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ABSTRACT. This paper deals with the behavior of solutions of ordinary differential

equations in a Hilbert Space. Under certain conditions, we obtain lower estimates

or upper estimates (or both) for the norm of solutions of two kinds of equations.

We also obtain results about the uniqueness and the quasi-uniqueness of the Cauchy

problems of these equations. A method similar to that of Agmon-Nirenberg is used

to study the uniqueness of the Cauchy problem for the non-degenerate linear case.

O. INI-RODUCTION.
In this paper the behavior of the solutions of ordinary d:fferentidl Equations in

a Hilbert space are studied.

In Section we study two problems for two types of equations.

Let H be Hilbert space with scalar hroduct o,,) and the corresponding norm

’il- Let us consider the equation

du
t B (t,u(t)) (0.I)

where t (0,I]. If t m O, u(t) has a derivative with respect to t and u(t)
is an element of H, in other words, u(t) C I (I, H). B(t,-) is a pon-linear map
from H to H for every t with domain DB a dense subset of H.

Fo this equation we study the behavior of its solutions as t+O. Under some

conditions, we obtain lower estimates or upper estimates (or both) for the norm of

solutions of equation (0.I). We also obtain results about the uniqueness and the

quasiuniqueness of the Cauchy problem for this equation.

Note that equation (0.I) is not an equation of the normal type in the Cauchy-

Kovelevsky sense.

Let us consider the equation

du: B (t,u(t)) (0.2)

where t e T [I,). If t e , u(t) has a derivative with respect to t and u(t)

is an element of the Hilbert space H. For every t e I, B(t,-) is a non-linear map

from H to H with domain DB, a dense subset of H.

For this equation we study the behavior of its solutions as t . Under some

conditions we obtain lower estimates or upper estimates (or both) for the norm of

solutions of equation (0.2). We also obtain results about the uniqueness and the

quasiuniqueness of the Cauchy problem for (0.2). We do not require smoothness or a

Lipshitz condition on B(t,u).
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In the first part uf section we study equation (0.I), in the secofd part,
equation (0.2). In the third part we investigate graphs of lit’(.t)II and the unique-
less of the Cauchy problem for equations (0.1) anG (0.2) and ir part 4 we study
several examples of quasi-liwear oralnary and prtial differential equations.

Our resuts for equation (0.1) are like the results of AIInhac-Baouendi [1] and
our estimates for (0.2) are similar" to those of Agmon-Nirenbert [2,3]. In Section 1
for a special case of B(t.u) it is possible to obtain these Fesults utilizing only
the first derivative of u(t). However, the results of Amon-Nirenberg for a linear
ca_e are more exact and 6eep. In Sectio 2 we use a meShod similar to Agmo}-Nirenberg
te obtain results concerning the quasiuniqueness for a special case of equations ((;.I)
and (0.2.

In Section 2 we study te same problems for special types of equations (0.1) and
(0.2) where

)uB (t, u) -[K(u) ] (0.3)

Here t T (0,1], x R er x , compact, ula O, and K(u) is a real-

valued function from C H is a Hilbert space L2()
For this type of equation we study the behavior of its solutions as t O. We

obtain esimates which can be used for the study of uniqueness and the quasiuniqueness
for Cauchy problem.

In part 1 of section 2 we study the case of K(u) with K(O) O, in part 2 we
study the equation (0.2) with the same B(t,u) as in (0.3) ar.d in part 3 the case
K(O) 0 is examined. In part 4 convexity of the norm of the solutions of these
equations is studied. Ir. addition we examine (0.1) when B(t,u) has the following
fore

I(t, u) @ Bu
:T [K(u)T] + A(,u)

where A(t,u) is a bounded operator. The main results of Section 2 are Theorem 2.5
for equation (0.1) and Theorem 2.6 for (0.2).

We use in Section 2 the method which was use first by Agmon-Nirenberg in the
study of uniqueness of the Cauchy problem for non-degenerate linear case [1,3]. We
use a modification of this method from [].

We will use the following definition"
DEFINITIOI 1. Let us consider scalar function f(t) in the interval [0,1]. A
function f(t) is called flat at the point t 0 if for any n O, t-nf(t)/ 0
est O.

DEFINITION 2. We say that the quasiuniqueness takes place for equation (0.1) if from
flatness of u(t), it follows that u(t) O.
1. STUDY OF DIFFERENTIAL EQUATIONS (0.1) and (0.2).
EQUATION (0. I)
Let us now consider the equation

du B(t,u(t))t (I I)

under the same conditions on B(t,u(t)) as above.

