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ABSTRACT. Let A where p is a positive integer, denote the class of functions
P

nf(z) z
p + Z a z which are analytic in U {z: Izl I}.

n=p+l n

For 0 < I ! I, lal < , 0 ! B <p, let FI(a,B,p) denote the class of func-

tions f(z) A which satisfy the condition
P

IH(f(z))-I < I for zeUH(f(z))+l

izf’ (z)
f(z)

H(f(z)) e cos -ip sin
(p-B) cos

Also let Cl(b,p), where p is a positive integer, 0 < < I, and b # 0 is

any complex number, denote the class of functions g(z) A which satisfy the condi-
P

tion

J’IH($(z))-II < I for zeU whereH(g(z))+l

1 zg"(z)H(g(z)) + (I + g’(z) p)"

In this paper we obtain sharp coefficient estimates for the above mentioned

classes.
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I. INTRODUCTION.

Let A where p is a positive integer, denote the class of functions
P

nf(z) z
p + E a z which are analytic in U {z: Izl< i}. We use I 0 < % < i,

n=p+l n

to denote the class of analytic functions w(z) in U satisfying the conditions

w(0) 0 and lw(z) < %, 0 < % !
Padmanabhan introduced the class of starlike functions of bounded order %,

0 < I < 1, defined as follows [II]:
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DEFINITION I. A function feA and satisfying

f(z)__
z)f(z) +

for a given I, 0 I ! i, Izl < is said to be starlike of bounded order 1 in

Izl < and this class is denoted S(1), the class of all such functions for a given

Let F(s,8,p) (Isl < , 0 < 8 < p) denote the class of functions f(z) g A and
p

for which there exists a 0 0(f) such that

is zf’(z)
Re {e f 8 coss (1.2)

and

12 Re {zf’(z) i8

0 f(Z)’ d@ 2p for z re 0 < r < (1.3)

Functions in F(s,8,p) are called p-valent s-spirallike functions of order 8. The

class F(e,8,p) was introduced by Patil and Thakare [12].

In this paper we use a method of Clunie [3] to obtain sharp bounds for the coef-

ficients of functions F
1 (s,8,p) and CA (b,p) where p is a positive integer,

0 < I ! I, lal < 3 0<_ 8 < p, and b is any complex number, where FI (s,B,p) and

CI (b,p) are defined as follows:

DEFINITION 2. For 0 < I ! I, II < and 0 ! 8 p, let F1 (s,8,p) denote

the class of functions f(z) e A which satisfy the condition
P

H(f(z))-IIH(f(z 11+II < I (1.4)

for z e U, where

is zf’(z)
e 8 coss- ip sins

H(f (z)) f(z) (1.5)
(p-8)coss

DEFINITION 3. For p is a positive integer, 0 ! I, and b # 0 is any com-

plex number, let Cl(p,b) denote the class of functions g(z) A which satisfy the
P

condition

for z U,

H(g(z))-IIH(g(z))+ll < I (l.b)

zg"(z)where H(g(z)) + (I + g’(z) p.) (1.7)

We note that by giving specific values to , s, 8, p and b, we obtain the

following important subclasses studied by various authors in earlier papers:

(I) FI(O,O,I) S* and CI(I,I) C are respectively the well-known classes

of starlike functions and convex functions, FI(O,8,1) S
8

and CI(I-8,I) C
8

0 ! 8 < i, are respectively the classes of starlike functions of order 8 and con-

vex functions of order 8 introduced by Robertson [14], FI(0,O,I) S(I) and

C(1,1) C(I), is the class of functions g for which zg’(z) e S(1).
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-ie
C(2) Fl(S,0,1 S and Cl(COS s e ,I) Isl < 5’ are respectively the

V
class of s-spirallike functions introduced by Spacek [18] and the class of functions

g for which zg’(z) is s-spirallike introduced by Robertson [15], FI(a,B,1 S B

and Cl[(I-t3) cos a e-is,I] Cg, lal < 5’ 0 < g _< l, are respectively the class of

a-sp+/-rallike functions of order g introduced by Libera [8] and the class of func-

tions g for which zg’(z) is a-spirallike of order g by Chichra [2] and Sizuk

[17].
(3) Cl(b,1) C(b) is the class of functions g e A satisfying

zg"(z)} > 0Re{l + g’(z)

introduced by Wiatrowski [19] and studied by [9] and [i0].

(4) FI(0,0, p) S(p), CI(I, p) C(p), Fl(0,8,p) S 8(p) and Cl[(l-_8),p p]

C8(p), 0 < B < p, are respectively the classes of p-valent starlike functions

p-valent convex functions p-valent starlike functions of. order 8 and p-valent con-

vex functions of order B considered by Goodman [6] and the class S8(p) investi-

gated by Goluzina [5].

-ie(5) Fl(S,0,p) SS(p) and Cl(COS se ,p), II < , are respectively the

class of p-valent e-spirallike functions and the class of p-valent functions g e A
P

satisfying

is zg" (Z)Re e (I + g,(z)) > 0, z e U

i.e., the class of p-valent functions g for which
zg’(z)

is p-valent e-spirallike.
P

(6) FI( 8 p) F(,,p) and Cl[(l -) cose e
-is

P], I=I <, 0_< s < p,

the class of p-valent functions g for which
zg’(z)

is p-valent e-spirallike of
P

order 8.

