hence:

d ,AmZ) < d(SA. p(STP2nk zn
k 2nk-1’A2nkSP2nk-l) + d(A2nkSP2nk_1,AmZ) <

<- d(A_2nkp2nk_l,sp2nk_l) + q d(TSP2nk-l’sz) (m $ 2nk)

and when k we obtain that:

d(SZ,AmZ) < q d(Tz,Sz), for every m e lq.

If T S the proof of the relation Sz Tz A z is complete.m
Let us remark that (2.1) holds also in the case when S,T K M. Further, we have:

d(AmP2nk,TP2nk) d(AmP2nk,A2nkP2nk_l) -< q d(TP2nk,SP2nk_l)
(m # 2nk) and if k we obtain that k+lim mA-P2nk z. Further, Sz z since

d(AmP2nk,A2nkSP2nk_1) --< q d(TP2nk,SSP2nk_l) (m 2nk) implies that d(z,Sz)<q d(z,Sz)

where we use that (A2nk,S) is weakly commutative.

Thus we obtain:

Tz T(limk --AP2nk) klim T(A_P2nk) (2.2)

Since (Am, T is a weakly commutative pair of mappings we have that d(T(AmP2nk),
Am(TP2nk)) -< d(AmP2nk,rp2nk) which implies that

k+lim --A(TP2nk klim T(A_p__2nk) and

so from (2.2) we obtain that:

Tz klim Am(TP2nk) A_(limm
k+ TP2nk) AmZ
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Using (2.1) we conclude that:

d(SZ,AmZ d(Sz,Tz) ffi< q d(Tz,Sz)

and so Sz A z Tz, for every m .
m

Let u K be such that Tu Su A u, for every m . Then
m

d(Tu,Tz) d(AmU,Am+l z) q d(Tu,Tz) which implies that Tu Tz.

REMARK I. If z is an interior point in K it is enough to suppose that

S,T K M since from lim AmP z it follows that there exists k such
k 2n

k
o

that for all k ko, AmP2n
k

K. In this case T(AmP2nk) is defined for every

k Z k
o
We shall give some conditions when we can also suppose that S and T are

defined only on K.

[0 I) and u belongs toa) d(Tu,Su) t d(SU,AmU), for some m , where qt
mm

the boundary of K. Then d(SZ,AmZ) q d(Tz,Sz) < qtm d(SZ,AmZ) and so

Sz A z Tz.
m

b) d(TU,AmU) r
m

d(Tu,Su), for some m , where (r
m
+ q) < and u belongs to

the boundary of K. Then d(rz,Sz) d(TZ,AmZ) + d(AmZ,A 2nP2nk_I) +

+ d(A2nkSP2nk_l,SZ d(TZ,AmZ + q d(Sz,TSP2nk_l + d(A2nkSP2nk_l,SZ) (m # 2nk)
and if k we obtain that d(Tz,Sz) d(TZ,AmZ) + q d(Sz,Tz)

(r + q)d(Sz,Tz) which implies that Tz Sz A z, for every m .
m m

c) d(Tu,Su) Sm d(TU,AmU), for some m , where Sm(l+q) < and u belongs to

the boundary of K. We have that d(TZ,AmZ) d(Tz,Sz) + d(Sz,A2nkSP2nk_l) +

+ d(A2nkSP2nk_l,AmZ) (m # 2nk) and if k we obtain that:

d(TZ,AmZ) ffi< (l/q)d(Tz,Sz) ffi< Sm(l+q)d(TZ,AmZ)

From this we conclude that Tz A z Sz, for every m .
m

REMARK 2. Suppose that z E K is such that Tz Sz A z, for every m
m

and that Tz K. In this case, we can prove that Tz is a common fixed point for

S, T and Am (m). Let m n. Then d(AmAmZ,AnZ) q d(TAmZ,Sz)
q[d(TAmZ,AmTZ) + d(AmTZ,AnZ)] q d(AmZ,Tz) + q d(AmTZ,Anz) q d(AmTZ,AnZ)
q d(AmAmZ,AnZ) and so A Tz Tz, for every m . From TA z A Tz and

m m m
SA z A Sz (m ) it follows that Tz is a fixed point for T, S and A (m ).
m m m

It is easy to prove the uniqueness of Tz as a coincidence point.

The next Theorem is an existence theorem for a coincidence point in metric

spaces with a convex structure.