THEOREI I.I. Assume that the following condition is satisfied:

B(t,u(t))B < C Bu(t)I (1.2)
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For some constant C O. Ir this case, the domain ef B is all Hilbert space H for

each t I. Then for eacF solution u(t) of (1.1) from C’(I,H) the following

estimates hol with the same C as in (1.2)"

u(t)!I > IIU(to) (0)C (1.3)

for each to and t to and

t -Clu(t)ll flU(to)If (TO (I.4)

for each to and t tO.
PROOF. From (1.1) ater taking the scalar product with u(t, w get

du u(t)) (B(t,u(t)),u(t))
and

du dRe (t , u(t)) t (u(t),u(t))

From (1.2), we obtain

-C(u(t),u(t)) _< Re (B(t,u{t),u(t)) C (u(t),u(t))

If now q(t) (u(t),u(t)), then for q(t), we have the two inequalities

1/2t ddtt _<. Cq (t)
and

1/2t ct > -Cq (t)

From the first of these inequalities after rewriting we obtain

t- 2Cq el(t) <_ 0

If q(t) > 0 in the interval (t2,to), we have

i (t)t---- 2C _< 0q q

From the following equation

d__ 2C ()
[In q(t)] --+dt tq(t

and

and since

t i() t t
q()-dIn q(t) In q(tO) /to q(i)-d 2C InT0 + /to

t i()
q(t) q(to)e2C In (o).exp (I q(") d)

to

e2C In (0)= (t)2C
and 1 (t) _< 0 , q() m 0 and t < to we have

t 1() to 1()exp (I q() d) exp (- I d)
tO to

q(

@i ()where q()-_> 0 for each .
It follows that
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and

i.0
I d 0 for each t .; t

t

tocxp (- I Tq d) >_ 1 for each t < tot

From this we obtain

q(t) q(to (t) 2C

for ]iu(t) estimate (1.3) follows.
To show estimate (1.4), use the inequality

1/2 t (t >- Cq (t)

aFd define 2(t) b)

Then

and for q(t)

Since

and

we have

t + 2Cq ,2(t) > 0

d Zc + 2
(t)

[In q(t)] - .tqL(t.)

to 2()q(t) q(to)C-2c In( exp f dT
to

-2 In(o)= (0)-2C
2()
q()

<_ 0 for each T

t 2() to 2()exp (I dT) exp (-I q-()-d) < I
tO t

for each t < to
From this we obtain

q(t) < q(to (0)-2C
and for u(t) we have estimate (1.4).
REMARK 1.1. Our estimates (1.3)-(1.4) are exact and it is impossible to improve

these. This may be seen by observing

i) that the following function u(t) u (to (t) c
is a solution of

equation (1.1) with B(t,u(t)) Cu(t) and u(t)It=t
0

U(to), and

ii) that the following function u(t) u (to) (0)-C is a solution of

equation (I.I) with B(t,u(t)) -Cu(t) and u(t)It=t
0

U(to).

THEOREM 1.2. Let us assume that u(t) is a solution of equation (1.1) with condition

(1.2). If u(t) satisfies
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t
-c Bu(t)li-, o as t-. 0

with the same C as in (1.2), then u(tl 0 in inte’val I.
PROOF. The proof follows immediately from our estinte (1.3).
DEFINITION . We say that C-uniqueness for equation (I.I) takes place at the point

t O, if there exists constant C > 0 such that from the following conditiow

t
-C llu(t)l; 0 as t 0

we obtain that u(t) 0 in the interval I. Recall that the classical uniqueness is

C-unique:ess with C=O. In other words, it is possible to formulate our Theorem 1.2
in the following form:

THEOREM i.2a. Under conditions Gf Theorem ;.I, C-uniquer.ess takes place at the point

t 0 tOF solutions ef equation (].1).
From the proof of Theorem 1.1, it is easy to see that it cap also be used to

obtain similar one-sided estimates for un-bounded B(t,u(t)). Namely, we have the

fol lowing theorem.

THEOREM 1.3 i) If

Re(B(t,u(t)),u(t)) > -C u(t)I 2 (1.5)

for some consta,t C _> 0 for each u(t) from a dense subset DB of the Hilbert

space H, then for each solution of equation (1.1) we have the following estimate with

the same C as in condition (1.5)-

)u(t) < )U(to) (1/2)-C for t tO (1.6)

ii) If

Re(B(t,u(t)),u(t)) <_ C u(t) CI.7)

for some constant c > 0 for each u(t) from a dense subset DB of the Hilbert

space H, then for each solution u(t) of equatiom (1.1), the following estimate

holds with the same C as in conditio (1.7):

)u(t)l )U(to)ll (1/2)C for t tO (1.8)

REMARK 1.2. Our estimates (1.6),(1.8) are exact and it is impossible to improve them

(see Remark 1.1).

REMARK 1.3. Recall that we do not require smoothness of B(t,u(t)). In the same way
as Theorem 1.2, we have from Theorem 1.3 that the following statements holds.
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THEOREM 1.4. Let us assume that (t) is a .clutlon of equation (i.I) with condition
(1.7’. If u(t) satisfies

t-C Bu(t) 0 as t 0 (1.9)
wlth saF,.e C as in (].7 ,, then u(t) 0 in interal I. In other ords, fir,tier
copcition (1.7) C-uniqueness takes llace at the peint t 0 for solutions of equa-
tion, (1.1).

