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ABSTRACT. This paper deals with the behavior of solutions of ordinary differential
equations in a Hilbert Space. Under certain conditions, we obtain lower estimates
or upper estimates (or both) for the norm of solutions of two kinds of equations.
We also obtain results about the uniqueness and the quasi-uniqueness of the Cauchy
problems of these equations. A method similar to that of Agmon-Nirenberg is used

to study the uniqueness of the Cauchy problem for the non-degenerate linear case.

0. INTRODUCTION.

In this paper the behavior of the sclutions of ordinary differential ecuations in
a Hilbert space are studied.

In Section I we study two problems for two types of equations.

Let H be & Hilbert space with scalar product (-,.) and the corresponding norm
l-i- Letl us consider the equation

t =B (t,u(1)) (0.1)

where t ¢ I =(0,1]. If t > 0, u(t) has & derivative with respect to t and u(t)
is an element of H, in other words, u(t) ¢ C1 (I, B). B(t,-) is & non-linear map
from H to H for every t ¢ 1 with domain DB a dense subset of H.

For this equation we study the behavior of its solutions as t+0. Under some
conditions, we obtain lower estimates or upper estimates (or both) for the norm of
solutions of equation (0.1). We also obtain results about the uniqueness and the
quasiuniqueness of the Cauchy problem for this equation.

Note that equation (0.1) is not an equation of the normal type in the Cauchy-
Kovelevsky sense.

Let us consider the equation

Q=B (t,u(t) (0.2)

where t eI =[1,). If tel, u(t) has a derivative with respect to t and u(t)

is an element of the Hilbert space H. For every t e I, B(t,-) is a non-linear map
from H to H with dcmain DB’ a dense subset of H.

For this equation we study the behavior of its solutions as t » =. Under some
conditions we obtain lower estimates or upper estimates (or both) for the norm of
solutions of equation (0.2). We also obtain results about the uniqueness and the
quasiuniqueness of the Cauchy problem for (0.2). We do not require smoothness or a
Lipshitz condition on B(t,u).
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In the first part of section 1 we study equation (0.1), in the second part,
equation (C.Z). In the third part we investigate graphs cf |[u(t)] and the unique-
ness of the Cauchy problem for eguations (0.1) anc (0.2) and ir part 4 we study
several examples of quasi-linear orainary and partial differential equations.

Our results for equation (0.1) are like the results of Alinhac-Baouendi [1] and
cur estimates for (0.2) are similar to those of Agmon-Nirenbert [2,3]. In Section 1
for a special case of B(t.u) it is possible to obtain these results utilizing only
the first derivative of u(t). However, the results of Agmon-Nirenberg for a linear
cace are more exact and deep. In Section 2 we use a method similar to Agmon-Mirenbery
te obtain results concerning the quasiuniqueness for a special case of equations (C.1)
and (0.2;.

In Section 2 we study the same problems for special types of equations (0.1) and
(0.2) where

B (t,u) = Sx (KW 52T (0.3)

Here t e T =(0,1], x e R er x e @, @ compact, ”lan =0, and K({u) is a real-
valued function from C]. H is a Hilbert space L?(Q).

Fer this type of equation we study the behavior of its solutions as t + 0. We
obtain esimates which can be used for the study of uniqueness and the quasiuniqueness
for Cauchy problem.

In part 1 of cection 2 we study the case of K(u) with Kk(0) = 0, in part 2 we
study the equation (0.2) with the same B(t,u) as in (0.3) and in part 3 the case
K(0) = 0 is examined. In part 4 convexity of the norm of the sclutions of these
equations is studied. Ir addition we examine (0.1) when B(t,u) has the following
form

B(t, u) = &2 [K(u) 330 + ACt,u)

where A(t,u) is a bounded operator. The main results of Section 2 are Theorem 2.5
for equation (0.1) and Theorem 2.6 for (0.2).

We use in Section 2 the method which was used first by Agmon-Nirenberg in the
study of uniqueness of the Cauchy problem for non-degenerate iinear case [1,3]. We
use a modification of this method ¢rom [4].

We will use the following definition:

DEFINITION 1. Let us consider scalar function f(t) in the interval 1 = [0,1]. A
function f(t) 1s called flat at the point t = 0 if for any n -+ 0, t'"f(t) + 0
est + 0.

DEFINITION 2. We say that the quasiuniqueness takes place fer equation (0.1) if frcm
flatness of Ju(t)], it follows that u(t) = 0.

1. STUDY OF DIFFERENTIAL EQUATIONS (0.1) and (0.2).

EQUATION (0.1)

Let us now consider the equation

tg—:= B(t,u(t)) (1.1)

under the same conditions on B(t,u(t)) as above.
THEOREM 1.1. Assume that the following condition is satisfied:

1B(t,u(t))] < C Ju(t)] (1.2)
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for some constant C > C. In this case, the domain o¢f B 1is all Hilbert space H for
1

each t ¢ I. Then for each soiution u(t) of (1.1) from C-(I,H) the following

estimates hcla with the same C as in (1.2):

Tu(e)] > Julty)] ({E)C (1.3)

for each t0 el and t < to, and
Tu(t)] < Julty) (%6) -C (1.4)

for each to el and t < to.

