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ABSTRACT. This paper is a study of summability methods that are based on the Riemann Zeta function. A

limitation theorem is proved which gives a necessary condition for a sequence x to be zeta summable. A

zeta summability matrix Z associated with a real sequence is introduced; a necessary and sufficient

condition on the sequence such that Z maps 11 to 11 is established. Results comparing the strength of

the zeta method to that of well-known summability methods are also investigated.
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1. INTRODUCTION.

Recall that the Riemann zeta function is given by (s) k ( !/k’) rot >
A number sequence is said to be zeta summable to L (or -summable to L) provided that

(T’schmarch [1 ]).

L.0,

The zeta method is a "sequence-to4unction" summability method whose domain consists of those

sequence x such that the Dirichlet’s sedes ;-1 (xk/k) is convergent for s > 1.

In the second section it is shown that the zeta summability method is regular and totally regular

(preserves finite and infinite limits). A limitation theorem is proved which gives a necessary condition for a

sequence x to be zeta summable. In section 3 we introduce a zeta summability matrix Z associated with a

real sequence t; a necessary and sufficient condition on the sequence such that Z maps 11 into 11 is

established. The final section contains results comparing the strength of the zeta method to that of

well-known summability methods. For example, the zeta method is stronger than the Cesro method of

order but does not include the Ces.ro method of order 2; the zeta method does not include and is not

included in the Euler-Knopp method of order for 0 < < 1.

2. BASIC THEOREMS

THEOREM 1. The -summability method is totally regular.

Proof. First let x be a sequence satisfying limk xk L, and suppose > 0. Then choose N so that

k>N implieslxk-Ll</2. Now for any positive integer k and s >l we see that .] ’11 x ;, /k) is
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bouby ’,’., ]x L M. Since 5l, ]/k oc we carl choose N2 >NlSOthat

-,.--1 1/k > (2M#)--1. Nowchoose6suchthat0<8<log[l+(1/N2)]/IogN2. Then for each k < N2, we

have

k’<’k )(’’ l’(;N")!/)u N’ <_ + (I/N2)

and if <s<l +8

(l/k)--(I/k’) < (k-l)/k’ < k‘- < l/N.

Summing from k to N2, we obtain

2M

Thus for < s < + 8,

N2
.,) .> v

kk-l

2M.--.
and

Hence,

Xk
Cs) ,%

< M+
2M 2

Now assume x is a real number sequence which diverges to ,,,,. Then for each number M > 0 there
exists a positive interger N such that xk > M + for all k > N. Suppose s > and consider

(s) ):% ------ + (M+).
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Since r(s) - as s + we see that if s is sufficiently close to on the right, then

<1"

this implies that

> -1 +M+I
M

Since M > 0 was chosen arbitrarily, we conclude that

Xkim V’ oo

A previous definition of "zeta summability" was given in Diaconis [2]. In that paper the bounded

sequence x is said to be zeta summable to L if

xili,n._.,+ (s--l) E - L.

This is equivalent to the difinition of the zeta method introduced in this paper. There equivalence is an

immediate consequence of the fact that lims_l + (s) (s 1) 1.

Recall that a Stoltz domain of angle, where 0 < a < /2, is a complex number set of the form

S(a) {w A,’g (,,’--) <, d w <}

(Powell et al [3]).

We shall use a variant of this concept, which we shall call a "reflected Stoitz domain of angle o"

S’(a)-- {w Arg(w-1) < and Re(w)>l}

This concept is now used to extend the zeta method to one using a complex-valued function limit, and we

establish the regularity of this extension.

THEOREM 2. Let S *() be a reflected Stoltz domain of angle x; if the sequence x converges to L

then

The proof of Theorem 2 that we shall give needs the following preliminary result.

LEMMA 1. Forw o + t, w e S*((z), andw sufficiently close to 1, we have

_<2 s ,-,.

Proof. Since (w) can be expanded in the form (w 1) "1 + P(w 1), where P(w 1) is a power series

in (w- 1), (Hardy [4], p. 333), we have
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7T + P(a-l)

+ (w-l/

Since the limit value Iw 11 o 11 -< sec z for w eS*(cz), this proves the assertion.

Now we prove Theorem 2.

Proof (of Theorem 2). Let e > 0. Since x converges to L, we can choose N 9- Xk I_ < e/4)

Ncosa for k>N1. Let _k=l xk L, M. Since (w)--oo asw ->1, we have l/(w)< e/2M for w

sufficiently close to 1.

