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ABSTRACT. This paper is concerned with a simplified dynamical analysis of orthotroplc

viscoelastic plates that are made up of an arbitrary number of layers each of which is

a Maxwell type solid. This study includes the case where some or all the layers are

themselves constituted by thinly laminated materials with couple stresses. The

recurrence equations for the shear stresses are obtained for an arbitrary number of

layers and then applied to plates with two or three layers. The viscoelastic damping

effect is determined by the process of llnearlzatlon and then illustrated by a plate

composed of one, two or three layers. It is found that the damping increases with

anlsotropy and wave number. These results are shown by graphical representations.

KEYWORDS AND PHRASES. Orthotropic viscoelastic materials, Maxwell solids, Laminated
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I. INTRODUCTION.

Based upon the general theory of ultilayered continua in finite anisotroplc

elasticity due to Blot [I-4], Pal Roy [5,6] has studied the problems of elastic wave

propagation in a thinly layered laminated medium with stress couples under initial

stresses. In these studies the composite structures are assumed to be made up of

multilayered elastic materials and hence some modifications are required for

applications to real solids. It is almost impossible to study statics or dynamics of

real solids without suitable approximations and/or assumptions. However, the Maxwell

solid is generally believed to be one of the best practical examples of real solids.

It is assumed that the Maxwell solid consists of a series of spring with a viscous

element known as ’dash pot’ (see Biswas [7]), and the main factor which makes this

model different from the elastic one is the relaxation time. From a practical point
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of view, the study of statics or dynamics of Maxwell solids seems to be important in

its own merit and has physical applications.

In this paper, we study a simplified dynamical analysis of orthotroplc

viscoelastic plates that are made up of an arbitrary ntnber of layers each of which is

a Maxwell type solid. This problem Includes the case where some or all the layers are

themselves made of thlnly laminated materials with couple stresses. The recurrence

equations for the shear stresses are derived for an arbitrary number of layers and

then applied to plates with two or three layers. The effect of the viscoelastic

d. amplng is examined with examples. The damping is found to increase with anlsotropy

and wave number. Results are shown by graphical representations.

2. BASIC EQUATIONS AND ASSUMPTIONS

We consider a plane strain deformation of a plate of Maxwell solids of thickness

h. The x-axls is chosen midway between the boundarles of the two faces and the y-axls

is normal to them.

The stress-straln relations for the Maxwell solid with the effects of relaxation

time, x are given by [7]:

o
d d xx (2d-F xx 2 e

xx

o
d d _.Y.l (2 2)d-" xy 2W-- exy

o
d 2-t -Y-Y- (2 3)d’--" Oyy eyy :

where the strain components e are

3u }v 3v 3u
e
xx eyy "y exy -x + (2.4abc)

The corresponding dynamical equilllbrlum equations are

o o }2xx+ xy
P

u
2}y }y 3t

(2.5)

}o }o }2xy + yy v

}x }y 3t 2
(2.6)

where oij are stress components, is the modulus of rigidity, P is the density,

u and v are displacement components. The coefficients involved in equations (2.1)

(2.6) are functions of y as the plate may be inhomogeneous with continuously or

discontinuously stratified.

We assume that the dlsplacment fields are harmonic function of time t and

slnusoldally distributed along the x-dlrectlon so that

u U(y) sin mx e (2.7)

v V cos mx e (2.8)
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where is the frequency, V is assumed to be a constant and equal to its average

value across the thickness h.

From the equation (2.2) we obtain

it
sin mx A(y) e (2.9)

where M and A(y) are

-1
M (I --- and A(y) m V (2.10ab)

It follows from (2.1) and (2.7) that

it
U(y) cos mx e "’"z.*i)2Mmo

xx

Eliminating o and U from (2.11) and (2.5), we obtain
xx

d dA

d- y 2m
2 A(y) 2m

3 V (2.12)

2
where N N(y) (I 2

(2.13)
2Mm

The solution for the shearing stress A(y) is determined from equation (2.12) with

the boundary conditions and A
2 for A(y) at the top, y h/2 and the bottom, y

-h/2 of he plate. This solution still contains the unknown constant deflection V

which is determined by integrating the equilibrium equation (2.6) with respect to y

so that

h/2

S Mm f A(y) my m
2 v Pt (2.14)

-h/2

where the total mass per unit area of the plate face is given by

h/2

PC f P(y) dy (2.15)

and -h/2

[Oyy]l [yy]2 S cos mx e (2.16)

represents the total normal load applied to the same unit area. When this normal load

is known, the deflection V is obtained from (2.14), and hence te shear stress

distribution A(y). Thus is known from (2.9). Once we know o the value of

U(y) is determined by combining (2.5) to obtain

dU(y)
N m

2 dy
A(y) (2.17)

Also we obtain o from equation (2.11) in the form
xx

o 2M __d A(y) cos mx
it (2.18)

xx mN dy
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3. EXTENSION TO MULTILAYERED PLATES AND VISCOELASTICITY.

