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ABSTRACT. Let Q be the additive group of rational numbers and let N be the

additive semigroup of all nonempty finite subsets of Q. For X e , define AX

to be the basis of <X min(X)> and BX the basis of <max(X) X>. In thc

greatest semilattice decomposition of , let M(X) denote the archimedeun

component containing X. In this paper we examine the structure of and determine

its greatest semilattice decomposition. In particular, we show that for X,Y e N,

(X) (Y) if and only if AX Ay and BX By. Furthermore, if X is a

non-singleton, then the idempotent-free M(X) is isomorphic to the direct product of

a power joined subsemigroup and the group Q.

KEY WORD AND PHRASES. Greatest semilattice decomposition, archimedean components.
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I. INTRODUCTION.

In [I] we determined the structure of the semigroup of nonempty finite subsets of

integers. In this paper we extend the results of [i] for the semigroup of nonempty

finite subsets of rationals. In particular, we give a complete description of its

greatest semi lattice decomposition. We also propose an isomorphism problem. It is

assumed the reader is familiar with the basic notions on commutative semigroups and

greatest semilattice decompositions- otherwise refer to Clifford and Preston [2] and

Petrich [3]. We begin with some notation and several definitions.

Let Q be the group o rational numbers, Z the group of integers, and define. to be the semigroup consisting of a11 nonempty finite subsets of Q with the

operat on

A + B {a + b a e A, b e B} A, B e N

A singleton element of N will be identified with the rational number it contains.

The semigroup N is a commutative countable semigroup with identity element O.

Let X {al/b1, a2/b2,...,an/bn} e N, where al/b <---< an/bn and each a.,1
b are relatively prime integers, (if X contains an integer x, then express x

as x/l). Define min(X) al/bI, max(X) an/bn, and let if(X) denote the least
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(positive) common multiple of the integers bI, b
2 bn. If X consists only of

integers, then define gcd(X) to be the grea,est (non-negative) common diviso," of

the integers in X, where gcd(O) 0 and g,t(X O {0}) gcd(X). Let Z+ be the

set of positive integers and define the integer interval [a,b] {x e Z a x b}

if a,b e Z with a b. For U e , let <U> denote the semigroup generated by

the set U, and for m e Z+, r e Q define

mU U +---+ U, rU {ru u e U}, and Z Z/<-m,m>.
m

In the greatest semilattice decomposition of , let (X) denote the

archimedean component containing X. Define the partial order on the (lower)

scmilattice as" (X) (Y) if and only if nX Y + W for some W e and n e

Z+ (equivalently" U + V e (X) for some (all) U e (X) and V e M(Y)). Note that

(0) co,,sists of all the singletons in and (0) g Q. Moreover, since 0 is

clearly the only idempotent in , evidently (X) is idempotent-free if and only

if X is a non-singleton. We will show later in Theorem 2.1 that there are in fact

inlinitely ny archimedean components in the greatest semilattice decomposition of

For X e , define AX to be the sis of <X min(X)> and BX the basis of

<max(X) X>. Also, if X is a non-singleton define id(X) min(Ax\{O}) and

fd(X) min(Bx\{O}). Note that (Ax) (X-x) (Bx) for all x e X. When X is

a non-singleton, N and BX have at most + (Ax)id(X and I+(Bx)fd(X
elements, respectively (if X is a singleton then Ax Bx {0}). We close this

introduction with an example. Let X {-3/10, -I/5, 4/5, 11/6, 2}. We wish to

determine AX and Bx. First, (X) 30, so X 1/30 {-9,-6,2,55,60}. Thus

X min(X) 1/30 {0,3,33,64,69} and

max(X) X 1/30 {0,5,36,66,69}.
Consequently, AX

1/30 {0,3,64} {0, 1/10, 32/15} and BX
1/30 {0,5,36,69}

{0,1/6,6/5,23/10}.

2. STRUCTURE OF R.

In this section we examine the structure of by determining its greatest

semilattice decomposition and describing the structure of its archimedean components.

The first result gives a necessary and sufficient condition for two elements of

to be in the same archimedean component.

THEOREM 2.1. For X,Y e , M(X) M(Y) if and onlK if Ax Ay and Bx By.

PROOF. Let X,Y e N and without loss of generality assume min(X) min(Y) O.