Now for w S*(a), we have

\- xk ,, [xr L<
I(w) Ik"l

N,

IXk-LI + P IXk-LIIk’l k>%, Ik*l

M + COS O E
k--, Ik

< 7; + (’os a,) ’2 see a,

Next we prove a limitation theorem which asserts that the -summability method cannot sum a

sequence that diverges too rapidly.

THEOREM 3. If a complex number sequence x is -summable, then for each s > 1, xn o(nS).

Moreover, the term o(ns) is the best possible in the sense that the conclusion fails if ns is replaced by any

real sequence to such that tn/ns decreases to zero.

Proof. For x-to be i-summable, x must be in the domain of the -summability method. Therefore

xn/n converges for all s > 1, which implies that limn(xn/nS 0. If ns is replaced by n, where

tn/nS decreased to 0, then we assert that it will not be true that xn O(tn) whenever x is -summable. This

is equivalent to showing that there is a sequence x such that x is -summable and xn O(tn). Define the

sequence x by xn (-1)n+ltn, so that

Xn )c+lv E (-
n--I n=-I

This is a convergent alternating series, and its (positive) sum is bounded by its first term tl.
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Hence,

xnlira

i.e., x is -summable to 0. But xn = O(tn) because for each n, xn/tn 1.

3. ZETA SUMMABILITY MATRICES

Definition. Let be a sequence of real numbers such that t(n) > for every n and limnt(n 1.

Then the zeta matrix Z [Znk associated with the sequence is defined by

for n,k ’,2,3,z,,k- (.(,,))k(.)

In this section we make use of two well-known theorems in summability theory, which we shall

subsequently cite by name only; they are Silverman-Toeplitz Theorem ([5]and [6]) and the Knopp-Lorentz

Theorem [7]. It is an easy calculation to show that Zl satisfies the conditious of the Silverman-Toeplitz

Theorem for regularity. Moreover, Z is totally regular because all of its entries are positive real numbers

([3] p. 35). We summarize these observations in the following theorem.

THEOREM 4. The zeta matrix Z associated with the sequence is totally regular.

The next result is a characterization of those sequences for which Z is an I-I matrix, i.e., Z maps 11
into

THEOREM 5. The matrix Z is an I-I matdx if and only if is in 11.
Proof. Since each row sequence of the matrix Z is decreasing, the set of the sums of column

sequences of the matrix Z is bounded by the sum of its first column entries. Therefore by the

Knopp-Lorentz Theorem, it is enough to show that the first column sum is finite whenever V

(t(n) 1) is convergent. This is a consequence of the inequality

Y < =,(()-)’
o= (-))

which follows immediately from the fact that for s > 1,

s-1 <
()

<- (*)

Hence Z is an I-I matrix.

Conversely, assume Z maps to I1. Since t(n) > and limn t(n) for every n, we can choose a

positive integer N such that 0 < t(n) < for n > N. Suppose is not in 11 then

n--N=N
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Now ,’,’, (1/t (t(n))) diverges to infinity because of the inequality 1/ (t (n))) >_ (1 1/t (n)) as in (*).

Therefore, by the Knopp-Lorentz Theorem, Z is not an I-I matrix. This completes the proof of the

theorem.

4. INCLUSION THEOREMS.

In this section we compare the strength of the zeta method and the zeta matrix methods to several

well-known summability methods. Throughout this section Ca denotes the Cesaro summability matrix of

order and E the Euler-Knopp summability matrix of order r.

LEMMA 2. If x is a sequence that is C1-summable, then x is in the domain of the -summability

method, and hence, x is in the domain of every Z method.

Proof. Assume that x is C1-summable to L: limn (Xl +- + Xn)/n L. To get the conclusion it is

enough to show that the abscissa of convergence Go of the Direchlet series n.__= xn/ns is less than or

equal to 1, where o is given by

log xl

ro-- lira sup
log n

(Hardy et al [8] or Titschmarch [9]). Since x is c1-summable to L, there exists a positive integer N such that

if n >_ N, then

< ILl +1.

This implies that =-:, = _< ( L + ), ,

log [n(ILI + ])].

Therefore

log rkl xcr lim sup
log n

log n (ILl +<_ lim.__.sup log n

THEOREM 6. The Z method includes the C method.

Proof. This inclusion is equivalent to the regularity of the matrix ZtC1-1 which can be verified by

direct calculation using the Silverman-Toeplitz Theorem.

The following example shows that the C method does not include the Z method.
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Since

EXAMPLE.