EQUAIIO! (0.2).
Let us consider the equation

du
d B(t,u(t)) (] .1G)

in the interval [ [1,+ (R)) and with the same ccrcitons on B(t,u(t)) as above.
After the change

(1.11)

we obtain from equation (1.10) the following equation

du B(s u())S
in the interval (0,1].

The equation (1.12) is an equation ef the same type as equation (1.1). Fecause of
this, it is possible to rewrite Theorems 1.1-1.3 for this situation.

DEFIN!TION 4. We say that C-uniqueness for equation (].10) takes place at the point
t +, if there exisfs cunstant C 0 such that from the conoition

Cte u(t) 0 as t O

implies that u(t) 0 in the interval ]. Recall that the classical uniqueness at
the point t + may b formulated as C-uniqueness with C O.

THEOREM 1.5. If the following condition is satisfied

Re(B(t,u(t)),u(t)) >_ -C u(t) 2

for some constant C, for each u(t) from a dense subset DI of the llilbert space
H, then for each solution of equation (1.10) we have the following estimate with the
same C as in (1.13)-

lu(t) < lU(to)eC(t’to (1.14)

for each to and t > to
PROOF. The proof follows from the proof of Theorem 1.1.

THEOREM 1.6. If the following condition is satisfied

Re(B(t,u(t)),u(t)) <_ C lu(t)l 2
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for some constant C, TOr each u(t from the de:se subset DB of the Hilbert space, then for each solution u(t) of equation (I.I0) thc following estimate holds witI

the same C as in I.15)

flu(t)" C(t-to)llU(to)li e- (1.16)

proof follows from the proof of Theorem 1.3.

GRAPHS CF
From proof of Theorem 1.1, it is easy to see that the following staen,ent is true.

THEOREM 1.7. Let us assume that one of the followin cnditios is satisfied for each

non-trivial u(t)-

i) II(.,u())Ii c Ilu()II 2 (1.17)

or some constant C anC for each u(t) 0 from the Hilbert space H, or

ii) l(B(t,u(t))l C I!u(t)II 2

for some constant C anC. or each u(t) m 0 from a dense subset DB of the Hilberz

space H, or

iii) IRe(B(t,u(t)),u(t))l C u(t)I 2 (1.19)

for some constant C an( for each u(t) m 0 from a dense subse DB of the Hilbert

space H.
Then for each non-trivial solution u(t) of equation (1.1) from CI(I,H) the follow-

ing estimates hold"

u(t)ll > [lU(to)ll(o)C for t < to
and

Ilu(t) lU(to)(t) -C for t < tO
From (1.20) and (1.21) we have that the following functions

(1.20)

(1.21)

i) Bu(t)B t-C (1.22)

ii) Bu(t) tC (1.23)

are strongly monotonic in the interval I. The function defined in (1.22) is decreas-

ing and the functions in (1.23) is increasing in this interval.

Namely, from (1.20) we obtain that for each pair, t, t I with t < t1, then

Ilu(t)ll t-c > u(tl)lltl-C (1.24)

In a similar way, we obtain from (1.21) tha for each pair, t, t I, with t < t 1,
then
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l’u(t)l! tc llu(t)lltlc
From this, we obtain the io!lowing st::tement:

THEOREM 1.8. i) Under the conditions of Theorem 1.7 it follews that each non-

trivial solution u(t) of equation (I.I) satisfies u(t) O,

(0,I].

ii) Let u(t) be a solution of equation (I.I) unGer conditions of

Theorem 1.7. If u(tO) 0 at a point to . (0,1], then

u(t) 0 in the interval (0,1].

PROOF. ii) follows from i), and i) follows from our estimates (1.20) and (1.21); in

other words, from the monotonicity conditions (1.24) and (!.25).
!n a similar way from Theerem 1.3 we obtain the following statement:

THEOREM 1.9 i) If the following condition is satisfied

Re(B(t,u(t)),u(t)) -C llu(t)ll 2 (1.26)

for some constant C, for each u(t) = 0 from a dense subset DB ef the Hilbert

space H, then for each non-trivial solutior k,’(t) of equation (I.I) we have the

following estimate with the same C as in (I.26):

for t < tO (1.27)

Re(B(t,u(t)),u(t)) < C u(t)

for some constant C, for each u(t) m 0 from a dense .subset DB of the Hilbert
space H, then for each non-trivial solution u(t) of equation (1.1) we have the
following estimate with the same C as in (1.28):

llu(t)B > llU(to)B(o)C for t < tO (1.29)

REMARK 1.4. From (1.27) ano (1.29), we have that in the situation of Theorem 1.9 ii)
the function (1.22) is strongly monotonic and in the situation of Theorem 1.9 i), the
function (1.23) is strongly monotonic; since our estimates (1.27) and (1.29) are true
for each pair t, to, in I, with t tO From the montonicity of these functions,
we obtain the following statement:

THEOREM 1.]0 i) Under the conditions of Theorem 1.9, each non-trivial solution
u(t) of equation (1.1), satisfies u(t) 0 for each t (0,I].

ii) Let u(t) be a solution of (1.1) under conditions of Theorem 1.9.
If U(to) 0 at a point tO (0,I], then u(t) 0 in the
interval (0,1].
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PROOF. ii) toliuws from i), rc i) follows from our estimates (1.27) and (1.29).
REMARK 1.5. From Tleorems !.7-1.9 we see that each non-trivial solution u(t) under

the cor:ditions of those theorem has, at most, one point, t G, where u(t) t 0 0

or perhaps u(t is not defined It is pc-sible to rewrite the theorems of this’t--O
section for equation (G.2).

EXAMPLES.
1. Let u(t) be a vector. For u(t), we have a system of ordinary differential

equations in the form (I.I). In this case, H is a iinite-6imension Hi!bert space
and B(t,u(t)) is bounded. In this situation, from Theorem I.I, we have both
estimates for ilu(t)ll. If for example, u(t) is a solution of the equatier.

dut- f(t,u), f(t,O) 0 and IIf(t,u)l! < C Ilbl’. (1.30)

R Iwith bounded f(t,u) for each t and each u and if a solu:ion u(t) of
this system satisfies the condition

t-C u(t)l! 0 as t 0

.then u(t) is trivial.

In this situation, we have two estimates for each solution of (1.30).

U(to)(-o)C <_ u{t) < (to){t) -C for t < tO

For each > O, we also have the following estimates,

(t)C +U(to) u(t) lU(to)(__)-(C + )

and from this we get uniqueness for (1.30) in the following sense:

If u(tO) 0 for to > O, then u(t) 0 in I.
If u(tO) m 0 for some to > O, then u(t) 0 in (0,1].

2. Consider the following equation

Bu B [K(u) Bu.t B B-- -J + T(u) (1.31)

in the domain x I, I(0,I], R C RI, with ulB 0 and H L2(). K(u) is a

real valued continuous function and T(u) is bounded in the following sense:

BT(u) < C lu

i) If K(u) > O, then we have the situation of Theorem 1.3 ii) and for

each solution of.equation (1.31) the following estimate holds,

Ilu(t)l$ > )U(to)Ii( t )c

for t tO where C depends on T.
In this case, we have uniqueness for the Cauchy problem of equation (I.31) in the

following sense:

If u(tO) 0 for tO > O, then u(t) m 0 for each point t in the interval

(0,I].
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This fellows immediately from the estimate

for t < to and each O.

In this case we also have C-uniqueness at the point t O.

ii) If K(u) _< 0 then we have the situation of Theorem 1.3 i) and for each
solution of equation (1.31) we have the following estimate

u(t) U(to)II (t) -C

for t < to where C depends on T in the sense

ilT(u)l _< C BuB

In this case we have uniqueness in the following sense- If u(tO) 0 for tO > O,

th.en u(t) 0 in the interval (0,I], and if U(to) 0 for to > O, then

u(t) 0 for each point t in interval (0

3. Consider the following equation

@u
n

@

@-i]
+ T(t,x,u(t,x))t T iI::l [ai(t’x’u(t’x’u(t’x)) u (1.32)

where t ( (0,I], x CRn and

functions, and bi(t,x,u) Re ai(t,x,u).
O, H L2((1), ai(t,x,u all continuous

i) If bi(t,x,u O, I n, and Ee(T(t,u),u(t)) <_ C llu(t) 2 for

some constant C, then we have the situation of Theorem 1.3 ii) and for

each solution of equation (1.32) we have the following estimate

u(t) < U(to)(t)C for t < to

In this case we have uniqueness for the Cauchy problem (1.32) in the following senses"

If u(tO) 0 for tO > O, then u(t) 0 in the interval (0,1].

If u(tO) m 0 for tO > O, then u(t) m 0 for each point t in the interval

(0,I].

These results follow immediately from the estimate,

(t__)c +)u(t)) > )U(to) to
for t < tO and > O, and from the results of 3. In this case we have C-unique-

ness at the point t O. If C 0 we have the following estimate

u(t)ll >_ U(to) for t tO
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and if -C > 0 we have

(t__)cIlu(t)II >_ flU(to) to for t > to

In this case each non-trivial solution of (1.32) is always increasing for t O,

llu()++ as o.

ii) If bi(t,x,u < O, 1,...n, and Re(T(t,u),u) >- -C llu(t)B 2 for

some constant C, then we are in the situation of Theorem 1.3 i) and

for each solution of equation (1.32) we have the following estimate:

lu()B -< IlU(o)II(t) -c

In this case we have uniqueness ol the Cauchy problem (1.32) in the following sense:

If the solution u(t) of (1.32) is equal to zero at a point t to > O, then

it will be equal to zero at each point t in the interval and if u(tO) m O, then

u(t) 0 ip. the interval (0,1]. If C O, then

)u(t)) )U(to)

for t < tO and each solution of equation (1.32) is bounded. If C < O, then

)u(t)ll < )U(to)) (-o)-C
for t < tO and in this case, the solution of equation (1.32) is always decreasing

for t O, u(t)B 0 as t O. It is possible to rewrite these examples in form

(0.2).
2. SPECIAL CASES OF EQUATIONS (0.1) and (0.2).
CASE K(O) O.