Let U and V be such that U (X)X and V (Y)Y. Note that U and V are

finite sets of integers. Suppose AX Ay and BX By. Since min(X) min(Y)

O, this implies (X) (AX) (Ay) (Y). Hence AU AV and BU BV. By

[I], (U) (V) and therefore it follows that (X) (Y).
Conversely, suppose (X) (Y). There exist n, m e Z+ and S, T e N such
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that

nX Y + S and mY X + T
Since necessarily min(S) min(T) O, evidently

Ay _c Y _c Y + S _c <Ax>
and likewise AX _C <Ay>. Consequently, <Ax> <Ay> and by definition this implies

AX Ay. Similarly BX By and this completes the proof.

Using the above theorem we can determine when two archimedean components are

related with respect to the order on the semilattice.

THEOREI 2.2. The followin ar___e equivalent.

(i) (x) <_ (Y).
(ii) Ay

_
<Ax> and By C <Bx>-

(iii) AX+Y AX and BX+Y BX.

PROOF. Suppose d(X) d(Y). There exist U e and n e Z+ such that

n(X min(X)) Y min(Y) + U.

Since min(U) O.

Ay Y min(Y) Y min(Y) + U <Ax>
Similarly By <Bx>. Suppose next that assertion (ii) holds. Then

Y rain(Y) <Ay> <Ax>
and thus

AX X + Y- min(X + Y) <Ax>.
Hence AX+Y AX. Likewise BX+Y BX. Finally, if (iii) holds, then by Theorem 2.1

X + Y e d(X)" that is, d(X) d(Y) and the proof is complete.

Since Ay and By are finite sets, it is relatively easy to determine when

(X) d(Y) using Theorem 2.2(ii). For example, let W {-I0/7,-8/7, 22/7, 33/7,

5}, X {1/7, 5/21, 29/21, 68/21, 23/7}, and Y {-15, -13, 8, 28, 30}. Then fi(W)

7, (X) 21, and (V) I. Thus

W min(W) 1/7 {0,2,32,43,45}, max(W) W 1/7 {0,2,13,43,45}
X min(X) 1/21 (0,2,26,65,66), max(X) X 1/21 (O,l,dO.6d,66},
Y min(Y) {0,2,23,d3,45}, and max(Y) Y {0,2,22,43,5}.

Hence, Aw {0, 2/7, 43/7}, AX {0, 2/21, 65/21}, Ay {0,2,23}, Bw {0,2/7,13/7},
BX {0, 1/21}, and By {0,2,3}. Therefore, it follows that d(X) d(W) (Y)
with A(X) d(W) and

Next, for X e define do(X) {Y e d(X) min(Y) 0}. It is clear that

do(X is a subsemigroup of d(X). In general, elements of d(X) can be uniquely
expressed in the form U + q, where U e do(X and q e Q. Hence it follows that

M(X) do(X @ Q. Moreover, we have the following
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THEOREI 2.3. The idempotent-free archimedean component (X), where X is a

non-singleton, is isomorphic to the direct product o_f_f the idemootent-free power

.joined subsemiKroup Sffo(X and the rouo Q.

PROOF. Let X be a non-singleton with min(X) 0 and let q be a non-zero

rational number. We will first show that o(X) o(qX) under the isomorphism

which maps U to qU. First, if U e do(X then there exist U I, X e N and n,

m e Z such that+

Hence

nX U + U and mU X + X

n(qX) qU + qU and

m(qU) qX + qX

giving qU e o(qX). It suffices therefore to show that for each V e o(qX)
there exists V e do(X such that V qV1.

Let V e o(qX). Then there exist, T e N and s, e Z+ such that

q(sX) V + S and tV qX + T.

Let V
1,

S
1,

and T be such that V qVI, S qS
1.

and T qT
1.

Then

sX V + S and tV X + T
1.

Hence V e o(X) and consequently o(X) o(qX) for each non-zero rational q.

In particular, do(X O((X)X). Since (X)X is a set of integers, by [I]

O((X)X) is power joined. Therefore o(X) is power joined and this completes

the proof.

COROLLARY 2.i. For X e N, sff(X) (qX) for each non-zero rational number q.

The following equivalence relation on N is called the S-relation on N (see

[2] and [3] for more on the -relation):

X $ Y if and only if X Y + U and Y X + V

for some U, V e N.

