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ABSTRACT. Let f: X Y be a continuous semigroup homomorphism. Conditions are

given which will ensure that the semigroup X u Y .is a topological semlgroup, when the

modified Whyburn topology is placed on X u Y.
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I. INTRODUCTION.

Let (X,mI) and (Y,m2) be semigroups and let f: X /Y be a semigroup homomor-

phism. An associative multiplication m may be defined on the disjoint union of X

and Y as follows: m is m on X, m
2

on Y and m2(f(x),y) if x e X and

y e Y. If we assume that X and Y are Hausdorff semlgroups and that f is

continuous, then m is continuous in the disjoint union (or direct sum) topology.

Let (X u Y,m) denote this Hausdorff semigroup.

Let Z denote the disjoint union of X and Y with Whyburn’s unified topology

[I]; i.e., V is open in Z iff V n X and V n Y are open in X and Y,
-I

respectively, and for any compact K in V n Y, f (K) V is compact. If X is

locally compact, then Z is Hausdorff, and if Y is also locally compact, so is Z.

If f is a compact map, then Z and X v y are the same. If X and Y are locally

compact, Hausdorff semlgroups, (Z,m) is a locally compact Hausdorff semlgroup

provided m is a compact map [2].

In this paper we consider the modified Whyburn topology which is coarser than the

disjoint union topology, but finer than the Whyburn topology and ask what conditions

will insure that m will be continuous.

2. MAIN RESULTS.

Let W denote the disjoint union of X and Y with the modified Whyburn

topology; V is open in W iff V n X and V n Y are open in X and Y,
-I

respectively, and f (y) V is compact for every y in V Y. The following

notions and facts are due to Stallings [3]. A subset A of X is fiber compact
-I

relative to f: X +Y iff A is closed in X and A n f (x) is compact for every

y e Y, and X is locally fiber compact iff every point in X has a neighborhood with

a fiber compact closure. Fiber compact subsets of X are closed in W and W is

Hausdorff if X is locally fiber compact. If Y is first countable, then Z and W
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are the same iff f is closed.

The proof given in [2] that m is a continuous operation on Z did not use the
-i

assumption that m (K) is compact for every compact K in X, but used an

equivalent condition instead. The appropriate generalization of that condition for

W is:

CONDITION I. For every fiber compact K in X, there is a fiber compact K
2

in X such that for all x, y g X, if ml(x,y E KI, then x g K
2

and y K2.

(ml-l(K)), i 1,2 are fiber compact for eachThis condition is equivalent to: Pi
fiber compact K in X, where Pl and P2 are the projections on X X.

THEOREM i. If X is locally fiber compact, Y is regular and m satisfies

Condition i, then m is continuous and hence W is a Hausdorff semlgroup.

PROOF. The argument is similar to the one given for Z. We will show continuity

at a point (x,y) where x e X and y E Y. Let w m(x,y) m2(f(x),y). Let V

be an open set in W containing w. Since Y is regular, there is a Y-open set U

containing y such that U y n V. Since m
2

is continuous, there are Y-open

neighborhoods U and U
2

of l(x) and y, respectively, such that

m2(U U2) U V. Then V
i

f-l(Ui) u Ui, i 1,2, are W-open neighborhoods of x

and y, respectively. Since f-l() V is fiber compact, Condition guarantees the

-i() V,existence of a fiber compact K in X such that if ml(x,y) are in f

then x and y are in K. Since K is fiber compact, K is closed in W and so

K K is closed in W W. Hence V1 V2 K K is an open set containing (x,y)

and a calculation shows that m maps V V
2

K K into V.

Let X (0,I] [0,I], Y [0,I] and f: X Y by f(x,y) y. If X and

Y have the usual multiplications, then Z is [0,I] [0,I] with the usual

multiplication. However, the multiplication is not continuous on W since

{(,I)} and {(I,I- )} (I,I) in W but {( ,I-)} does not converge

since it is a fiber compact set in X and hence closed in W.

If the multiplication on X is changed to be the usual multiplication in the

first factor and the zero multiplication in the second and if Y is given the zero

multiplication, then the conditions of Theorem are satisfied. Since f is not a

closed map, W is not the same as Z. Hence W is a Hausdorff semigroup topologi-

cally different from [0,I] [0,I].

These examples illustrate how difficult it is to have m continuous on W. In

fact, we have:
-ITHEOREM 2. Suppose X is connected and for each y in Y, f (y) is not

compact. If (W,m) is a first countable, Hausdorff semigroup, then Y has the zero

multiplication.

PROOF. Let t,y Y and let z m2(t,y). Let A {x Xlm(x,y) z}. Since
-I

f (t) A, A # . Also A is closed in X since m(A,y) z implies that

m(,y) z. Since f-l(y) is not compact, y is a limit point of f-l(y) in W

so there is a sequence {yl} in f-l(y) converging to y in W. Let xand A

and {Vi} be a countable neighborhood basis at x. If we assume that no V
i

is

contained in A, we can find a sequence {xi} which converges to x such that
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m(xiY) # z. Hence ml(Xi,Yi) is not in f-l(z) for all i, but {ml(xi,Yi)}
converges to z. Thus the set B {ml(xi,Yi)} is closed in X. For any w e Y,
-i

f (w) 0 B is finite because otherwise B will have a convergent subsequence in the

compact set {w} u f-l(w). This means that B is fiber compact and W B is a

neighborhood of z which contradicts the fact that {ml(xi,Yi)} converges to z.

Thus A is open and must equal X since X is connected. All of this yields

m2(Y,y) z. Let t’,y’ e Y and let z’ m2(t’,y’). The argument above will give

that m2(t’,Y) z’. Hence z z’ and Y has the zero multiplication.
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