Consider the equation

)u B [-K(u) Bu (2 1)t @t Bx

where t T (0,I], x R or Rcz R and ulBn O.

K(u) is a real-valued function. If K(u) < 0 then the quasiuniqueness result

follows from 1.4 of Chapter I. Let u(t) be a nontrivial solution of equation

(2.1). After taking the scalar product with u(t) we obtain from (2.1)

(t , u) (-- K(u)--, u)

Bu Bu)+ (K(u) -, -If we set q(t) (u(t), u(t)) we have for q(t)

t q(t) 2 Re(t Bu, u) + 2(K(u) Bu Bu, --) (2.2)

If K(u) is differentiable we may differentiate this equation with respect to t.

Letting t-f[ D, we have
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2 + 2t @ @u @u K’(u)D(u) @uDq (K(u) T’ T + 2[( u T’ T + (K(u)t

Bu B2u @u @u @u @2u+ (K(u) , t @---, + 2[(Ku(U Du T’ -) + 2 Re(K(u) T’ t a--,]
If u is twice continuously differentiable with respect to t and x, then

@2u @2u @u @2u Bu 2u
BtBx BxBt and so Re (K(umBx’ t atax) Re (K(u)mBx, BxBt)

Re (. K(u) , t T) (- [-K(u) ], T- K(u) T) T T

T [- K(u) Bx]B"
From this we have

au au a au 2D2q 2(Ku(U)Du--, --) + 4 K(u)

If T 1 (tl,t0) is a subinterval in T, when u(t) 0, then q(t) = 0 in T1
and so

and hence

au au 2
(Dq)2 4(K(u) , -)

q q

a au u ]24[- (- K(u) ,

2(K’(u)Du + 4q u , --) u

a au 24[( [- K(u) -j,u)]
q

For each u we have that

4[( [- K(u)3,-a au 2 >0

and from this we conclude

D2q_ (Dq) 2

q
> 2(K’(u)Du au au

u T’ T (2.3)

If (t) In q(t), then

D2q- zDq
q q q

and for 6(t) we have

2(K.’(u)Du au au

’ ) (2.)D2(t) > q(t)

and

2(K(u)Du au au

"" ) (25)DJ(t) q(t)

LEMMA 2.114]. Let (t) be a twice differentiable function in the interval

T (0,1], satisfying the following second-order differential inequality

D2(t) + t(t)ID(t)l + tB(t) > 0 (2.6)
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where a(t), B(t) are non-negative continuous functions in the interval [0,I]. Then
for each solution of (2.6) there exist non-negative constants , , such that

(t) _> (to)+ v In Co)+ In (0)
or

() texp (t) >_ [exp (to) ] (v) (2.7)

where v depends on a(t) and B(t) only, and depends on a(t), B(t) and the
solution (t).
PROOF. From (2.6), it follows that

D:9(t) + C tID(t)I + C t _> 0

By the change of variable

.we have for (t)

() + c e-l&()l + c e- > O.

From Lemma 1.2 of [2] we get

() > (0 + min {0,(0)} eCe0 (-TO) ceCe0eTO(_O
or,

to() > (tO) + min {O,to(to) exp )In (--)
tC exp to-1 In------ l(to) + max O,-to(to)t ep In to

+ C exp (0) to-1
where

and

t (to) In t tIn (tO) + p + (tO) In to

i(tO) max {O,-to(to)} exp (0)
u(tO) C exP(t to-I

REMARK. In the similar way from the second-order inequality of the type

D2 (t) + ta(t)ID(t) + tb(t)> 0

we obtain for (t) the following estimate

(t)v texp (t) > exp (to) )P for t < to

From this lemma we see that if a solution u(t) of equation (2.1) satisfies the
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fol lowing condition

then

(K’ (u)Du uax’ -) -> t(t)l (K(u) @u _u}-, @x.
tB(t)q(t)

() oq(t) > q(to )"

(2.8)

(2.9)

Hence if u(t) is a flat-solution of equation (2.1) satisfying condition (2.8), then

u(t) =_ 0 in T. It is possible to restrict condition (2.8) and to rewrite it in the

fol lowing form

CONDITION C:
For each v(t,x) there exists a constant C depending on v such that

K’(v)vt + CK(v) > 0 (2.10)

for each (t,x), x , t c T (0,() and > 0

THEOREM 2.1. Let u(t) be a C2 non-trivial solution of equation (2.1) and K(u) be

a real-valued function satisfying condition C. Then for u(t) we have the following

estimate

llu(t) BU(to) t+ for t to (2.11)

with u depending on K and tO depending on K, tO and the solution u(t).
PROOF. This follows immediately from the previous discussion and Lemma 2.1.