PROOF . From (1.1) atter takinc the scalar product with u(t), we get

(t 3L, u(t)) = (B(t,u(t)),u(t))
and
Re (t 8 u(t)) = it S¢ (u(t),u(v)

From (1.2), we obtain
-Clu(t),u(t)) < Re (B(t,ult),u(t)) < C (u(t),u(t)) .

If now q(t) = (u(t),u(t)), then for ¢(t), we have the two inequalities
d

it El% < Cq (t)

and
it —cq (1)

From the first of these inequalities after rewriting we obtain

tq - 2Cq = ¢(t) < 0.

If q(t) > 0 dn the interval (tZ’to)’ we have

. ¢, (t)
tﬁ - = 1
q 2C 3 <0.
From the following equation
1)
d . _2c . Nl
ot [ q(t)l = ¢+ 6l
and
In q(t) - In q(to) =f Wdt = 2C ]n-t-—+ I mdr ,
to 0 to
te (1)
- 2C In (t 1
q(t) = Q(to)e (to)'eXP ({:0 mdt)
and since

2C In [t t \2C
e () = (@&,
v Y%
and ¢, (tY<0t,q(t) =0 and t < tg, we have

exp (J; mdi) = exp (-{ Fr1ea) )
C 0
¢1(T)
where - m? 0 for each r.

It follows that
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1, o,(1)
071 . .
-tf ¥ET?7.dT > 0 for each 1 < tC

tO [ (T)
cxp (-tf —'T;1 de} > 1 for each t< t) .

From this we cobtain
. t\ 2C
q(t) = altg) (_‘0)

and for fju(t)j estimate (1.3) follows.
To show estimate (1.4), use the inequality

13l - ca(t)
and define Qz(t) by

tq + 2Cq = Oz(t) >

Then
__ze, 20
H_ [In g(t)] £Le TQUET
and for q(t)
tg 4p(1)
-2C 1n,t c
q(t) = a(tg)C (TE) . exp f —ar;y dr .
Since
»? In,t t \-2C
() = ()
LW Tt
and
¢2(T)
- T <0 for each <,
we have

exp (I _—T_T dt) = exp (- { ;a(¥7'dr) <1

for each t < to.

From this we obtain

4(t) < a(ty) ({E)‘zc

and for Ju(t)] we have estimate (1.4).
REMARK 1.1. Our estimates (1.3)-(1.4) are exact and it is impossible to improve
these. This may be seen by observing

’

i)  that the following function wu(t) = u (to) (%—)C is a solution of
0
equation (1.1) with B(t,u(t)) = Cu(t) and u(t)It=t = u(to), and
0

ii) that the following function u(t) = u (to) (%—)-C is a solution of
0

equation (1.1) with B(t,u(t)) = -Cu(t) and u(t){t=t = u(to).
0

THEOREM 1.2. Let us assume that u(t) ds a solution of equation (1.1) with condition
(1.2). If u(t) satisfies
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U Jut) -0 as t-o0.

with the same C as in (1.2), then u{t) = 0 in interval 1.

PROOF. The proof follows immediately from our estimate (1.3).

DEFINITION 3. We say that C-uniqueness for equation (1.1) taskes place &t the point
t = 0, if there exists constant C > 0 such that from the following condition

tC u(t)y -0 as t-o0,

we obtain that u(t) = G in the interval I. Recall that the classical unigueness is

C-uniqueness with C=0. 1In other words, it is pcssible to formulate ocur Theorer 1.2
in the following form:

THEOREW i.2a. Under conditions cf Theorem 1.1, C-uniqueress takes place at the peint
t = 0 for solutions of equation (1.1).

From the proof of Theorem 1.1, it is easy to see that il c&n also be used to
obteirn similar one-sided estimates for un-bounded B(t,u(t)). Namely, we have the
following theorem.

THEOREM 1.3 i) If
Re(B(t,u(t)),u(t)) > -C Ju(t)}? (1.5)
for some constant C > 0 for each u(t) from a dense subset DB of the Hilbert

space H, then for each solution of equation (1.1) we have the following estimate with
the same C as in condition (1.5):

Ju(t)] < Julty)l (%g)'c for t<tg. (1.6)

ii)  If
Re(B(t,u(t)),u(t)) < C ju(t)]? (1.7)
for some constant C > 0 for each u(t) from a dense subset DB of the Hilbert

space H, then for each solution u(t) of equatice (1.1), the following estimate
holds with the same C as in condition (1.7):

Bu(t)] = Julty)l (‘t‘—o)c for t <ty . (1.8)

REMARK 1.2. OQOur estimates (1.6),(1.8) are exact and it is impossibie to improve them
(see Remark 1.1).

REMARK 1.3. Recall that we do not require smoothness of B(t,u(t)). In the same way
as Theorem 1.2, we have from Theorem 1.3 that the following statements holds.
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THEOREM 1.4. Let us assume that u(t) is a sclution of equation (1.1) with condition
(1.77. If u(t) satisfies

¢C Ju{t)l >0 as t- G, (1.9)
with sare C as in (1.7}, then wu(t) = 0 in interval 1. In other words, urcer
concition (1.7) C-uniqueness takes place at the peint t = 0 for sciutions of e€qua-
tion (1.1).

EQUATICN (0.2).
Let us consider the equaticn

%=Bumun (1.16)

in the interval T = [1,+ =) and with the same ccrcitions on B(t,u(t)) as above.
After the change

s=¢t (1.11)

_we obtain from equation (1.10) the followirg equation
du _ )
S TS B(s,u(s)) (1.12)

in the interval (0,1].