(7) Cl(b,p), is the class of functions g e A satisfying
P

zg"(z)Re {p + (I + g’(z) p) > 0, z e U,

the class C(b,p) was introduced by the author [I].

(8) FI(,8,1) FI(e,8), is the class of functions investigated by Gopalakrishna

and Umarani [7].

(9) CI[(I -)cos e P]’ II < 5’ 0 < 8 < p, is the class of p-valent func-

tions g(z) for which
zg’(z)

P
e Fl(a,B,p).

We state the following lemma that is needed in our investigation.

LEMMA I[ii]. Let f(z) be analytic for Izl < and let f(O) O. Then

f(z) S() if and only if

f(z) z exp [-2 /0
z (t) dt]+ t(t)

where (z) is analytic and satisfies l#(z)l < , 0 < < I, for Izl < I.
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In the rest of the paper we always assume that p is a positive integer,

0 < I < I, sl < , 0 _< 8 < p, and b#O is any complex number.

2. REPRESENTATION FORMULAS FOR THE CLASS Fl(s,8,p).
LEMMA 2. f(z) e F%(s,,p) if and only if for z e U

is zf’ (z) p-(p-2).w.(z)e
f(z)

coss{
+ w(z) + ip sins,

w.
PROOF. If f(z) is given by (2. i), then

is zf’ (z)
e

f(z) 8 cos s- ip sin s
H(f(z))= (p-B) cosa

1-w(z)
l+(z)

so that H(f(z)) -1 -w(z)
H(f (z)) +I

and so (1.4) holds. Thus f(z) e Fl(s,,p).

Conversely, if f(z) e Fl(s,8,p), then (1.4) holds.

l-H(f(z))
we obtain (2.1) and the proof is completeDefining w(z) l+H(f (z))

LEMMA 3. f(z) e Fl(s.8,p) if and only if

f(z) zP [fl(z)]pz

for some fl e Fl(s -8’I)"’p

fl (z) P
PROOF. Let f(z) z

p [..L
z

By direct computation, we obtain

is zf’(z) 8cos s- ip sin se f(z)
(p-8) cos s

(2.1)

n 8
for fl(z)_ z + nZ2= CnZ e Fx(s,-,l),p z e U.

(2.2)

is zfl (z)
e 6-6-coss isins

fl(z) p

and the result follows from (1.4).

In a similar way we can prove the following lemma

LEMMA 4. f(z) e Fx(s,8,p) if and only if

-is
COSS e

f(z) Z
p ]f2(z)l

t Jz

for some f2 e S(1).

An immediate consequence of lemmas and 4 is

THEOREM I. f(z) e Fl(a,8,p) if and only if

(1-_-) cos a
p

(2.3)

f(z) zp exp[-2(p-8)cosse-is fz (t)
0 + t(t) dr]

where (z) is analytic and satisfies l(z)[ < l, 0 < I < I, for Izl < I.

3. COEFFICIENT ESTIMATES FOR THE CLASS Fl(s,8,p).

(2.4)

LEMMA 5. If integers p and m are greater than zero, 0 < 8 < p and II < -2’then
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m-I %212(p-8)cosae- + 12., cos2a {4 %2 (p_8) 2
j=H0 (j+l)2 m2

m-I 2 2 %2k2+ k__Z1 (2p-2 B+k) + tan2 k2sec2s]

e-i+k-I %212(p-B)cos a 2

jH--0 (j+l)2

PROOF. We prove the lemma by induction on m For m I, (3.1) is easily

verified directly.

Next suppose that (3.1) is true for m q-1. We have

2 2cs2s{4%2(p-8)2+ E__ [% (2p- 28+k) + %2k2tan2e
q2

k-1%212(p-S)cos s e- 12-k2 sec2a] j0 (j+l) 2

cos2a q-2 2 2

q2
{42 (P-B) 2 + kZ=l (2p-2 B+k)

k-i 212(p_8)cos e-i+j[2
+ 2k2 tan2e- k2 sec2e j=0 (j+l)2

+ [12(2p-28+q-l)2 + 2(q-I)2 tan2s-

q-2 A212(p_B)cos s e-ie+) 2
(q-l) 2sec2e] j0 (j+l) 2

q-2 %212(p_8)COS S e-ie+jl 2

J I[O (j+l)2

2 2 2 2 2(2p-28+q-l) cos + (q-l) sln2a}
q2

q-I 212(p_8)COs S e-le+l 2

jII0 (j+l) 2

(3.1)

Thus (3. I) holds for m=q which proves lemma 5.

n
THEOREM 2. If f(z) z

p + __Z a z e Fl(s 8,p), then
n p+l n

la < n-p+l) 12(p-B)cos s e-i+kl (3 2)
n k 0 k+l

for n _> p+l and these bounds are sharp for all admissible a,8 and for each n.

