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ABSTRACT. We consider the space of Henstock integrable functions of two

variables. Equipped with the Alexiewicz norm the space is proved to be barrelled.

We give a partial description of its dual. We show by an example that the dual

can’t be described in a manner analogous to the one-dimensional case, since in

two variables there exist functions whose distributional partials are measures

and which are not multipliers for Henstock integrable functions.
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with

DEFINITION.

te I
0

[0,I]2.We will wri A function f I
0

R is Henstock integrable,

f (x,y)dxdy (I)
I
0

written for the value of the integral, if for every e > 0 there exists a positive

I
0

R such that if

{((xi,yi ),Ii) i 1,2 n} (2)

is a partition of I
0 (i.e., Ii’s are nonoverlapping subintervals of I

0
whose union

is IO) for which

(xi,Yi) li A((xi ’yi)’6(xi,yi) ), (3)

where A((a,b),r) stands for the disk centered at (a,b) of radius r, then
n

Z f(xi,Yi) %(Ii)- f f(x,y)dxdy < , (4)
i=l I

0

where %(li) denotes the area of I..i
We will write H for the class of Henstock integrable functions on IO. H

is a linear space. If we replace %(Ii), for I
i [ai,b i] x [ci,di], in (4) by

g(ai,ci) g(ai,di) g(bi,ci) + g(bi,di), for a certain g I
0
+, then we

obtain the definition of the Henstock integral of f with respect to g, written

as fl0 [dg.

Henstock integral in the plane is fully discussed in [7].
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2. DEFINITION.

Let f H, set

f(x,y) f f(s,t)dsdt. (5)
-[ O,x]x[O,y]

It is shown in [3] (page 549) that f is continuous. Let

[If[I sup f(x,y) (6)
(x,y)el

0

We will call (6) the Alexiewicz norm on H.

3. PROPOSITION.

T e H if and only if there is a finite signed Borel measure on

(O,l]x(O,l] such that

f F(x,y)d (x,y) (7)r(f)
i0

The norm of T is equal to the norm of .
PROOF. Let C be the space of continuous real-valued functions on I0.

Define

C
O

{F e C:F(x,y) 0 if x 0 or y 0}. (8)

Thn if we assign

H 3 f f e C
O (9)

H is mapped isomorphically into a dense subset of C
O

(since every polynomial is the

indefinite Henstock integral of its second mixed partial). Thus, we can identify

H* with CO*. But C
O

is a closed subspace of C and CO* C*/Co, which may be

seen to be the space of finite signed Borel measures on (0,1]x(O,l]. (7) follows

from the general form of a continuous linear functional on C
O

4. DEFINITION.

A function g:I
0
-]R is a multiplier for H if for every f e H we have also

fg ell.

5. REMARK.

In the one-dimensional case the dual of the space of Henstock-integrable

functions is given by the class of multipliers (see [6]). The multipliers are

functions whose distributional derivatives are measures. The two-dimensional case

is different.

In [4] Kurzweil defines g:l
0
+ to be of strongly bounded variation if

for every x,g(x,-) is of bounded variation, for every y,g(-,y) is of bounded

variation, and
n

M(g) sup 7. g(ai,ci) g(ai,di) g(bi,ci) + g(bi,di) < +
i=l

n I
i

[a
i bl] x [ci,di]where sup is taken over all partitions {of 10) {Ii}i= I,

(10)

strongly bounded variation.

i0
f(x,y) dg(x,y) < [[f[[ M(g) (II)

so that every g of strongly bounded variation is a continuous linear functional on

H.

consisting of non-overlapping, nondegenerate closed intervals. Then he shows that

functions of strongly bounded variation are multipliers for H, and for f e H, g of
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The connection between this result and Proposition 3 is not known. It is not

known either if functions of strongly bounded variation and those equivalent to

them are the only multipliers.

6. EXAMPLE.

There exists a function g I
0

R whose distributional partials are

measures and which is not a multiplier. Define

g(x,y)
x-y for x _> y, (12)

0 otherwise

Note that Krickeberg shows in [2] that g I
0

R has its distributional partials

being measures if and only if it is of bounded variation in the sense of Tonelli.