The equation (1.12) is an equation cf the same type as equation (1.1). Eecause of
this, it is possible to rewrite Theorems 1.1-1.3 for this situation.

DEFINITION 4. We say that C-uniqueness for equation (1.10) takes place at the point
t =+, if there exists constant C > C such that from the conaition

elt Ju(t)) 0 as t-¢C

implies that wu(t) = 0 1in the interval T. Recall that the classical uniqueness at
the point t = +» may be formulated as C-uniqueness with C = 0.

THEOREM 1.5.  If the following condition is satisfied
Re(B(t,u(t)),u(t)) = -C Ju(t)}? (1.13)
for some constant C, for each u(t) from a dense subset Dp of the Hilbert space

H, then for each solution of equation (1.10) we have the following estimate with the
same C as in (1.13):

Tu(t)] = Ju(tg)fet(tto) (1.14)
for each tye T and t> to-
PROOF. The proof follows from the proof of Theorem 1.1.

THEOREM 1.6. If the following condition is satisfied

Re(B(t,u(t)),u(t)) < ¢ Ju(t)}? (1.15)



BEHAVIOR OF SOLUTIONS OF NON-LINEAR DIFFERENTIAL EQUATIONS 149

for some constant C, vor each wu(t)} from the derse subset DB of the Hilbert space
H, then for each solution u(t) of equation (1.1C) thc folluwing estimate holds with
the same C as in (1.15)

lu(e)t = Ju(tg)l e t(t-to) (1.16)

Tre proof folicws from the proof of Theorem 1.3.

GRAPHS CF  Ju(t)j.
From proof of Theorem 1.1, it is easy to see that the following statement is true.

THECREM 1.7. Let us assume that one of the following conditions is satisfied for each
non-trivial u(t):

i) JE(tu(t))f < € Ju(t)]? (1.17)
for some constant C and for each u{t) = 0 from the Hilbert space H, or
11) 1(B(tu(t)] < ¢ Ju(t)? (1.18)

for some constant C and for each u(t) # 0 from a dense subset DB of the Hilbert
space H, or

111) IRe(B(t,u(t)),u(e))] < ¢ Ju(v)}? (1.19)

for some constant C and for each u(t) = 0 from a dense subset DB of the Hilbert
space H.

Then for each non-trivial solution u(t) of equaticn (1.1) from Cl(I,H) the follow-
ing estimates hold:

fu(l > Tt for t<ty, (1.20)
0
and
Tu(] < TulelGE97C for t < g . (1.21)
0
From (1.20) and (1.21) we have that the following functions
. -C
i) fu(t)] t (1.22)
‘s C
ii) Ju(t)] t (1.23)

are strongly monotonic ir the interval 1. The function defined in (1.22) is decreas-
ino and the functions in (1.23) is increasing in this interval.
Namely, from (1.20) we obtain that for each pair, t, tl el with t < tl, then
-C -C
I‘lu(t)u t > ﬂu(tl)lltl . (1.24)

In a similar way, we obtain from (1.21) that for each pair, t, tl eI, with t < tl’
then
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Tu(e)] ¥ < llu(tl)litlC . (1.25)
from this, we obtain the following statement:
THEOREM 1.8. i) Under the conditions of Theorem 1.7 it follews that each non-
trivial solution u(t) of equation (1.1) satisfies u(t) = 0, t e
1 = (0,1].
ii) Let u(t) be a solution of equation (1.1) uncer conditions of
Theorem 1.7. If u(to) =0 at a point t) € 1 = (0,1], then
u(t) = 0 in the interval 1 = (0,1].
PROGF. i) follows from ij, and i) follows from our estimates (1.20) and (1.21); in
other words, from the monctonicity conditicns (1.24) and (1.25).
Tn a similar way from Thecrem 1.3 we cbtain the following statement:
THECREM 1.9 i) If the following condition is satisfied
Re(B(t,u(t)),u(t)) > -C hu(t)]? (1.26)
for some constant C, for each u(t) = 0 from a dense subset DB of the Hilbert

space H, then for each non-trivial solutior u(t) of equation (1.1) we have the
following estimate with the same C as in (1.26):

fu(t)f < uu(to)u({—o)'c for t <ty . (1.27)
B T AL LR catisiing
Re(B(tsu(t)):u(t)) <C “U(t)“ (1.28)

for some constant C, for each u(t) = 0 from a dense subset DB of the Hilbert
space H, then for each non-trivial solution wu(t) of equation (1.1) we have the
following estimate with the same C as in (1.28):

Ju(t)] » |’|u(1—,0)|1(-'§6)C for tet, . (1.29)

REMARK 1.4. From (1.27) and (1.29), we have that in the situation of Theorem 1.9 ii)
the function (1.22) is strongly monotonic and in the situation of Theorem 1.9 i), the
function (1.23) is strongly monotonic, since our estimates (1.27) and (1.29) are true
for each pair t, t0 in I, with t < to. From the montonicity of these functions,
we cbtain the following statement:

THEOREM 1.10 i) Under the conditions of Theorem 1.9, each non-trivial solution
u(t) of equation (1.1), satisfies u(t) = 0 for each t ¢ (0,1].

i1} Let wu(t) be a solution of (1.1) under conditions of Theorem 1.9.
If u(to) =0 at a point t0 e I =(0,1], then u(t) = 0 in the
interval 1 = (0,1].
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PROOF. i1) tolicws from i}, erc i) follows from our estimates (1.27) and (1.29).
REMARK 1.5. From Theorems 1.7-1.9 we see that each non-trivial solution u(t) under
the corditions of those thecrem has, at most, cne point, t = G, where u(t)t -0 ° 0
or perhaps u(t,t =0 is not defined. It is pcesible to rewrite the theorems of this
section for equation (C.2).

