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ABSTRACT. The refraction coefficient in Helmholtz’s equation is found from the

knowledge of a family of the solutions to this equation on two lines.
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I. INTRODUCTION.

Let

[V2+k2+k2v(x)]u =-6(x-y) k > 0 (1,1)

where x (x l,x3), y (YI’Y3)’ v v(xl,x3), u u(x l,x3,y l,y3,k).
Assume that

<_- -a or x
3

0 or x3< -R, veL
2v(x) 0 for x >= a or x (1.2)

Here R > 0 is an arbitrary large fixed number. Write (I.i) as

u g + k
2 I gvudz, g := (il4)Hl)(klx-y I) (1.3)

where the integral is taken over the support of v and H I)
is the Hankel function.

The problem 2: find v(k) from the knowledge of u(-a,x3,a,YB,k) for all
< x3,Y3 < and 0 < k < k0, where k

0
> 0 / an Aby sm numbea.

2. SOLUTION.

Let L {x: x a x eRl}, R )
a. 3

(-, We use the method given in [i]

[2]. It follows from (1.3) that

-2
f(x3,Y3,k) := k (u-g) I gvgdz + o(k) as k+0, xeL_a, YeLa. (2.1)

Let us take the Fourier t=ansform of (2.1) in x
3
and Y3’ define

(,) := (2) -2 II exp(-ix3-iY3)f(x3,Y3)dx3dY3, and use the formula

(2) -I
lexp(-iXx3)g(x,z)dx3 i(4)-lexp{-iXz3+i(a+zl)(k2-X2) /(k2-2) (2.2)
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where x (-a,x3), the radical (k2+io-%2) > 0 for %2 < k
2
and is defined by analytic

continuation for all complex on the complex %-plane with the cut (-k,k), k > 0, so

that

(k2-%2) i (%2-k2) if k
2 < %2 (2.3)

The result is

(%,) f dzv(z)h(%,,z,k) + o(k) (2.4)

k
2 %2 k2 2

where for > > and r() := (k2-2) one has

h := -(162)-lexp{-i(%+)z3 + i(a+zl)r(%) + i(a-zl)r()}r l(%)r- () (2.5)

and for k
2 < 2 and k

2 < %2 one uses (2.3).

In the Born approximation one drops the term o(k) in (2.4) and solves the

resulting linear integral equation for v(z) [2].

In the exact theory one passed to the limit k 0 in (2.4), obtains a linear

integral equation for v and solves this equation analytically [2]. It is not possible

to pass to the limit k 0 in (2.1) because g(kr) (k) + go + 0[(kr)2n(k/2)] as

k O, where go := (2)-ln(r-)’ (k) := -(2)-ln(k/2)+i/4-y/(2), and

y 0.5572 is Euler’s constant. Thus g(kr) does not have a finite limit as

k 0. Nevertheless one can pass to the limit k 0 in (2.4) if y # 0 or # 0. The

reason is that the term (k) in (2.1) after the Fourier transform becomes

(k)6(%)6(), and this term, which contains the factor (k) as k 0, is zero for

% # 0 or # O. Another way to study the limit behavior of the solution to (2.1) is

given in [2]. To give the exact theory, pass to the limit k 0 in (2.4) to get

v(z) exp(-ipz 3 + qZl)dZldZ 3
(p,q) (2.6)

where we used (2.5) and set

p := +, q [[ [] (2.7)

*(P,q) := 162(,)II II {expa(l%l + II)} (2.8)

and the right side of (2.8) should be expressed as a function of (p,q) by formulas

(2.7).

If > 0 and > 0 then the point (p,q) defined by (2.7) runs through

Q+ {P,q: lql < P P > 0}.

If % < 0 and V < 0 then (p,q) runs through Q_ {p,q: lql < -P P < 0}. If

O(p,q) is known in Q+ Gr Q_ then v(z) can be uniquely recovered from (2.6) by the

analytical methods given in [2] p. 270-274, where inversion of the Fourier and

Laplace transforms of compactly supported functions from a compact set is given.

This inversion problem is ill-posed and its numerical implementation is not a simple

matter.

One can use the same ideas to solve equation (2.4) at a fixed k > 0 in the Born

approximation. The basic equation analogous to (2.4) for the case when -k < ,
< k, is:
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I v(z) exp{-i(Pz3+qlZl)}dz f(p,ql for-k < , < k

where p +, ql := r()-r(l),

F(p,ql) :=-16
2 (%,)r(%)r() exp{-ia[r()+r()]}

(2.9)

(2.10)
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and the right side of (2.10) should be expressed as a function of P’ql"
If (,) {,: Ill > k and II > k,l, are real} then the basic equation in

the Born approximation is equation (2.6) in which the right side is now given by the

formula F, where F is defined by (2.10) and in (2.10) the radicals r(l) and r()

are computed by formula (2.3) for 2 > k
2

and 2 > k2.
Equation (2.9) can also be solved analytically with the prescribed accuracy by

the methods given in [2].

The problem considered is of interest in application.