For g, var g(.,y) l-y var g(x,.) and

0
dy +

0
dx < 2. (13)

So g is of bounded variation in the sense of Tonelli.

Define for n > 2

K [I
2

n n-I n (14)
L {(x,y) K y < x}
n n

and for every n > 2 construct a continuous f K R such that f (x,y) -f (y,x),
n n n n

fn is equal to 0 on the boundary of Kn, nonnegative on Ln and

fL fn(X y)dxdy (15)
n

3
and f (x,y) 0 for every (x,y) e K such that Ix-yl < n- Then for f given by

n n

f (x,y) for (x,y) e K for some n > 2,

O
n n

f(x,y)
otherwise. (16)

we have f e H, yet fg % H.

7. REMARK.

It is shown in [8] that the space of Henstock integrable function of one

variable is barrelled. We will show it to be true also in two dimensions.

8. DEFINITION.

If E is a topological vector space then a set B E is a barrel if B is

closed, convex, circled and radial at O. A locally convex space in which every

barrel is a neighborhood of 0 is termed a barrelled space. It should be noted

that each barrel in a space E which is of the second category in itself is

necessarily a neighborhood of O. In particular, every Banach space is barrelled.

The importance of barrelled spaces lies in the following Barrel Theorem.

9. THEOREM.

Let be a barrelled space and F be a pointwise bounded family of continuous

linear functions on into a locally convex space K. Then the family F is equi-

continuous. Consequently, in this case, F is uniformly bounded on each bounded

subset of E.

PROOF. See [5] (page 104).

This theorem implies in particular that the Banach-Steinhaus Theorem holds

for barrelled spaces.
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I0. DEFINITION.

Let S stand for the space of real-valued additive functions F of interval

I [a,b] [c,d] I
0

for which there is a continuous f:l
0

such that

F(1) f(a,c) f(a,d) f(b,c) + f(b,d)

Notice that if F e S then there is a unique f e C, such that f(x,y) 0 if x 0

or y O, i.e., f E CO, defining it. Let

IFII sup f(x,y)
(x,y)el

0
where F e S, and f e C

O
defines it. S is a Banach space isometric to C

O

I. THEOREM.

Let X be a subspace of S satisfying the following two conditions:

(a) If F e X and J I0, and

Fj(I) F(I n J) (18)

for I I
0

then Fj X;

(b) If c IO, F e S, and Fj X for every J I
0

such that if 1,2 are the

vertical and the horizontal line segments through c then J n i ’ J n 2 ’then F e X.

Then X is barrelled.

R
2PROOF. In the proof we will denote for zI z

2
e by [Zl,Z2] an interval

for which Zl,Z 2
are opposite vertices. Let B be a barrel in X. If B is not a

neighborhood of zero, then it is nowhere dense. To show that, suppose that a barrel

is not nowhere dense. There is an open set U such that U B. Since is convex

and circled

(U- U) (B- B) (B + B) "c B. ([9)

U U is a neighborhood of zero, and so is .
For every I I

0
write

and

Then B(1) is a barrel in X(1).

(17)

BCI) B n X(I). (21)

Suppose I II u u In, where ll,...,In are nonoverlapping. Then

B(Ii) B(I) for i 1 n, so if F
i

e (li), i 1 n, then F
i

B(I), and,

since (I) is convex,

In (FI +’’’+ Fn e (1). (22)

Consequently, B(II) +...+ B(I n B(I). The space X(I) is a topological
n

direct sum of X(II) X(In)" If (II) ,(In are neighborhoods of zero in

)<(II) X(I (respectively) then B(1) is a neighborhood of zero in X(I). Thus,
n

if (I) is nowhere dense in X(I) then at least one of (Ii)’s, i 1 n, is

nowhere dense in the corresponding X(li).
Therefore, if we divide I

O
into four subintervals by splitting the sides into

halves, among so obtained intervals there is at least one, call it Ii, such that

(Ii) is nowhere dense in X(II). Applying the same procedure to Ii, and then

continuing it, we obtain a sequence of intervals I such that
n

nNIn {c}. (23)

X(1) {FI:F e X} (20)
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where c is a certain point in IO, and B(In is nowhere dense in X(In for every

n E N.