EXAMPLES.

1. Let wu(t) be a vector. For u(t), we have a system of ordinary differential
equations in the form (1.1). In this case, H 1is & finite-cimension Hilbert space
and B(t,u(t)) s bounded. In this situation, from Theorem 1.1, we have both
estimates for ju(t)|. If for example, u(t) is a solution of the equaticr

t S = f(t,u), f(£,0) = 0 and |F(t.u)} < C fu (1.30)

with bounded f(t,u) for each L ¢ I and each u ¢ Pl. and if a solution u(t) of

this system satisfies the condition

¢ Ju(t)] >0 as t >0,
.then u(t) is trivial.
In this situation, we have two estimates for each solution of (1.30).

ﬁu(to)n(%a)c < Ju(t)] < ||u(t0)||(t—o-)’c for t <ty .
For each ¢ > 0, we also have the following estimates,
C+ t \-(C +
e GE)° " < Tu(e)] < Lol () (€4 e

and from this we get uniqueness for (1.30) in the following sense:

If u(to) =0 for t0 > 0, then u(t) =0 in I,

If u(to) = 0 for some ty > 0, then u(t) =0 in I = (0,1].

2. Consider the following equation

au _ 3 au
t 3t - ax [K(u) XJ + T(u) (1.31)
in the domain 1 x Q , 1(0,11, aC R , with u aq = 0 and H = LZ(Q). K(u) is a

real valued continuous function and T(u) is bounded in the following sense:

[T(u)] =< C Ju]

i) If K(u) = 0, then we have the situation of Theorem 1.3 ii) and for
each solution of equation (1.31) the following estimate holds,

lu(t)] = nuu(,)n(t—O)C

for t < tO where C depends on T.
In this case, we have uniqueness for the Cauchy problem of equation (1.31) in the
following sense:

1f u(to) =0 for ty > 0, then u(t) = 0 for each point t 1in the interval

= (0,1].
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This fellows immediately from the estimate
Ju(t)] > uu(to)u(t—o)c e
for t < to, and each ¢ > O.

In this case we also have C-uniqueness at the point t = (.

ii) If K(u) < 0 then we have the situation of Theorem 1.3 i) and for each
solution of equation (1.31) we have the following estimate
t \-C
(o)l = Fulto)l ()
for t < t0 where C depends on T 1in the sense

[T(u)} < C Juf .

In this case we have uniqueness in the following sense: If u(to) =0 for t;>0,
then wu(t) = 0 in the interval 1 = (0,1], and if u(to) =0 for t;, >0, then
u(t) = 0 for each point t in interval I = (0,13.

3. Consider the following equation

ou _
t 5% -

"~ s
w,w

Xs

La; (taxsult,xu(t,x)) S50 + T(t,x,u(t,x) (1.32)
1°7 i

1

where t €1 = (0,11, xe a< R" and u|an =0, H-= Lz(n), ai(t,x,u) all continuous

functions, and bi(t,x,u) = Re ai(t,x,u).

i) If bi(t,xu) 2 0, 1 = L,...n, ard Re(T(t,u),u(t)) < C Ju(t)]? for
some constant C, then we have the situation of Theorem 1.3 ii) and for
each solution of equation (1.32) we have the following estimate

fu(t)] < ﬂu(to)l(%a)c for t < tg .

In this case we have uniqueness for the Cauchy problem (1.32) in the following senses:
If u(to) =0 for ty >0, then u(t) = 0 in the interval I = (0,1].

If u(to) 20 for t, > 0, then u(t) = 0 for each point t in the interval

I =(0,1].

0

These results follow immediately from the estimate,
+
fu(t)] > Ju(t) () * e
07",

for t < to and ¢ > 0, and from the results of §3. 1In this case we have C-unique-
ness at the point t =0, If C =0 we have the following estimate

Ju(t)] = qu(to)n for t<t,
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and if -C > 0 we have
t \C
fu(t)] = ““(‘o)“(fg) for t > to .

In this case each non-trivial solution of (1.32) is always increasing for t -+ 0,
fu(t)|+ + = as t 0.

ii) If bi(t,x,u) < 0, i=1,...n, and Re(T(t,u),u) = -C llu(t)ﬂ2 for
some constant C, then we are in the situation of Theorem 1.3 i) and
for each solution of equation (1.32) we have the following estimate:

lu(t)] = nu(t0>u(§—o)'c .

In this case we have uniqueness ot the Cauchy problem (1.32) in the following sense:

If the solution u(t) of (1.32) is equal to zero at a point t = ty > 0, then
it will be equal to zero at each point t 1in the interval I and if u(to) = 0, then
u(t) = 0 in the interval I = (0,1]. I1f C = 0, then

lult)] = Julty)]
for t < ty and each solution of equation (1.32) is bounded. If C < 0, then

lu(o)] = nu(t(,)n(%a)'c

for t < to and in this case, the solution of equation (1.32) is always decreasing
for t >0, u(t)l] 0 as t + 0. It is possible to rewrite these examples in form
(0.2).
2. SPECIAL CASES OF EQUATIONS (0.1) and (0.2).
CASE K(0) = 0.