Let us now consider the following differential inequality in the interval (0,1],

f’(t) + cf(t) >_ 0 (2.12)

Define (t) by

f’(t) + cf(t) (t) > 0

and so

[eCtf(t)] eCt(t)

After integrating we have

teC <eCtf(t)-eCtOf(to I ()d, t toto
where

IteCT()d < 0
tO

since t < to and () > O. From this we have

Ctof <eCtf(t) e (to) < 0 t tO (2.13)
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for each pair of points t, tO in the interval T (0,I) with t < to In other
words, the function eCtf(t) will be monotonic and does not decrease in the interval
(O,I).

From (2.13) we have

-c(t-tO) C(to-t)f(t) < e f(tO) e f(tO) (2.14)
Now we can rewrite Condition C in the following form:

For each u(t,x) there exists a constant c such that K(u(t)) as a function
of t will satisfy condition (2.14) for (t,x), x R, t T.

In other words, K(u) as a function of t increases as t / 0 -no more than
-cte

For example, if K(u) is a monotonic decreasing functioi with K(O) > O, then

K(u) satisfies our condition with c O. From this discussion we have the following

theorem.

THEOREM 2.2. Let u(t) be a non-trivial solution of equation (2.1) under condition

C. If u(t) is flat then u(t) 0 in the interval T (0,I).
REMARK 2.. We can obtain in the some way results for an inequality of the type

u [K(u)] C ut -T" -COROLLARY 2.1. Let K(u) be continuous awld differentiable at the point u O. If

K(O) O, then quasiuniqueness takes place for the equation

Bu B [-K(u)t ;)t @x

PROOF. If K(O) = 0 we have the two following cases.

1) If K(O) < 0 quasiuniqueness follows from Example 2 of part 4 of Section 1.

2) If K(O) > 0 and K’(O) is bounded, then there exists for each u(t) with

flat norm u{t) ), an > 0 such that for t [O,E]
K’u’ + C K(u) 0

and in this case the quasiuniqueness takes place also. This follows from

Theorem 2.2.
THE NON-GENERATE EQUATION.

Consider the following equation

;)uBt ;);)x [K(u) x] (2.16)

where t T [I,+ (R)]. After the change of variables

-ts=e

we obtain from equation (2.16) the following equation

s ;)- ;)-- [K(u) ] (2.17)

where

s T (0,1]
The equation (2.17) is the same as equation (2.1), and hence it is possible to rewrite

all of our theorems for equation (2.16)
For equation (2.16) we have a condition analogous to condition C.
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Condition C’. For each v(t) there exists a constant C depending on v such

that

K’(v)v + Ce"t K(v) 0

for each (t,x), x l, t > N for some N.
The following theorems follow immediately.

THEOREI 2.3. Let u(t) be a non-trivial solution of equation (2.16) and K(u) a

real-valued function satisfying condition C’. Then for u(t) ve have the following

estimate

)u(t) > M U(to) e-Vt e"pt (2.8)

where depends on K and to and p depend on K, tO and u.

THEOREM 2.4. Let K(u) be a real-valued function satisfying condition C’. Let u(t)
be a solution of equation (2.16) satisfying the following condition

for each positive C,ect )u{t)) 0 as t +

Then u{t) 0 in the interval i [1,+ (R)).
COROLLARY 2.2. Let K(u) be continuous and differentiable at the point u O.
Suppose K(O) = O, and K’(O) is bounded. Let u(t) be a solution of equation

Bu ) Bu
T W [K(u) W]

satisfying the condition

)u(t) e"ct 0 as t + for each positive c.

Then u{t) 0 in the interval T [1,+ (R)).
This Corollary follows from Corollary 6 of 2.

CASE K(O) O.
In this section we obtain results about quasiuniqueness for equation (2.1) in the

case K(O) O.
Let us consider the equation

t i)ul)t i)i)x [K(u) --ux] (2.19)

where t T {0,I) and K(u) is differentiable with respect to u, K{O)= O,

x cRI, ul) O, and $ is compact.
In this case K{u) u Kl{U) where Kl(U) is continuous. From this we obtain

(t, u) (K(ul W,W)
If

and T I (tl,tO) is a subinterval in T such that q(t) 0 in TI, we may

introduce a new function v(t) by the formula

v(t) =u__q1/2(t)
or

u(t) q1/2(t) v(t)
After taking the scalar product of (2.19) with u(t) we obtain the followiwg equation
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for q(t)

3/
t ’(t):- (K(u)au au

T’ -) q (" VKl(vq1/2) T’Bv )@v

Let u(t) be a C solution of (2.19) with flat norm or, in other words, with

flat q(t). Then the following function

u6(t) q6(t)v(t)

is flat for each 6 > 0 and

v(t)q6(t) @X
Thus it is possible to rewrite the equation for q(t) in the following form