’.,et x {(- l)lk} l.hen

(tx),, N’ (- ])kk

7, kt(n)_t,(n))

for L(n)>

and limn (t(n)) *,,, it is easy to see that limn(Ztx)n 0. On the other hand, we have

(C,x)n 1 (_l)kk
Ilk=

-,if uiseven

]-1 ifnisodd

Thus limn(ClX)n does not exist, so x is not Cl-summable.
By a "continuous parameter sequence-to-function transformation", we mean a summablility

method F that is determined as follows by a fuction sequence {fk(z)} --i for a given sequence x form

the function

Fx(z)-- E fk(Z)Xk (*:)
k=l

if limz ._) a Fx(z) L, then we say that "x is F-summable to L". For a given function sequence {fk(z)}

and a given number sequence t, we can also form an associated matrix Ft, which is given by

Ft[n,k fk(t(n))

The next lemma, which will be used to compare the C method and the t method, is a comparision of the

method if and the associated matrix method F

LEMMA 3. Let F be a continuous parameter sequence-to-function transformation as in (**) and

define the sequence sets

:r {x lira l".[z) exists}

SF, {x t;’tx is convergent

and

T= (t "limt(n)-- a}
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then

Proof. We show that each of SF and I’It(TSF, contains the other. Since Ft includes F for in T, we

have

t.T

To prove the reverse inclusion, we consider a sequence x which is not in SF. It follows that limz ._> aFx(z)
does not exist. By the sequential criterion for function limits (Almsted [10], p. 73), there is a sequence t\

in T such that limn(Ftx)n does not exist. This implies that x is not in the set Sv, Hence x is not in the

set r"i.

THEOREM 7. The -summability method is stronger than the C method.

Proof. By Lemma 3, we have S r’lt(TSz,. Since the Z method includes the C method for all

in T, we have Sc C ,t? S.,, $.. Now if x is a sequence that is C -summable to L, then x is Z summable

to L for all in T. Therefore the sequential criterion for function limits ensures that x is t-summable to L.

Hence, the method includes the C method. It is easy to see that the C method does not include the

t method because C method does not include the Z method.

As a consequence of Theorem 6, we can infer that Z includes any method that is included by C 1.

For example, Z includes the divisor method D for > 0. (Fridy [11]).

Let H2 denote the Holder method of order 2. By arguing as in the proof of Theorem 6, we can

prove

THEOREM 8. If the sequence x is H2-summable to L and x is in the domain of the Z method,

then x is Z summable to L.

COROLLARY. If the sequence x is H2-summable to L and x is in the domain of the -summability

method, then x is t-summable to L.

The conclusion of the preceding Corollary does not hold if x is not in the domain of the method.

This is shown by the following example.

EXAMPLE. Let x l)e tile se(luenee defined I)y

(-1)kk il n---2k, k--1,2
Xn

(-1)" /k il" n=2k-1, k--l,2

If x < 3/2, then the series 3__,,___ (xn/ns) is divergent because its nth term does not approach 0. Therefore

x is not in the domain of the method, and hence, x is not -summable. Now we show that x is

H2-summable to zero. Since (ClX)2k_ (-1)k+1k3/2/(2k-1) and (CLX)2k 0, we see that the (odd) partial

sums alternate in sign after k 3" thus the partial sum is not greater than the last term, which is 0(kl/2).
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Therefore, upon dividing by 2k-1 to form C (ClX)2k_ we have

HoX)k_:
2k-

=o().

which proves that x is H2-summable to zero.

Since the Holder method of order 2 is equivalent to the Cesaro method of order 2 (Hardy [4], po

103), we can immediately get the following theorem.

THEOREM 9. If x is a sequence which is C2-summable to L and x is in the domain of the

summability method, then x is -summable to L.

It is well known that for each number satisfying 0 < < and any nonzero real number x, Ero By

using these facts, we have the following result.

THEOREM 10. The method is not included in E for 0 < < 1.

The following example shows that the method does not include E for 0 < < 1.

EXAMPLE. Given between 0 and choose > 0 satisfying < 2 (2 + ). Next define xk (-1 _)k.

Then

(.x) E () , (-r)- (--’)

[( -- ),. + (I-r)]

Since 0 < < 2 (2 + ), we have -1 < (-2-)r + < 1. This implies that

--0,

i.e., x is Er-summable to 0. But x is not in the domain of the method because the series

v’ (-]-)"
k:=l

is not convergent for any s, whence x is not in the domain of the t method.
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