Consider the equation

t 3= 2 (k) 3 (2.1)

where te T =(0,1], xe R or 2< R and u‘m = 0.

K(u) s a real-valued function. If K(u) < O then the quasiuniqueness result
follows from §1.4 of Chapter 1. Let u(t) be a nontrivial solution of equation

(2.1). After taking the scalar product with u(t) we obtain from (2.1)
(t 2 0 = & kw3, 0
_ au
=+ (K(u) 35 ax)
If we set q(t) = (u(t), u(t)) we have for q(t)

t q(t) = 2 Re(t 22, u) = + 2(K(u) u, 2 . (2.2)

If  K(u) s d1fferent1ab1e we may differentiate this equation with respect to t.

Letting t %€-= D, we have
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)2
D2 = + 2t 35 (K(u) 5%, 3% = + 2[(K(wD(v) 3%, 24 + (K(u)t 3tgx 3x)

X x> 3ax
- 3
+ (K(u) 32, atax) =+ 2[(K}(u) Du 5, 5%) + 2 Re(K(u) 33 atax)]
If u is twice continuously differentiable with respect to t and x,
32u 32u u 2 du Bzu

atax = oaxat and so Re (K(u)Y S o> ta ) Re (K(u) ;;} x8t> =

- Re (.3—)’. K(U) BX’ ) (3X [ K( ) ]: K( ) ) = r] 3X K(U) au l' =

U492
D35 [- K(u) 3o1° .
From this we have

0%q = 2(Ky(wou 2%, 2 + 4 [ 2 - k() g

If T1 = (tl,to) is a subinterval in T, when u(t) = 0, then gq(t) =0

and so

(0g)? _ MKW §5 $0°  al- (5 k() Fhu)l

q q q

and hence
2
?
0%q - iﬂgl_ 2(K! (u)Du 5o au ) té Hg-{ K(u) ]Iz

A& [- K(u) 3,‘11,u)1
q

For each u we have that

duq2
2 aL(32 [- Klu) 347,234 o

] ]
4l‘|a—x[—K(u)£— - 3

and from this we conclude

2
2 ng! ' u
D°q - q > 2(Ku(u)Du X ax)

If 2(t) =1n q(t), then

2 2
DJ. = 1 2 = M - D
g = Da(t) and DZa(t) = % ngl_

and for 2(t) we have

2(K/ (u)Du 3u 3,
DZ,L(t) > th)BX X
and
2(K(u)Du &4, 2
Da(t) = q(t§X .

LEMMA 2.1[4]. Let &(t) ©be a twice differentiable function in the

T = (0,1], satisfying the following second-order differential inequality

02e(t) + ta(t)|De(t)] + t8(t) 2 0
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where o(t), B(t) are non-negative continuous functions in the interval [0,1]. Then
for each solution of (2.6) there exist non-negative constants v, u, such that

. L t
2(t) = 2(tg)+ v In (to) +un (%)
or
exp a(t) = [exp 2(tg)] (E—o)v - (E—O)“ (2.7)

where v depends on o(t) and g(t) only, and . depends on o(t), g(t) and the
solution g(t).
PROOF. From (2.6), it follows that

Ds(t) + C t|De(t)| +C t >0 .

By the change of variable

.we have for g(t)

2(t) + C e_T|i(1:)| +Ce "> o0.

From Lemma 1.2 of [2] we get

() > 9,(10) + min {O,JL(TO)} eCero (‘[-TO) - CeCEToeTO(T-tO)

or,
) . c %
2() = a(ty) + min (0,t i(t,)} exp (3=)1In ()
0t 0*"' "0 tO t
- C exp (%—) to'1 In _t_O = m(to) + max {0,-t02(to)} exp (%—) Tn {—
0 (0] (o]
+ C exp (E,_) to'l In {—- = z(to) + u(to) 1n t— + v(to) In —:—-
0 0 0 0
where
u(to) = max {0,-t09.(t0)} exp ((t:—o)
and

v(to) = C exp(—%) to'l .

REMARK. In the similar way from the second-order inequality of the type
D2 g(t) + ta(t)|De(t)] + th(t) > 0
we obtain for 2(t) the following estimate

exp £(t) > exp z(to) (%J—)" (t—o)"l for t<t;.

From this lemma we see that if a solution u(t) of equation (2.1) satisfies the
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following condition

(k' (u)bu 22, 20 > - ta(t)] (K(u) 25, 2] - ta(t)a(t) (2.8)
then
t v (tu
a(t) = q(ty) (ga) (;a) . (2.9)

Hence if u(t) is a flat-solution of equation (2.1) setisfying condition (2.8), then
u(t) = 0 in T. It is possible to restrict condition (2.8) and to rewrite it in the
following form
CONDITION C:

For each v(t,x) there exists a constant C depending on v such that

K'(v)v, + CK(v) > O (2.10)

for each (t,x), xegq, te Te = (0,€) and ¢ > O .