The above results can easily be extended to a multllayered plate constituted by a

superposition of thin adherent homogeneous layers each of which is a Maxwell type

solid. Within each layer N is supposed to be a constant. Considering first a

single layer of thickness h with A and A2 as the shear stresses at the top and

bottom of the layer, it turns out from differential equation (2.12) that

where

A C cosh Bray + C
2
sinh Bray- mV (3.1)

2p 2 (3.2)
2

2Mm

C [ (A + ) + mV] (3.3)
cos h BY

(3.4)C2 " (At A2) slnh BY
-I

i
Y (mh/2), M (I --) (3.Sab)

The displacement amplitude U is given by equation (2.17). Its values U and U
2

at

the top and bottom of the layer are found to be

UI __I (Ala + A2b) + 2Vc (3.6)
/2N m

U2 __I (Alb + A2a) 2Vc (3.7)
2N m

with a tanh BY +
tanh BY b tanh BY tanh BY’ c = tanh BY (3.8abc)

We consider now a plate composed of n orthotropic homogeneous layers. The Jth layer

(J 1,2...n) of thickness h is characterized by coefficients j, Tj and a mass

density p
j
with the corresponding parameters aj bj cj M Nj. The displacement

amplitude and shear stress at the top and bottom of the Jth layers are respectively

(Uj, Aj) and (Uj+I, Aj+l).

Now, at the interface between the layers J and (J+l) the displacement amplitude

Uj+ as it is found for the lower face of the Jth layer and upper face of the (J+l)th

layer, must be the same. We obtain from equations (3.6) (3.7)

Aj Dj + (Zj+ Ej+ I) Aj+I+ Aj+2 Dj+ I- -2V(cj + c
j+i

(3.9)

b
where Ej

aj
Dj

j (3.10ab)
2N m ?2N m

Thus when the values of the shear stresses A and An+ are given at the outer

boundaries, the recurrence equations (3.9) will lead to the evaulatulon of the (n-l)

shear stresses A(j--l,3...n) at the interfaces.

The normal load Sj acting on the Jth layer is obtained from equations (2.14) and

(3.1) and has the form
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c.
m2 V hjSj -Mjcj(Aj + Aj+ I) + m2V hjMj(l -y.)- 0j (3.11)

The total load S applied to the multi-layered plate is obtained by summing the loads

S. applied to each layer. We obtain

n 2
S >.’ S -ZjM c (Aj + + m2V m- m t

j--I J j j Aj+ V (3.12)

c.
I p hj K I hj M (I -_3_), j= (m hi) /2 (3.13abc)with Pt Yj

The equation (3.12) will provide the only unknown V of the system. When this

unknown V is known, the shear stresses Aj at the interfaces are also completely

known.

4. VISCOELASTIC MATERIALS.

We next consider the viscoelastic properties of the layers for possible

technological applications of the above analysls. It follows from (2.4a) and (2.7)

that the strain component is

lint
e m U(y) cos mx e (4.

Hence we find from (2.11) that

2M e (4.2)
XX XX

Also it follows from (2.4c) with (2.7) (2.9) that

o 2M e (4.3)

It is clear from equations (4.2) and (4.3) that for Maxwell type solid there is only

one coefficient instead of two coefficients for the elastic materials.

Viscoelastic properties of the layers may be taken into account by substituting the

following general form of operator for the coefficient M (see Blot [8]):

f IM(r) dr + M" + M’p (4.4)
0 p+r

d
where p--. For harmonic oscillations p i and the operator also becomes a

complex quantity.

5. THINLY LAYERED LAMINATED MATERIALS.

We now consider a multi-layered plate in which the layers are themselves composed

of thinly laminated materials of Maxwell solids. For a laminated medium composed of a

repeated sequence of n thin layers each of which occupies a fraction j(J--l,2...n)
of the total thickness h’ of the laminated medium and characterized by the

coefficient Mj j/(l --i)T The equivalent coefficient M i.e. the coefficient of

the equivalent anisotropic mdium) is
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n

j--1 J
(5.1)

This equivalent coefficient M constitute a first approximation. The next

approximation is provided by introducing stress couples [3] i.e. a moment per unit

area equal to

2v
R= b--

x2
(5.2)

where b (h’)2.. n

3
j--1 I (I

MI
(5.3)

The equilibrium equations (2.5) (2.6) are now modified to the following form

2u--o
x

+ o pBx x y xy t2
(5.4)

2v 4
x Oxy +y Oyy p --+t2 b-Vx4 (5.5)

Consequently, equation (3.12) must be replaced by

n 2
n

S j=l" (Aj + Aj+ I) cjMj + m2Vk a Pt V + m4V j=ll bjhj C5.6)

where bj(j 1,2...n) is the couple stress coefficient of the Jth laminated medium.

