
Internat. J. Math. & Math Sci.

VOL. ii NO. (1988) 23-26

23

REMARKS ON EXTREME EIGENVALUES OF
TOEPLITZ MATRICES

MOHSEN POURAHMADI

Department of Maflematical Sciences
Northern llli,ois University
DeKMb, Illinois 60115

(Received April II, 1986)

ABSTRACT. Let f be a nonnegative integrable function on [-r,r], T.Cf) the Ca+l) X(n+l) Toeplitz matrix

associated with f and k,. its smallest eigenvalue. It is shown that the convergence of )t,. to rain f(O) can be

exrmnentiallv fast even when f does not satisfy the smoothness condition of Kae, Murdoeh and Szeg6 (1953).
Also a lower bound for ),,. corresponding to a large class of functions which do not satisfy this smoothness
condition is provided.
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1. INTRODUCTION

Toeplitz matrices and operators arise in several areas of mathematics and its applications such as complex and

harmonic analysis, probability theory and statistics, signal processing and information theory, numerical analysis,

etc. Of particular interest in these areas are the determinant, and the distribution of the eigenvalues of finite

sections of an infinite Toeplitz matrix. In this paper we are concerned with the estimates on the asymptotic

behavior of the extreme eigenvalues of finite sections of Toeplitz matrices in the spirit of the works of Kac,

Murdoch and Szeg5 [5], Widom [9] and Parter [7]. While these uthors are concerned with the asymptotic

behavior of extreme eigenvalues of finite sections of infinite Toeplitz matrices associated with continuous and

continuously differentiable functions f(0), 0 [-r,r], see Condition A in Section 2, we study similar properties

of Toeplitz matrices which are associated with functions which are not (necessarily) continuous nor differentiable.

Our restriction on f involves either frequency or order (multiplicity) of zeros of this function on I-
Condition A imposes several severe restrictions on f which might be hard to verify or they may not be

satisfied in some areas of application such as the prediction theory of stationary processes and signal processing,

where f is viewed as the spectral density of a stationary stochastic process. As such f may have finitely many or

countably many zeros and thus min f(0) is attained at several points so that Condition A is not satisfied. In

view of this it is important to have some information about the rate of convergence of k,, to zero when

Condition A is not satisfied.

The main results of the paper are in Scction 3. Thcorcm 3.2 providcs an upper bound for >,., in tcrms of

outer capacity of the spectrum of f. This in turn is used to show that ),., can converge to zero exponentially

fast even when thc Oondilfion A is not satisfied. Thcorcm 3.6 givcs a lowcr bound for kt., under a mild

condition on the order of zeros of the function f.

2. PRELIMINARIES AND NOTATION.

Let f() be a real-valued Lebesgue integrable function defined on [-r,rr]. Let c be the kth Fourier

coefficient of f(O) i.e. e, e_i,,f(O dO =T,( i)i.,--o., ......-r’ k --0,+/- ,.... The matrix T, /) --( c,_ is

called the nth finite section of the infinite Toeplitz matrix (c_i) associated with the function f. Let rn denote
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the essential infimum of the function f and Xl, the smallest eigenvalue of the matrix T,(f). It follows from a

theorem of Szegq [3, p. 64], that as oo, Xl,, It is of

interest to find the rate of this convergc.,.., So far this rate has been found under the following regularity

(smoothness) condition on f [5, 6, 8].

Condition A. Let f(O) be real, continuous and periodic with period 2r. Let min f(O) --0--m and let

--0 be the only value of 0(rood 2r) for which this minimum is attained. Moreover, let f(0) have continuous

derivatives of order 2a in some neighborhood of --0 with f(2}(0) yg 0.

Under Condition A it is shown by Kac, Murdoch and Szego [5] and Parter [6] that

X1, rn--0(1-) (2.1)

In the following, without loss of generality, we assume that m -----0, i.e. f (a) _> 0. As a direct consequence of

the well-known Weyl- Courant lemma cf. [6, p. 155], one can identify k, as the solution of a variational

problem;

f I Ifo.A-, (2.2)Xl, =mn
where (0) die-q aad I111 =f I

,to
Id

i=0 i=0
----1. This identification provides a very useful

formula for finding bounds and consequently rates of convergences of ),,n to zero.

For a nonnegative function f, L(f) stands for the space of functions which are square integrable with

d Lerespect to the measure f on [- r,r] stands for the usual aebesgue space of functions on [- r,r].

3. BOUNDS AND RATES OF CONVERGENCE FOR )X
1,n"

In this section rates of convergence of X, to zero is provided for some functions f which do not necessarily

satisfy Condition A. This is done by showing that for any nonnegative Lebesgue integrable function f, X, is

dominated by the well-studied quantity , where A --dct T,,(f). One may find the results of the first part
A_

of this section a bit surprising. Since the rate of convergence of X,n to zero is much faster than (2.1) for some

functions which do note satisfy Condition A. This, in particular, shows that smoothness of f is not necessarily

required for fast rate of convergence of >,, to zero, cf. [5, 6].

