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ABSTRACT. Let f be a nonnegative integrable function on [- 7,7}, T,(f) the (n+1) X(n+1) Toeplitz matrix
associated with f and X, , its smallest eigenvalue. It is shown that the convergence of Ay, to min f(0) can be

exponentially fast even when f does not satisfy the smoothness condition of KKac, Murdoch and Szego (1953).

Also a lower bound for X\, corresponding to a large class of functions which do not satisfy this smoothness
condition is provided.
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1. INTRODUCTION

Toeplitz matrices and operators arise in several areas of mathematics and its applications such as complex and
harmonic analysis, probability theory and statistics, signal processing and information theory, numerical analysis,
etc. Of particular interest in these areas are the determinant, and the distribution of the eigenvalues of finite
sections of an infinite Toeplitz matrix. In this paper we are concerned with the estimates on the asymptotic
behavior of the extreme eigenvalues of finite sections of Toeplitz matrices in the spirit of the works of Kac,
Murdoch and Szegd 5], Widom [9] and Parter [7]. While these authors are concerned with the asymptotic
behavior of extreme eigenvalues of finite sections of infinite Toeplitz matrices associated with continuous and
continuously differentiable functions f(6), 8 ¢ [- 7], see Condition A in Section 2, we study similar properties
of Toeplitz matrices which are associated with functions which are not (necessarily) continuous nor differentiable.

Our restriction on f involves either frequency or order (multiplicity) of zeros of this function on [-m,7].

Condition A imposes several severe restrictions on f which might be hard to verify or they may not be
satisfied in some areas of application such as the prediction theory of stationary processes and signal processing,
where f is viewed as the spectral density of a stationary stochastic process. As such f may have finitely many or
countably many zeros and thus min f(#) is attained at several points so that Condition A is not satisfied. In

view of this it is important to have some information about the rate of convergence of X\, to zero when

Condition A is not satisfied.

The main results of the paper are in Section 3. Thcorem 3.2 provides an upper bound for \; , in terms of
outer capacity of the spectrum of f. This in turn is used to show that X, , can converge to zero exponentially
fast even when the Condition A is not satisfied. Thcorem 3.6 gives a lower bound for \;, under a mild

condition on the order of zeros of the function f.

2. PRELIMINARIES AND NOTATION.

Let f(6) be a real-valued Lebesgue integrable function defined on [-m,m]. Let ¢, be the kth Fourier

T
coefficient of f(4), i.e. ¢ =f c"*'f(ﬂ)-g%, k =0,+1,.. . The matrix T, =T,(/) =(Ck-j)jk m0,1,...,n 1S
-z

called the nth finite section of the infinite Toeplitz matrix (¢, ;) associated with the function /. Let m denote
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the essential infimum of the function f and X\;,, the smallest eigenvalue of the matrix T,(f). It follows from a
theorem of Szegq (3, p. 64], that as n — o0, A\;,, — m It is of
interest to find the rate of this convergen,» So far this rate has been found under the following regularity
(smoothness) condition on f (5, 6, 8].

Condition A. Let f(0) be real, continuous and periodic with period 2r. Let min f(0) =0 =m and let

0 =0 be the only value of 0(mod 2m) for which this minimum is attained. Morcover, let f(0) have continuous
derivatives of order 2a in some neighborhood of =0 with f(2)(0) 5 0.

Under Condition A it is shown by Kac, Murdoch and Szego [5] and Parter [6] that
Ao = m =0(n"%) (2.1)

In the following, without loss of generality, we assume that m =0, i.e. f/(§) > 0. As a direct consequence of

the well-known Weyl- Courant lemma cf. [6, p. 155], one can identify X\;, as the solution of a variational

problem;
: do

Mo =min [ 16 Fig (2.2)

where ¢(0) =3 e and gl =] W F oL =

=0 g

formula for finding bounds and consequently rates of convergences of X , to zero.

n

Y'|d; P =1. This identification provides a very useful
¢ p

7=0

For a nonnegative function f, L%(f) stands for the space of functions which are square integrable with

respect to the measure f —;% on [-m,7]. L¥ stands for the usual Lebesgue space of functions on [-,x].

3. BOUNDS AND RATES OF CONVERGENCE FOR >\1,n'

In this section rates of convergence of \;, to zcro is provided for some functions f which do not necessarily

satisfy Condition A. This is done by showing that for any nonnegative Lebesgue integrable function f, Xy, is

dominated by the well-studied quantity

A
X . where A, =det T,(f). One may find the results of the first part

n-1
of this section a bit surprising. Since the rate of convergence of X, to zero is much faster than (2.1) for some
functions which do note satisfy Condition A. This, in particular, shows that smoothness of f is not necessarily

required for fast rate of convergence of \; , to zero, cf. [5, 6.