PROOF. As f e Fl(s,B,p), from Lemma 2, we have

ia{e sac s zf’(z) + (p-28-ip tan s)f(z)} w(z)

-ie
(p+ip tan )f(z) e sac szf’(z)

for z e U, w e Hence we have

k_E_0= [{(p+k) eie secs+ (p-28-ip tans)} ap+kzk] w(z)

k__Z0 [p + ip tan s -(p+k)e seca]ap+kZ
where a and w(z) k+l

p k=Z0 bk+iZ

(3.3)
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m
Equating coefficients of z on both sides of (3.3), we obtain

m-i

k0
(p+k)e seca + (p-2B-ip tan a)} ap+k bin_k

is seca}a
{p+ip tan a (p+m)e p+m’

which shows that ap+m on right hand side depends only on

a
p ap+l’ ap+(m_l)

of left-hand side. Hence we can write

m-i is p+kZk]k0
[{(p+k)e sec + (p-2B-ip tan )} a w(z)

m ia k Akzkk0 [p + ip tan a-(p+k)e sec a] ap+k z + km+l (3.4)

for m 1,2,3... and a proper choice of A
k

(k Z 0).

Denoting the right member of (3.4) by G(z) and the factor multiplying w(z) in the

left member of (3.4) by F(z), (3.4) assmes the form

G(z) F(z) w(z) for z e U.

Since [w(z)[ < for z e U this yields for 0 < r < I,

l___ ,2 2 2 i0

0f [G(rei0)[2 dO <
2

f [F(re )[2 dO,
2 0

hence, using the definitions of G(z) and F(z)

m is [2 2k
k=Z0 [p+ip tan a (p+k) e seca[2 Imp+k r

+ k--ELI [[2 r
2k <

m-l
2{kE__0 l(p+k)e seca + (p-2B-ip tan a) 2 lap+k 12

Setting r in (3.5), the inequality (3.5) may be written as

m-i
k__Z0 {2 (p+k)e sec + (p-2B-ip tan ) 12

IP +ip tan a (p+k)ei sec a[ 2} lap+k ]2

in_> Ip+ip tan - (p+m)e sec al 2 lap+m 12
Simplification of (3.6) leads to

ap+mll 2 <
cos2ct, m-1

m2 k__EO {,2(2p-2B+k)2 +

2k}.r (3 5)

(3.6)

%2 k2 tan2a k2 sec2a} Iap+kl 2.

Replacing p+m by n in (3.7), we are led to

[a 2 _< COS2a n-(p+l)
n (n_p) 2 k-E-O ;2 (2p-28+k) 2 +

(3.7)

X2k2 tan2a- k2 sec2a} lap+k[2
where n > p + i.

(3.8)
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For n p + I, (3.8) reduces to

lap+112 < 4(p-8) 2 12 cos2 e

or

lap+ll < 2(p-B) I cos a (3.9)

which is equivalent to (3.2).

To establish (3.2) for n p+l, we will apply induction argument.

Fix n, n _> p + 2, and suppose (3.2) holds for k 1,2 n-(p+l). Then

cos2a
(n-p) 2

n- (p+l)

kZ=0 [2(2p-26+k)2 + %2k2 tan2 k2 sec2] x

122(p-6)cos e-la+I2 (3.10)
0 (j+l)2

Thus from (3.8), (3.10) and Lemma 5 with m n p, we obtain

n- (p+l) 2 e-ia+ 2
a 12 < 0

I 12(P.-.B)cos=
n (j+l)2

This completes the proof of Theorem 2.

Equality holds in (3 2) for n P + for the function f(z) A defined by
p

(2.1) with w(z)

REMARK ON THEOREM 2. For various choices of the parameters, known results can be

regained: [73, [8], [12], [13J, [14], [16 [203.

In a similar way we can prove the following: Lemma 6, 7, and Theorem 3 for

functions in CA(b,p)-
4. REPRESENTATION FORMULAS FOR THE CLASS C1(b,p)

LEMMA 6. g(z) e C1(b, p) if and only if for z U

zg"(z) (p-l)+(p-2pb-l)w(z)(i) g’(z) 1+w(z) w I" (4.1)

(z)
(ii) g’(z) pz

p-I [gl pb
z (4.2)

for some gl e S(I).

(iii) g’ (z) pz
p-I

0
z (t)exp[-2pb

l+t (t) dt], (4.3)

where (z) is analytic and satisfies l#(z) < I, 0 < I < I, for Izl < I.

5. COEFFICIENT ESTIMATES FOR THE CLASS C1(b,p).

then

LEMMA 7. If integers p and m are greater than zero; b # 0 and complex,

m-I 12 1__ {4 p2lbl 2 12 +j0
12pb+j 12
(j+l) 2 m2

m-1 k-I 1212pb+j12
k=El (k2(2-i) +4p21bl 2 12 + 4pk Re{b}12) j__H0 (j+l)2

(5.1)
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THEOREM 3 If g(z) z
p + d z

n
C (b p) then

n=p+l n

n-(p+l)
Id " (5.2)
n n k0 (k+l)

for n p+l. Equality holds in (5.2) for the function g(z) g A defined by (4.1)
P

with w(z) Ez.
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