LEMMA 3.1. Let / be a nonncgative Lcbcsguc integrable function defined on [- rr,r I. Let Xt, denote the

smallest eigenvalue of its associated Toeplitz matrix T(f). Then,

PROOF. For each n, let P, denote the class o1’ all a.n,dytic trigonometric polynonials of degree Icsb than or

equN mn. We have from (2.2) that

X,, min f I ICY dO
=rainf dO

IIII #o

< min
dO dO,,, f I, I: <_ f I I:

/(o)

for y P, with (0)=1. Next, we choose m be the unique polynomial in P, with (0)=1 which

dO
minimizes the ingraI f[ [=f over all Pn with (0) =1. It follows from a theorem of Szeg5 [3, p.38],

that

where {} is the sequence of orthogonormal polynomiNs obtained by orthogonormalizing the functions

g-
1,z,ze,..., in L2(f) and k is the leading coemcient of , i.e. k =. Thus,
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Since IIbll= _> 1, it follows that

dO

k,., <

Thts lemma provides an upper bound for ),,,, in rtns of the ratio . The later, in prediction theory of

a stionary smchtic process with spectrl density f, is identified the prediction error of a future vlue of the

process bed on n immedia pt observations. As such the ymptic behavior of extreme eigenvducs of

Toeplitz matrices T,(f) is relad e ymptic behavior or the fini prediction error of a stionary process

with the spectrM density f.

For a nonnegativc function f the set E defined by E ={0;/(0) > 0} is referred the spectrum of the

function f. For a set E in the complex plme r(E) sds for i Capity and r*(E) sds for our
capity. For e definition of ese rms see [1, 2].

The following theorem is immedia consequence of Theorem of Babayan [1] and Lemma 3.1.

THEOREM 3.2. Let f mad kt,, bc zm in Lcmma 3.1 mad r’(E) deno the our capacity of i spectrum E.
Then,

"lim S r "(E)

Thus, in order that X,,, should decree m zero at let exponentiMly n , it is sufficient that the our
capity of the spectrum of f be less th 1. As such the continuity d differentiability of f e not required

for the exponentii ra of convergence of X,,, zero. The next two examples provide more informaon on the

ra of convergence of X,,, zero for two specific functions.

EXAMPLE a.a. Le f be such la E= -,+ for some 0 < < . I is shown by

Rosenbla [7, p. 807] ag r’(E) =sin /2. Thus, in this ee, ig follows from Theorem .2

x, =o(.i/).

I is imporg m no ghag in his example he essengiN infimum m =0 is agained a uneounly many poin

d , in generN, hog ennuous on N or ag the endpin of N. Thus i doe no satisfy Cndiion A and

the ra of convergence of X,, is much fr th (2.1).

EXAMPLE 3.4. Let f(0) =cxp[(.2O-r).(O)] where (0) = ctn forsomc > 0 ltiscyshow

that for this f 0

r
lsin

so that f(0) h a very high order contact xvith zero only at 8 =0. It follows from Rosenblatt [7, p. 810] md

Lemma 3.1 th

Thus, by choosing lm’gc enough one cm obtain very ft ra of convergence of kt., m zero even when f(0) is

not differentile t =0.

In the rest of this section xve find a lower bound for kt,, corresponding functions f xvi f- L Agn

no reference is me continuity or differentiability of the function f. Of course, ingrbility of f- mposes

restriction on the order of zeros of f. It is cy check (by using Holder’s inequality) that for any L(f)

dOl cf 111 ,,viU, c=f /- dOf I1 2. 2 (3.S)

EOREM 3.6. Let f 0 with f-* L and k,,. denote flae smallest eigenvalue of T.(f). Then, for
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’" >- r"(n+1) 2’

where C Is a constant depending on f and
2r

PROOF. We have from (2.2) and (3.5) that

where the last inequality is obtained by using the Hardy’s inequality (Hoffman [4, p. 70]). Next, we need

show that

min Y]
k +--" n+l

I, =k=

since

_
ICl --l,,vehave0 _< Icl S :uid l,l,us Ic.l-_< Ic, lforallk, from which we get

Therefore,

[O, >
k=0 n+l =0

rain ’+i ,t-l
ic i..=

=o

mad note that the choice of (Co,el c,) --(0,0 0,I) attains this lower bound.

It, is interesting to compare the conclusion of Theorem 3.6 with the result of Kac, Murdock, and Szego [5, pp.

791-793] where similar bounds for kl,, is found for much smoother functions f.
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