3/ au 6 @u 62-26 vq1/21/2 t q(t) q (- v KI( a---’ aT
Since

aug au 6 au 6[(- v Kl(Vq1/2) a-R-’ --)I IKl(Vq1/2)l 2
Kl(Vq1/2 is continuous in a neighborhood of the point q 0 there exists aand

constant C > 0 such that

IKl(vq1/2)I < C for q < 0

and the following inequality for q(t) holds,

3/2_26 au6tq>_2Cq -R-
2

au6From the smoothness and flatness of u(t) we see that - is flat and bounded
From this we obtain the following inequality

26t q 2C q for q < c0
with the constant C’ depending on u(t) itself. Since q(t) 0 as t 0, for

each 6 > 0 there exists > 0 such that

2C’q3/-26 < 261 q if t c (O,c), 6 < I.
Here the constants c, 61 depend on q(t). If

(t) In q(t)

we have for t < ,
t (t) < 261

or a In t] < 0t -[ [(t) 261
From this we conclude that

z(t) 261 In t

is monotonic in the interval (0,) and it is not increasing. Thus for t < tO we
have
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(t) 261 Ir t > (tO) 2 I In to

or

or

and hence

(t) (to) > 2c. I In to
In > 261 In to
q(t) > q(to) (0) 261 for t to <

For u(t) we have the following estimate

Iiu(t)ll > U(to)(t-) 61 (2.20)

From estimate (2.20) we obtain the quasiuniqueness for solutions of equation (2.19) in

the case K(O) O.
From this we obtain the following statements.

THEOREM 2.5. For a real-valued function K(u) C 1 quasiuniqueness takes place at
th’e point t 0 for equation (2.19).
THEOREM 2.6. Quasiuniqueness takes place at the point t + for the equation

(2.16) for every real-valued function K(u) . C 1.
Remark 2.2. Theorem 2.5 completes the Corollary 2.1 of I and Theorem 2.6 completes
the Corollary 2.2 of 2.

CONVEXITY OF THE NORM OF A SOLUTION. THE INFLUENCE OF A BOUNDED OPERATOR.
First we study the convexity of the norm of a solution of equation (2.1). It is

possible to obtain the same type of convexity as in Hadamard’s three circles theorem.
In the linear case, there are complete results on this type of convexity [1,2]. After
this, we study the influence of a bounded operator on the quasiuniqueness at the point

t=O.
Let u(t) be a C2-solution of equation (2.1) under the same assumptions as

above, and K(u) > > 0 for any real u. If K’(u) is bounded, then there exists a
constant C such that

where

D2(t) + tCD(t) + tC > 0

(t) In q(t), q(t) (u(t),u(t))

(2.21)

(This follows from the discussion in 2.1.) After the change of variables

-s

we obtain for (t) the following inequality

[1,+s) dd2 + Ce-S + Ce’S > O, s
ds

(2.22)

It follows [2, Lemma 1.4] (s) will satisfy the following condition-

If 1 < s I
< s < s2

< -, then
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(S) <- (s I)

S T

I e+C I e -XdLd
S S

s C -LI e I e d
S S]

d

Since

we see that

(s2)

s C Ie-kI e dkd
S S

s C
i -I e e d},d

Sl Sl

$2
+ e2C Isl e_kdc / (s_)e_kd

S S]

s
_

s] e-SI e d -e- e-
S Sl

s C(e-Sl e-
I e )d

(s) (s I) s
s2 C(e-Sl e-

I e )d
s

s2 C(e-Sl e-T)dI e

(s2 s

is eC(e-sl e-)d
Sl

+K

(Z) is taken as if (s I) (s2) and

+, if (s I) > (s2)
From this, we see that there exist two non-negative functions (t), B(t) and a

constant k such that

(s) (s)(s 1) + B(s)(s2) + k (2.23)
where

(s) + B(s) I for s I s s 2
and k depends on C, s 1, s2.

For u(t) we have Hadamard’s three circles theorem. Namely, the following

statement is true.

THEOREM 2.7. Let IK(u)l _> > 0 and IK’(u)I <- L for every u. If u(t) is a

C2-solution of (2.1) and 0 < t2 < t < t I < 1 then there exist two nonnegative

continuous functions (t), B(t) such that the following holds"

i) (t) + B(t) t
2

< t < tI

ii) (t) <_ (t)(tl) + B(t)(t2) + k

iii) k is a constant depending on C from (2.21) (or on K(u)) and t1, t2
Recall that

(t) In (1 I u(t,x) 12dx) (2.24)
to t=const

This is essentially Hadamard’s three circles theorem in this case. Since the

proof for K(u) positive has been discussed above, we only consider the case where
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K(u) <- < O. Set 1(t) --In q(t). Thor

Dl(t) D__. D2l(t) D IDOl(t)] D(Dq--)q

q q
From I we have

D2q 2(K’(u)Du u @u B @u 2
u ’ ) + 4 II- [-K(u)]