THEOREM 2.1. Let wu(t) be a C2 non-trivial solution of equation (2.1) and K(u) be
a real-valued function satisfying condition C. Then for u(t) we have the following

estimate
lu()] = Jultg)] £ for t < tg (2.11)

with v depending on K and to, u depending on K, tg and the solution u(t).
PROOF. This follows immediately from the previous discussion and Lemma 2.1.
Let us now consider the following differential inequality in the interval (0,1],

f'(t) + cf(t) 20 . (2.12)
Define ¢(t) by

fr(t) + cf(t) = ¢(t) 20
and so

[et(t)]" = eFa(t) .

After integrating we have

ct t
eth(t)-e 0f(to) = 5 eTo(r)dr, t < to
to
where
te
e (t)dr < 0
Y
since t < t0 and ¢(t) =2 0. From this we have

ct
eCte(t) - e Of(to) S0 tety (2.13)
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for each pair of points t, t0 in the interval T = (0,1) with t < t,. In other
words, the function eth(t) will be monotonic and does not decrease in the interval
(0,1).

From (2.13) we have

c(to-t)

to) =e f(to) . (2.14)
Now we can rewrite Condition C in the following form:

For each u(t,x) there exists a constant ¢ such that K(u(t)) as a function

of t will satisfy condition (2.14) for (t,x), xeq, teT.

In other words, K(u) as a function of t increases as t + O no more than
-ct
e .

£(t) s e-C(t-to)f(

For example, if K(u) is a monotonic cecreasing function with K(0) > 0, then
K(u) satisfies our condition with ¢ = 0. From this discussion we have the following
theorem.

THEOREM 2.2. Let u(t) be a non-trivial solution of equation (2.1) under condition
C. If Ju(t)] is flat then u(t) = 0 1in the interval T = (0,1).
REMARK 2.1. We can obtain in the same way results for an inequality of the type

Ptd-kwapscelul. (2.15)

COROLLARY 2.1. Let k(u) be continuous and differentiable at the point u = 0. If
K(0) = 0, then quasiuniqueness takes place for the equation

t 22 k) B .

PROOF . If K(0) = 0 we have the two following cases.
1) If K(0) < 0 quasiuniqueness follows from Example 2 of part 4 of Section 1.
2) If K(0)> 0 and K'(0) is bounded, then there exists for each u(t) with
flat norm | u(t) |, an e > 0 such that for t ¢ [0,e]
K'u' +CK(u) 20
and in this case the quasiuniqueness takes place also. This follows from
Theorem 2.2.
THE NON-GENERATE EQUATION.
Consider the following equation

- kw3 (2.16)

where t ¢ T = [1,+ «]. After the change of variables

s=et

we obtain from equation (2.16) the following equation
s 2.2 [k(u) &Y (2.17)
where
seT=(0,1].
The equation (2.17) is the same as equation (2.1), and hence it is possible to rewrite

all of our theorems for equation (2.16)
For equation (2.16) we have a condition analogous to condition C.
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Condition C'. For each v(t) there exists a constant C depending on v such
that

K'(v)v} + Ce™® K(v) 2 0
for each (t,x), x e 9, t > N for some N.
The following theorems follow immediately.
THEOREM 2.3, Let wu(t) be a non-trivial solution of equation (2.16) and K(u) a

real-valued function satisfying condition C'. Then for u(t) we have the following
estimate

Tu(e)] > M Ju(ey)] ™t e (2.18)

where v depends on K and to and u depend on K, to and u.
THEOREM 2.4. Let K(u) be a real-valued function satisfying condition C'. Let u(t)
be a solution of equation (2.16) satisfying the following condition

for each positive C,eCt Ju(t)] +0 as t+ + =,

Then u(t) = 0 in the interval T = [1,+ «).
COROLLARY 2.2. Let K(u) be continuous and differentiable at the point wu = 0.
Suppose K(0) = 0, and K'(0) is bounded. Let u(t) be a solution of equation
du_ 3 du
- --&-[K(U) '37]

satisfying the condition
Ju(t)i et2 0 as t++= for each positive c.

Then u(t) = 0 in the interval T = [1,+ =),

This Corollary follows from Corollary 6 of §2.
CASE K(0) = 0.

In this section we obtain results about quasiuniqueness for equation (2.1) in the
case K(0) = 0.

Let us consider the equation

t 3% - 3 [k(u) 3 (2.19)
where t ¢ T = (0,1) and K(u) is differentiable with respect to u, K(0) =0,

X€E QCRI, Upag = 0, and @ 1is compact.
In this case K(u) = u Kl(u) where Kl(u) is continuous. From this we obtain

3

(t 34, u) = - (k(u) 34, 3 |

q(t) = (u(t), u(t))
and T1 = (tl,to) ijs a subinterval in T such that q(t) = 0 in Tl’ we may
introduce a new function v(t) by the formula

q*(t)

u(t) = q¥(t) v(t) .
After taking the scalar product of (2.19) with u(t) we obtain the following equation

If

or
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for q(t)
iy oy 3L du e 3y 3V av
trg(t) = - (K(uw) 55, 39 =0 (- vk(va®) =5, 30) .
Let u(t) be a C1 solution of (2.19) with flat norm or, in other words, with
flat q(t). Then the following function

us(t) = a®(t)v(t)

is flat for each 6§ > 0 and

t
duglt) &) a;ﬁt)

9X
Thus it is possible to rewrite the equation for q(t) in the following form

'c)l.l6 3u6

3/2-26 s
(- v K (v@*) 557 577) -

$tq(t)=gq
Since
u u 3u
8 § § 12
I(' v Kl(ti) IX W)‘ < |K1(Vq%)| f W‘“ s
and Kl(vq%) is continuous in a neighborhood of the point q = 0 there exists a
constant C > 0 such that

|K1(vq%)| <C forq<¢

and the following inequality for q(t) holds,

. 3/ 3,
tqz2cq B LYt

.

u
From the smoothness and flatness of u(t) we see that | 3;9 I is flat and bounded.
From this we obtain the following inequality
. 3/,

tqs2Cq <28 gor q<eg,
with the constant C' depending on u(t) itself. Since q(t) 0 as t + 0, for
each 61 > 0 there exists e > 0 such that

3/ .
2C'q /2-28 < 261 q if te (0,e), & < 3.