LEMMA 3.1. Let / be a nonncgative Lebesgue integrable function defined on [-m,m]. Let X, , denote the
smallest eigenvalue of its associated Toeplitz matrix T,(/f). Then,

A,
Mw € ) n =12,
n-1

PROOF. For cach n, let P, denote the class of all analytic trigonometric polynomials of degree less than or
equal to n. We have from (2.2) that

_ op d0 1 e, d0
Mo =min JBPS g =min =l WET 5
igll, =1 $0
. 1 o, dl 1 ¢ o, d0
< min —— o [F) — < ——— 2f —
FBTn P e S W

for any ¥ ¢ P, with $(0) =1. Next, we choose ¥ to be the unique polynomial in P, with ¥(0) =1 which
minimizes the integral [ |¢ [£f _“;ii over all ¢ ¢ P, with $(0) =1. It follows from a theorem of Szegd (3, p.38],
o

that
=k ¢,

where {$,} is the sequence of orthogonormal polynomials obtained by orthogonormalizing the [unctions

An- 1

A Thus,

1,z,2% ..., L% [) and k, is the lcading cocflicient of ¢,,, i.e. k, =
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do A,
2r 2 =k | — .
J Wi o " Ay
Since ||$]lz > 1, it follows that
A,
Ma <
e = An-l
. . A'l "y . . .
This lemma provides an upper bound for X, , in terms of the ratio o The latter, in prediction theory of
-1

a stationary stochastic process with spectral density f, is identified as the prediction error of a future value of the
process based on n immediate past observations. As such the asymptotic behavior of extreme eigenvalues of
Toeplitz matrices T,(f) is related to the asymptotic behavior of the finite prediction error of a stationary process
with the spectral density f.

For a nonnegative function f the set E defined by E ={0;f(0) > 0} is referred to as the spectrum of the
function f. For a set E in the complex plane r(E) stands for its Capacity and 7°(E) stands for its outer
capacity. For the definition of these terms see [1, 2].

The following theorem is an immediate consequence of Theorem 1 of Babayan {1] and Lemma 3.1.

THEOREM 3.2. Let f and Xy, be as in Lemma 3.1 and 7°(E) denote the outer capacity of its spectrum E.
Then,

fim ¥X,, < 7°(E).

Thus, in order that X\, , should decrease to zero at least exponentially as n — oo, it is sufficient that the outer
capacity of the spectrum of f be less than 1. As such the continuity and differentiability of f are not required
for the exponential rate of convergence of \; , to zero. The next two examples provide more information on the

rate of convergence of X\; , to zero for two specific functions.
EXAMPLE 3.3. Let f be such that [ =[%— a, -72r—+ a] for some 0 < a < % It is shown by
Rosenblatt 7, p. 807] that 7 °(E) =sin /2. Thus, in this case, it follows from Theorem 3.2 that

Ma = O(sina/2).

It is important to note that in this example the essential infimum m =0 is attained at uncountably many points
and f, in general, is not continuous on E or at the endpoints of E. Thus it does not satisfy Condition A and yet

the rate of convergence of X\, , is much faster than (2.1).

EXAMPLE 3.4. Let f(0) = cx;)os2o0(;7;(q;))0 , where ¢(0) =—;— cn 0 forsome a > 0. Itis casy o show

that for this f as § — 0

s

f(o) ~2 exp{— |€I}'51n 0|F
so that f(8) has a very high order contact with zero only at # =0. It follows from Rosenblatt [7, p. 810} and
Lemma 3.1 that

A =0(n"%).

Thus, by choosing a large cnough one can obtain very fast rate of convergence of X, , to zero cven when f(0) is

not differentiable at § =0.

In the rest of this section we find a lower bound for \; , corresponding to functions f with f~'e L' Again

no reference is made to continuity or differentiability of the function f. Of course, integrability of f~! imposes
restriction on the order of zeros of f. It is easy to check (by using Holder’s inequality) that for any ¢ ¢ L%(f)

2

2
[f li/)l%] <c[ wks 7_;"—:—, with C=| e (3.5)

THEOREM 3.6. Let f > 0 with f~'¢ L' and X, denote the smallest eigenvalue of T,(f). Then, for all
n>1,



o
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1
Mg 22—,
b = m2C(n+1)?
. -y do
where C 1s a constant depending on f and C =f S el

PROOF. We have from (2.2) and (3.5) that

2
) o, dO )
N —_U:;j:f o s w2 ' g"" J b1 3 ]

¥ll,=t I$ll,21

ll

2
[f 1zce*'|——] (20)" min {33 k"]
gl

where the last inequality is obtained by using the Hardy’s inequality (Hoffman {4, p. 70]). Next, we nced to
show that

n e | __1
k+1 n+1"

min

"
e F=lk=o
£=0

n
since Y5 |ef) =1, we have 0 < ¢ | < 1 and thus |e [P < e | for all &, from which we get
k=0

n
fe | 1
Skl T el loe | 2 < + |"|2 n+1

k=0

Therefore,

e | 1
; » > 1
Lo Zo b+ T oal’]
Y e IP=t
k=0

and note that the choice of (¢,,¢y, - . ., ¢,) =(0,0, ...,0,1) attains this lower bound.

It is interesting to compare the conclusion of Theorem 3.6 with the result of Kac, Murdock, and Szego (5, pp-
791-793] where similar bounds for X} , is found for much smoother functions f.
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