(Dq) 2

q
4[-(@- [K(u) T]u)BU ]2

(2.25)

and

Thus

and

4 a au 2

DZl(t) (T [-K(u)2 u)

q

4B Bu 2
T [-K(u) T]

q

2(Ku(U)Du au au au au
T’ T 2(Ku(U)Du ’-)

<q q(t)

2(Ku(U)Du, ’Bu )auD2(t) > q(t) where (t) In q(t)

2(K(u) au au au au
T’ "-) 2(K(u)Du , )

D(t) q(t) D’l(t) q(t)

Since K(u) < - < O, D.(t) _< O, and K’(u) is bounded, then there exists C < 0 such

that

D2(t) CtD(t) > 0 or D2(t) + CtlD(t) O. (2.26)
Consider now the following equation

t )u ) [K(u) --] + T(u) (2.27)
Bx Bx

under the same assumptions as above and with T(u) a bounded operator in the follow-

ing sense,

T(u) <_ C u I, u H. (2.28)
Here we consider three cases:

i) K(O) > O,
ii) K(O) O,

iii) K(O) < O.
For the first two cases we use the following fact.

LEMMA 2.2 [4]. Let (t) be a positive function in the interval (0,1] and

me(t) the following "almost" logarithmic derivative of (t),

’ (t) t )me(t) t +(t) [In (t)]. (2.29)

Then (t) is flat at the point t O, if and only if the following condition

holds,

me(t).. + as t O.
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PROOF. If (t) m 0 for t m O, then m@(t) is a continuous function for t m O.
For all to (0,1]

t m(t) (tO) exp I d
to

and (t) 0 for t O, is equivalent to

to me ()
f d + (2.30)

0

Suppose me (t) + as t O. To prove that (t) is flat we need to show

that V n > O, t-n(t) 0 as t O. Introducing a new function,

n(t) t-n(t)
we have

m (t) m(t) n
n

and since m (t) + as t 0 we have
Cn

to mCn() to m()-nI d I
0 0

dT= +- (2.31)

for all t
0 n and so t-n(t) 0 as t O.

Conversely, suppose (t) is flat. Then the integral

to me ()-nI d + for all n.
0

From here we have that me(t) is unbounded. Let us prove that if (t) is flat

then a > 0 such that (t) is monotonic in the interval (O,a). Assume that (t)
is not monotonic and (t) > 0 for t > O. It follows then that {tk} such

that tk+1
< tk and (tk) < (tk+1) and tk O. But this contradicts the fact that

(t) 0 as t 0 since (tk) > (tO) > 0 Vk-
It follows from here that me(t) is non-negative in the interval Ia (0,5).

The same considerations carried out for Cn(t) t (t) show that men (t) is also

non-negative. Since me(t) n is non-negative in some neighborhood (O,an),
lim me(t) exists and this limit is + due to the unboundedness of me(t). The
t/O

Lemma is proved.

We have the following theorem.

THEOREM 2.8. Let K(u) be C 1 real-valued function and T(u) satisfying the

condition (2.28). If u(t) is C2 flat solution of (2.27), then u(t) is identi-

cally zero in the interval I.
In other words, quasiuniqueness takes place for solutions of equation (2.27) at

the point t O. That is, the operator T(u) has no influence on quasiuniqueness.
PROOF.

i) If K(u) > 0 near the origin the proof is trivial and follows imme-
diately from Lemma 2.2.
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ii) If K(O) 0 by the same reasoning as in {}2.3 and using the above

Lemma we obtain that quasiuniqueness takes place in this case.
iii) If K(u) < 0 near the origin and u(t) is a C2 flat solution of

(2.27), then u(t) can be written in the form

u(t) t}’v(t), IR
with v(t) a C2 flat function. For v(t) we have tile following equa-

tion from (2.27):
i)v ) [K(tLv(t) @vt Bt Bx --] + t-T(tv(t)) ,v(t) (2.32)

From (2.28) it follows that the operator t-kT(tv(t)) is bounded. If - > C, the

operator

B(t,v) =_ t-T(t}’v(t)) v(t)

will be non-negative in the sense that

(B(t,v),v) > 0

for any v H. As above, let

q(t) (v(t),v(t))

and

(t) In q(t)

and

type

Then using a similar argument as in {}1 we obtain that

D(t) (K(tu(t)) i)v @v-, -) + (B(t,v) ,v)

D(t) (K(tv(t)) Bv Bv-, ) (2.33)

Now in a similar way as in {}1 we obtain for (t) an inequality of the following

D2(t) + CtID(t) > 0

From here as in I it follows that

)v(t) )M V(to) tp for t < to (2.34)

with p depending on v(t) itself. From (2.34) we obtain that u(t) satisfies the

fol lowing estimate

)u(t) M1 )U(to) t"+ (2.35)

This contradicts the flatness of u(t) and so Theorem 2.8 is proved.
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