Here the constants ¢, &, depend on q(t). If

1

2(t) = 1n q(t)

we have for t < ¢,

t o(t) < 25

or R
t o [a(t) - 26) Int] < 0.

From this we conclude that
2(t) - 25 In t

is monotonic in the interval (0,¢) and it is not increasing. Thus for t < to we
have
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o(t) - 261 Int> g(to) - 28, Int

1 0’

or

o(t) - o(ty) > 26, In r

0 1 to
or
t t

1ng{-t-b>251 i

and hence

a(t) > alty) (§_0) 281 for t < ty < e -
For fu(t)] we have the following estimate

lu(o)] > uu(tow(-‘;-(;) 5. (2.20)

From estimate (2.20) we obtain the quasiuniqueness for solutions of equation (2.19) in
the case K(0) = 0.

From this we obtain the following statements.
THEOREM 2.5. For a real-valued function K(u) ¢ C1 quasiuniqueness takes place at
the point t = 0 for equation (2.19).
THEOREM Z.6. Quasiuniqueness takes place at the point t = + « for the equation
(2.16) for every real-valued function K(u) e Cl.
Remark 2.2. Theorem 2.5 completes the Corollary 2.1 of §1 and Theorem 2.6 completes
the Corollary 2.2 of §2.

CONVEXITY OF THE NORM OF A SOLUTION. THE INFLUENCE OF A BOUNDED OPERATOR.

First we study the convexity of the norm of a solution of equation (2.1). It is
possible to obtain the same type of convexity as in Hadamard's three circles theorem.
In the linear case, there are complete results on this type of convexity [1,2]. After
this, we study the influence of a bounded operator on the quasiuniqueness at the point
t =0.

Let u(t) be a Cz-solution of equation (2.1) under the same assumptions as
above, and K(u) 2 ¢ > 0 for any real u. If K'(u) 1is bounded, then there exists a
constant C such that

02a(t) + tCDa(t) + tC 2 O (2.21)
where

£(t) = 1n q(t), q(t) = (u(t),u(t)) .

(This follows from the discussion in §2.1.) After the change of variables

we obtain for 2(t) the following inequality

2
Q_&é&l + Ce™S %% +C 520, se[l,+«). (2.22)
ds

It follows [2, Lemma 1.4] 1(s) will satisfy the following condition:

If 1« 51 <§ < s2 < o, then
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S, = T
! ZetC /e 'AdxdT
S 51
2(s) < 2(s,) +
1 Sa ;C T -
J e /e dAdT
S1 53
® e;C fTe AdAd
Sy S 1 T 2C S1 Y S2 Y
2(s,) + e s e fda. J (s-1)e "da
20 Se 30 T S, Cy
I e J ety 2 !
S1 Sy
Since
;oeda= et =eS - TS,
Sy S1
we see that
S2 Ir(e~S1 _ a1
I e+C(e e )d‘t
2(s) < 2(51) S +
52 - -Sl - -1
e+(,(e e )dT
Sy
52 - 'Sl - =T
I e+C(e € )d‘t
o(s,) 2 + K
2 So  Tr(a=S1 -1
f e+C(e -e )dT
Sy

(+) is taken as - if L(sl) < z(sz) and
+, if z(sl) > 1(52) .
From this, we see that there exist two non-negative functions «(t), 8(t) and a
constant k such that
2(s) < u(s)m(sl) + s(s)z(sz) +k (2.23)
where
als) + 8(s) =1 for spssss,
and k depends on C, S1s Sp-
For u(t) we have Hadamard's three circles theorem. Mamely, the following
statement is true.

THEOREM 2.7. Let [K(u)] =2 ¢ > 0 and |K'(u)] < L for every u. If u(t) is a
Cz-solution of (2.1) and 0 < ty, <t <ty <1 then there exist two nonnegative
continuous functions a(t), 8(t) such that the following holds:

i) alt) +8(t) =1, t,stst .

ii) a(t) < a(t)z(tl) + s(t)z(tz) + k.

iii) k s a constant depending on C from (2.21) (or on K(u)) and tl’ t2
Recall that
pe) = s s e (P (2.24)
t~ t=const
This is essentially Hadamard's three circles theorem in this case. Since the
proof for K(u) positive has been discussed above, we only consider the case where
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K(u) < -¢ < 0. Set 1l(t) = -1n q(t). Ther

Day(t) = - 395 0% (t) = 0 [De; ()] = DY
_ (0g)% 223_ (2.25)
From §1 we have
0%q = 2(kj(u)ou 24, ) 4+ 4§ 2 k() 27 42,