However, observe that if X Y + U and Y X + V, then X and Y must

necessarily be of the same cardinality since X,Y e N; that is, evidently U and V

are singletons. Hence

X Y if and only if X Y + q for some q e Q.

Therefore, in N the -class of X is the set of all rational translates of X

(i.e. elements of the form X + q, q e Q).

Let PO denote the least semilattice congruence on N. Define an equivalence

relation v on by

X Y if and only if nX mY for some n, m e Z+.
Using Theorem 2.3 we immediately have
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THEOREM 2.5. Th___e least semilattice congruence on R is PO v $" That is,

X PO Y if and only i__f X X
0
r YO Y for some XO’ YO e .

Next we look more deeply into the structure of (X). The structure of 4(0) is

clear since 4(0) Q. Using the above results, evidently Y e M(X) if and only if

Y-min(Y) MX U YI where Y1 _C <MX> and max(Y)-Y BX U Y2 where Y2 C <Bx>.
More precisely we have the following direct consequence of Theorem 3.2 from [I].

THEOREM 2.6. Le___t X be a non-singleton and U be such that X-min(X) gU,

where g gcd(ff(Ax)Ax)/(Ax). Define A. {x e <Au> x (mod a)} and B. {x

e <Bu> x j (mod b)} for e [O,a-1], j e [0, b-l], where a id{U) and b

fd(U). Let c max {min(Ai) e [O,a-1]} and d max {min(Bi) e [O,b-1]}.

Then Y e (X) if and only if there exist V e R and nO e Z+ such that Y-min(Y)

gY and for all integers n 2 nO
a-1

nV U {x e A. x < c-a} U [c-a+l, nmax(V) + b-d-l]
i=O

b-1
U U {nmax(V) x x e B., x < d-b}

i---O

<Au> n (nmax(V) < BU>

Next we reproduce several definitions and facts from Tamura [4] that we will use

in the next theorem. Let T be an additively denoted idempotent-free commutative

archimedean semigroup. For fixed b e T, define a congruence Pb on T by

x Pb y if and only if nb + x mb + y for some n,m e Z+.
Then T/p

b
G
b

is a group called the structure group of T determined by the

standard element b. Also, define a compatible partial order < on T by
b

x < y if and only if x nb + y for some n e Z
b

+

Then T D TE, equivalently T/Pb {TE}, e G
b,

where each TE is a discrete

tree without smallest element with respect to < (a discrete tree, with respect to

b

< is a lower semilattice such that for any c < d the set {x c < x < d} is a

b b b b

finite chain). Finally, define a relation q on T as follows"

x q y if and only if nb + x nb + y for some n e Z+.
The relation q is the least cancellative congruence on T. Let Q+ denote the set

of positive rational numbers.

THEOREM 2.7. Let A e b_e a_ non-singleton with min(A) 0 and

g gcd((A)A)/(A). The structure groul o_f 40(A determined by .the standard
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m-I
element A __is Zm, where m max(A)/g. Moreover, do(A U di where di {X

i=O

e d0(A max(X)/g m i(mod m)} is a discrete tree without smallest element with

respect to < Furthermore, the structure Kro, ID of d(A} determined b_v the
A

standard element A is Q $ Z
m

PROOF. This follows from [1] since O(A) O(1/gA).

Using Theorem 2.7 we have the immediate

PROPOSITION 2.8. Let A be a non-singleton. The homomorphism h do(A Q+
defined bv h(X) max(X) is the greatest cancellative homomorphism. That is, the

relation N o__n do(A defined bv

X Y if and only i__[ max(X) max(Y)
is the least cancellative congruence. Moreove[, th__e relation o o__n d(A) defined

X o Y if and onlz i_!f min(X) min(Y) and

aCX) mCY)
is the least cancellative congruence. The semigroups do(A)/N and d(A)/o are

idempotent-free commutative archimedean cancellative semirouDs.

For a description of the greatest cancellative homomorphic image of do(A we

direct the reader to [1]. We close this report with an open isomorphism problem.

Any partial solutions would be appreciated.

PROBLEM. For X,Y e N, under what conditions will d(X) be isomorphic to

d(Y)? See Theorem 5.5 of [5] for some related results and also recall Corollary 2.zl.
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