For every n E N, write

I I
1 u 12 u 13 u 14

n n n n n

where I
i

i 1,2 4 are subintervals of I obtained from it by drawing lines
n n

parallel to its sides and going through c. We can assume that li’s are numbered
n

so that

I
i I

i
n+l n

(24)

(25)

for every n and i. Notice that since B(I is nowhere dense in X(I for every n,
n n

there is at least one i such that B(Ii)" is nowhere dense in x(Ii).
n n

Consider the four sequences {Ii} for i 1,2,3,4 If in each of them
n n N

there is only finitely many n N such that (I) is nowhere dense in x(Ii)n then

after passing those finitely many indices we will get all four (li), I 1,2,3,4,
n

being neighborhoods of zero. This will force B(I to be a neighborhood of zero,
n

a contradiction. Therefore, among the four sequences {Ii) there has to be one
n n N

which produces infinitely many B(Ii)’s which are nowhere dense in the correspondingn
x(Ii)’s.

n

i
0

i
0Let {In }n e N be that sequence, and let {Ink}k e N

be its subsequence such

i
0

i
0

i
0

that B(Ink) is nowhere dense in X(In for every k e N. Write Jk In
k

for k N,

k

and let Jk [C’Xk]-
Let u

1
x1. There exists a function G

1
e X(J1) such that G

1
8 and

llGll < I/2. Then since 8 is closed and lim G
I

G
I (in X) there is a

x/c [x,uI
u
2

x (for some k
2

N) such that if F
1

G
1

then F
1

e X([u2,ul]),k2 [u2,Ull),
FI 8, and I’IFII < I/2.

Proceeding by induction, if n e N, then we have a function Gn e X(Jk such

that Gn { n and IIGnl < 1/2n. Since is closed and
n

lim G G (in X)
n nxc [X,U

n

there is a Un+ x
k

(for some kn+1E N) such that if F G then
n+l

n n[un+l’Un
F e X([ ,u F nB, and lFnl < i/2

n
n Un+ n n

Consider the set A defined as the closed convex hull of the sequence {F
n

in S. Every element of A is of the form

+
F= Z F

n=l n n

for some sequence of scalars { with Z < i. Take a u [Cl,Ul], u c,
n nn=1

u # u1, and notice that

F Z X F
[U’Ul] n=l

n n[u,ul]

(26)

(27)

(28)
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Now only finitely many terms on the right-hand side of (28) are nonzero. Therefore

for every such u, F[ E X([U,Ul]). Consequently by the condition (b) A X
u-

Therefore B absorbs I(B is a barrel). This, however, is a contradiction, since

does not even absorb the sequence {F }. The proof is ended.
n

12. REMARK.

It is well known, and shown in [3], that

H {f:f E H (I0)} (29)

equipped with the Alexiewicz norm is a subspace of S satisfying the conditions (a),

(b) of theorem 9.

13. COROLLARY.

H is barrelled.

14. COROLLARY.

If T is a pointwise bounded family of continuous linear functionals on

then T is equicontinuous, and consequently, uniformly bounded on each bounded

subset of H.

15. COROLLARY.

If {gn is a sequence of functions of strongly bounded variation on I
0

such

that for every f e H

lira
f (x,y)dgn(X,y)

I
exists, then

o

T(f) lim f(x,y) dgn(X,y)
n-o I

O
is a continuous linear functional on .

We were not able to prove or disprove whether the functional (31)is itself

generated by a certain function of strongly bounded variation. We do not know

either whether all functionals on H are of the form (31).

16. REMARK.

8] presents a Henstock-type integral in the plane for which the classical

divergence theorem holds. The integral introduced by Pfeffer integrates diver-

gence of every differentiable vector field (unlike the Lebesgue integral).

Applying the proposition 4.10 of [8], one can show that the integral of

Pfeffer satisfies the conditions (a), (b) of Theorem ii. Indefinite integral is

also continuous. Thus, the space of Pfeffer-integrable functions, equipped with

the Alexiewicz norm, is also barrelled.

(30)

(31)

3.

4,,
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