The result (5.6) can immediately be extended to viscoelastic laminated media.

6. EVALUATION OF DAMPING.

An important task in the problem of design analysis is the determination of the

effect of viscoelastic layers on vibration absorption at resonance. We consider a

simply supported homogeneous anlsotroplc plate. The span p equal to half the wave

length is

m

From equations (2.14) and (3.1) we have the expression for S which, after putting

A 0 and A
2 0, becomes

tanh 8’.) 2
S m2h MV(I

8
m Pt V (6.2)

where 8 vf2N (I pa

21
2

For a viscoelastic material M is replaced by M + M where M is the purely

imaginary term. The Imaginary part of the load S is represented by S and is

obtained from equation (6.2) by linearlzing it with respect to M. We obtain

S m
2

Vh F M (6.3)
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with F
3 tanhBY + I__ + (tanhB_______TT_ l__J___.) (6.4)
2 BY 2 h2By 21B2 BYcos cosh

2 B

Equation (6.3) determines the damping (longitudinal) on vibration attenuation.

The variation of F for different values of B (anlsotropy) and T are shown in

figure I. It is seen that the damping increases with anisotropy and wave number. The

result (6.3) is also applicable to the laminated plate of the equivalent continuum as

described in section 5. In the case the inclusion of couple stress will contribute an

4
additional term m Vh Ab where Ab is the imaginary part of equation (5.3).

From equation (2.10a) and (6.3) it follows that

with

S p. F (6.5)

p
2

m Vh U

+ m22
(6.6)

The variations of P with are shown in Figure 2 which confirms the symmetric

variation with respect to the relaxation time . As a particular example, we

consider a plate composed of two layers. The material (obviously Maxwell type) of the

first layer of thickness h’ is characterized by the coefficient M and that the

second layer of thickness h" is characterized by the coefficient M
2

and suppose h

h’ + h".

The applied shear stresses at the outerfaces are put equal to zero (i.e.

AI=A3ffiO. The shear stress at the interface is found by equating the interfacial

displacement amplitude U
2

considered as belonging to the first and second layer.

Applying equations (3.3) we obtain

( aI) 2V c
2

(6.7)u 2-
(A2 2) + 2v=U2 -2 m

(6.8)

where Nland N
2

are the values of N for M M and M M
2 respectively. The total

load q (ffi ql + q2 is given by

2(H cl+ H2c2) (c1+ c2) 2
/I_ + m(h,Ml+h,,.M2)_2(MlCl+M2c2) /i (Plh,+P2h:,) (6 9)Vm a m

This equation determines the deflection V when the normal load applied to the

structure is given.

We next consider a plate composed of three layers. The first and third layers

are identical in nature and are characterized by the coefficient M while the middle

one is characterized by the coefficient M2.Because of the symmetry, the interfacial

shears are while A
4

0 at the outerfaces. If we equate the

interfacial displacements U
2

considered as belonging to layers and 2. We obtain
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2(c + c2)mV
A
2 a 2B2c2

?2N ?2N
2

(6.10)

where B
2

is given by a
2

+ b
2 2B2c2.

The total load q= ql + q2 in this case is given by

2(c + c2)(2M c + M2c u2q
(2Plh’ + P2 h’’)Vm a 2B2c

+ m(2hlM1 + h2M2) 2(2Mici +M2c2)-m
#2N 2N

2

The second and third terms represent the normal load corresponding to superposed

layers with perfect Interracial slip while the first term represents the effect of

adherence between layers.

1.0

Fig. Variation of F with 7 for different values of
B (equation 6.3).
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T

,335

.09

.0 .1 0 lo0

Fi8. 2 Variat:en of P over .

Fig. 3 A three-layered symmetric plates composed of a core of
thickness h

2
sandwiched between two identical layers of

thickness hI

7. CONCLUDING REMARKS.

The foregoing results of a simply supported plate with a loading distributed as a

half sine wave are obviously valid for an arbitrary loading provided it can be

expanded in a series along the span. In this case, the results are applied to the

various Fourier components with a suitable value of m corresponding to each wave

length. The procedures used for the simply supported case can easily be extended to

the case where the plate is built-in (i.e. when both end points of the plate are

rigidly attached so that the displacement of its faces are both zero. In this case,

in order to satisfy the boundary conditions we must, instead of sinusoidal solutions,

consider exponential solutions. Such solutions are empirically derived from the

trigonometric solutions (2.7) and (2.8) if we replace m by ik.
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