Let (M,d) be a metric space with convex structure W. If for all

(x,y,z,t) M M M [0,I):

d(W(x,z,t),W(y,z,t)) < t d(x,y)

then W satlsifes e0nd0n II [7]. Let x M and S M M. The mapping S
o

is said to be (W,x)-convex if for every z x and every t (0,I) W(Sz,x ,t)
o o

S(W(z,x ,t)). If M is a normed space and W(x,y,t) tx + (l-t)y(x,yM, t [0,I])
o

then every homogeneous mapping S M M is (W,O)-convex.
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Let be the Kuratowskl measure of noncompactness on M and K a nonempty

subset of M. If A,S K M we say that A is (=,s)-des%ying if for every

BC K such that S(B) and A(B) are bounded the implication:

a(S(B)) a(A(B)) => B is compact

holds. In the next theorem we suppose that W satisfies condition II.

THEOREM 2. Let (M,d) be a complete m6tc space with a convex smAe w, K

a nonempty, osed subset of M,x K and for ev x K ad ev t (0,I),
0

W(x,x t) K. L, fh, S aRd T be conao (W,Xo)-Convex pping from
0

M io M uch t K SK TK or v i N, AI K M conuo
Ai(K) a bouRded asd th foog pc0 hold for vy i :

Sx K => SAix AiSx; Sx 8K => Aix K;

Tx K => TAix AiTx, Tx 8K => Aix K.

If there exists io N such th A
i

/S (a,lM) or (a,S) or (a,T) densiying

and: o

d(Aix,Ajy) < d(Sx,Ty), for every x,y e K and i,j

then there ei z K such thst z Tz Sz =Aiz, for every i ].

PROOF: Let, for every n e lq, r (0,I) and lim r I.
n n+ n

For every (i,n) l lq and every x - K let:

A
i W(Aix ,rn),n

x X
O

Then for every n 6 IN, the family {Ai,n i} I’ S and T satisfy all the conditions

of Theorem I, which will be proved.

First, we have that for every i,j lq (i # J) and every n lq:

d(A
i,nx,Aj,ny) d(W(Aix,xo,rn),W(Ajy,xo,rn)) =<

-<- rnd(Aix,Ajy) "< rnd(Sx’Ty)’ for every x,y c K.

Further, if Sx K we have that:

SAi, x SW(Aix W(SAix W(AiSx,x Sx
n ’Xo’rn) ’Xo rn) ’rn) Ai,n

Tx. Let Sx K. Then Aix K and thisand similarly Tx K => TAi,nx Ai,n
implies that for every n :

W(AiX’Xo’rn) Ai,nX ( K, for every i c

Similarly Tx K => A
i

x K, for every (i,n) .
,n

Thus, for every n there exists x K so that:
n

Xn SXn TXn Ai,nxn, for every (2.3)

From (2.3) we obtain that:



COINCIDENCE THEOREMS IN CONVEX METRIC SPACES 459

d(Xn,Aixn) d(SXn,Aixn) d(TXn,AiXn) d(Ai,nXn,Aixn)
d(W(Aixn,Xo,rn),AiXn) <- rnd(AiXn,Aixn) + (1-rn)d(AiXn,Xo)

for every (i,n) e I, Since AiK is bounded for every i - lq it follows that:

llm d lim d(Sxn, lim d(TXn,Aixn) 0.
n+o (Xn AiXn) n AiXn) n

Suppose that there exists i such that is (a,S)-denslfylng. The proof iso Aio
similar if Aio is (a,lM) or (a,T)-denslfylng.

Since
n+llm d(SXn,AioXn 0 it follows that for every e > 0 there exists

n (e) ] so that:
o

{Sx In no(E) L(y,e) B {Xnln e ]q (2 4)n vA
i

B
o

Relation (2.4) implies that:

a({SXn In "> no(e)}) >= a(Ai B) + 2e.
o

Since (SB) ({Sxnln _>- no(e)} we obtain that:

(SB) (A
i

B) + 2e.
o

Because e > 0 is an arbitrary positive number we obtain that a(SB) _< (A
i

B) and
o

since A
i

is (,S)-denstfytng we obtain that B is relatively compact. Suppose

that lim x z.
k+ n

k

Then we obtain that:

d(Z,AlZ) lim d ,AI d(AlZ Sz) lim d(SXnkk+ (Xn
k

Xn
k k+ AlXnk

d(Aiz,Tz) k+lim d(TXnk,AiXnk) 0

and so z Sz Tz Aiz,.for every i .
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