2
(0g)? _ 4-Gx kW) Fu)]
q

q
and
8, [-K(u) 2 u)2 4| [-k(u) QY ¢
2 9X X
D xl(t) qz 3
_ 2(K; (u)0u g—‘; %%) . 2(K, (u)0u %‘){ %
Thus q = q(t) :
u
2(K (u)Du du’ au
ng(t) > (t%x X where 1(t) = 1n q(t)
and
2(k(u) 3%, & 2(K(u)Du &, 2%
Da(t) = —— 825, Dy (1) = o :

Since K(u) < -¢ < 0, Da(t) < 0, and K'(u) is bounded, then there exists C < 0 such
that

0Ze(t) - CtDa(t) = 0 or D2a(t) + Ct|Da(t)]| = O. (2.26)
Consider now the following equation
t 32 = 2 [kw) £ + 1(w) (2.27)

under the same assumpt1ons as above and with T(u) a bounded operator in the follow-
ing sense,

JT(u)] < C Ju}, ueH. (2.28)
Here we consider three cases:
i)  Kk(0) > 0,
ii) K(0) = 0,

iii)  K(0) < O.
For the first two cases we use the following fact.
LEMMA 2.2 [4]. Let ¢(t) be a positive function in the interval I = (0,1] and
m¢(t) the following "almost" logarithmic derivative of ¢(t),

my(t) = ¢ %(%l = t 2 [ o(0)]. (2.29)

Then ¢(t) is flat at the point t = 0, if and only if the following condition
holds,
m¢(t)->+oo as t » 0.
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PROOF. If ¢(t) = 0 for t = 0, then m¢(t) is a continuous function for t = 0.
For all to e (0,1]

t m, (1)
o(t) = ¢(ty) exp S dt
t T
0
and ¢(t) > 0 for t -+ 0, 1is equivalent tc
t m, (1)
JC P (2.30)
0 T

Suppose m, (t) > +» as t » 0. To prove that ¢(t) is flat we need to show
that ¥ n> 0, t'no(t) +0 as t =+ 0. Introducing a new function,

¢n(t) = t7(t)
we have

m, (t) = m¢(t) n

n
and since m¢ (t) >+« as t » 0 we have
n
to "op(T) tg m, (t)-n
Vs f Pt = e (2.31)
0 0
for all tye I and so t"e(t) > 6 as t -~ 0.
Conversely, suppose ¢(t) 1is flat. Then the integral

to m¢(r)-n

I dt =+« for all n.

0 T
From here we have that m¢(t) is unbounded. Let us prove that if ¢(t) is flat
then & > 0 such that ¢(t) dis monotonic in the interval (0,6). Assume that ¢(t)
is not monotonic and ¢(t) > 0 for t > 0. It follows then that {tk} e I such
that tk+1 < tk and ¢(tk) < ¢(tk+1) and tk + 0. But this contradicts the fact that
¢(t) 0 as t ~ 0 since ¢(tk) > ¢(t0) >0 ¥.
It follows from here that m (t) 1is non-negative in the interval I‘s = (0,6).

The same considerations carried out for ¢n(t) =t ¢(t) show that My (t) is also
n

non-negative. Since m¢(t) - n is non-negative in some neighborhood (0,6n).
Tim m¢(t) exists and this limit is + « due to the unboundedness of m¢(t). The
t-0

Lemma is proved.

We have the following theorem.

THEOREM 2.8. Let K(u) be C1 real-valued function and T(u) satisfying the
condition (2.28). If wu(t) is 02 flat solution of (2.27), then wu(t) is identi-
cally zero in the interval I.

In other words, quasiuniqueness takes place for solutions of equation (2.27) at
the point t = 0. That is, the operator T(u) has no influence on quasiuniqueness.
PROOF.

i) If K(u) > 0 near the origin the proof is trivial and follows imme-
diately from Lemma 2.2.
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ii) If K(0) = 0 by the same reasoning as in §2.3 and using the above
Lemma we cbtain that quasiuniqueness takes place in this case.
iii) If K(u) < 0 near the origin and u(t) is a ¢ flat solution of
(2.27), then u(t) can be written in the form
u(t) = thv(t), A e IR
with v(t) a ¢ flat function. For v(t) we have the following equa-
tion from (2.27):
t 3 - 2 Ik(tvt) B+ £AMT(EN(D) - av(t) (2.32)
From (2.28) it follows that the operator t'AT(tAv(t)) is bounded. If -ax > C, the
operator
B(t,v) = t-T(tMv(t)) - av(t)

will be non-negative in the sense that
(B(t,v),v) 2 0

for any v ¢ H. As above, let

q(t) = (v(t),v(t))
and
2(t) = 1n q(t) .
Then using a similar argument as in §1 we obtain that
i De(t) = - (K(thu(t)) 3%, 3 + (B(t,v),v)
De(t) = - (K(thv(t)) 2%, 2% . (2.33)

Now in a similar way as in §1 we obtain for &(t) an inequality of the following
type

D2e(t) + Ct[De(t)] = 0 .
From here as in §1 it follows that

v(t)] = M v(ty)l th for t <ty (2.34)

with u depending on v(t) itself. From (2.34) we obtain that u(t) satisfies the
following estimate

lu(t)] = M utg)] . (2.35)
This contradicts the flatness of u(t) and so Theorem 2.8 is proved.
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