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ABSTRACT. Let (X) be a sequence of m-dependent random variables, not necessarilyn

equally distributed. We give a Berry-Esseen estimate of the convergence to normality

’of a suitable normalization of a U-statistic of the (X). This bound holds undern

moment assumptions quite weaker than the existence of third moments for the kernel.

Since we obtain the sharpest bound, the order of the bound can not be improved.
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I. INTRODUCTION.

Let (X ,X
2

Xn) be random variables (r.v.). A very important and common

class of statistics is the class of U-statistics, of the type

U [ (X Xk)<i <... <ikn
where h is a measurable symmetric function which is called a kernel. (For notational

convenience, we do not consider the average of h but the sum of its values. This

will not make any difference since we will normalize U latter.) In the case of an

independent identically distributed (i.l.d.) sequence (Xi) it has been shown by

various authors that the distribution function of normalized U-statlstlcs converges

-I/2
to standard normal distribution function with the rate of n the latest and

sharpest result being due to R. Helmets and W. R. Van Zwet [I]. These authors

studied U-statistics of order 2, viz.,

o h(Xj, Xk).
.<j <k <n

But as they pointed out, their results can be extended to any order and to the

mult i-sample case.

In this work, we relax the independent and equi-distrlbuted assumptions about

the sequence (Xi) of r.v.’s. Consider a m-dependent sequence (X i) of r.v.’s, i.e.
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for" each .< s < n-m, the sequence (Xi)[<.s and (Xt)i>s+m are independent of each

other, and which is not necessarily equi-distributed. Then we obtain a universal

Berry-Esseen bound for the convergence of the suitably normalized U-statistic to

standard normal. This bound involves the same moments as in the Helmers and Van

Zwet’s result, and leads the best rate of convergence for the independent case. We

deal only with the one sample case of order two; but there is no doubt that the same

methods could extend to the general case.

2. RESULTS.

Consider a fixed sequence of m-dependent r.v.’s, XI,...,X and a fixed
n

R
2

measurable function h: R. We want to study U h(Xj, Xk). Let us denote
.<j <-k <n

by F the field generated by X
i.

Then the sequence F is m-dependent, in the sense

that for <. s < n-m, the two 0-fields V F. and V F are independent (where
<s-1 i>s+m

V F. denote the e-field generated by the F ieI). It is conceptually more elegant
--i

and also more convenient to look at h(Xj, Xk) as a function hj, k
which is Fj V F

k

measurable. So we fix a sequence (Fi)1<i<n of m-dependent o-fields and consider for

<. j <. k <. n r.v.h.j,k which are Fj V F
k
measurable. (Here we allow the possibility

k since the proof will be the same and since it is convenient and allows to

extend the result to V-statlstics.)

For j < k, let

gj,k E(hj,klFk) gk,j E(hj,klFj)"
Let f [ gj Let 3/2 < p < 2. We make the following assumptions:

J <j.<n
,i

For any < j .< k < n, E(hj, k) 0 (2-I)

For any < j < k < n, hj,k has a moment of order p. (2-2)

For any < n, fi has a moment of order 3. (2-3)

For < j < k < n, let Yj,k hj,k gj,k gk,j" Suppose now m I.

Let _G V Fi, _G2 V 2F_i It is easily checked, and fundamental,
l-Jl -2 l-kl -that if k .> j 2 we have E(Yj,kI_GI) E(Yj,kI_G2) O. Moreover, if k j and

G V Fi, we have E(Yj G) 0 We set
1{j-l,j,j+1,j+2} ,j+1

n n
S Z fi’ o2 ES2 L o-3 Z EII 3

I-I i=l

For a e {I, 3/2, p}, we set

-a a -a aMa 0 Z EIYj,I M’a o Z
j<k j<k

M (M3/2)2/3, M’ (M/2)2/3
N o

-3/2 . EIYj I 3/2, N’ o-3/2 Z Elhj 3/2

0<k-j3 0<k_j<3
,k
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Let denote the distribution of the standard normal law. The main result is as

follows:

THEOREM A. Assume m I. There is a universal constant K such that

--ISup IP(U < t) (t) <. K{L M’L2/3 NL I/3 (log L I)p/eM’
t P

M’L5/3-p ’L 2}
p MI

Let us investigate this theorem in the case that h h(X Xj) and the X
i,j i’

2 -I/2are i.i.d. If g (Eh(XI,X2)IX2) and if we set a (Eg) and for t e [I, 3]

(resp. [I, p]) we set bt Elgl t, c
t Elhl,2 It, we get the bound

K{n-I/2a3b
3 n-I/2a3(b3c3/2)2/3 n-2/3(c/2)2/3931/3a5/2

(I/2 log n log a3b3)P/2n2-3p/2aPcp
I/3-p/2a5-2Pc b

5/3-p n-1 b}.n /2a7c
p p

For p 3/2, this bound is O(n 1/41og3/4n) and for p 5/3, it is of the best

-I/2
possible order O(n ). A bound of the same order is obtained in the tationary

case.

It is possible with our method to find many other bounds of the ame type. An

example .f possible variation is given in section 6. More importantly, the term

M’L5/3-p can be replaced by a term of the form M’L-p for any Y < 2 (but the
P P
constant K will grow very fast when gets close to 2). It is also possible to

replace the term MI’L2 by M’Lq for any q > O, (but then K will grow with q). Hence it

can be said that the main terms in theorem A are L, M’L2/3 and M’log(L-1) p/2 f p <
P

5/3 or M’L5/3-p if p > 5/3.
P

Theorem A can also be used to give bounds in the case m > I. To do this, we

proceed by blocking. More specifically if for 0 < < [n/m], we set G V FI,
jJ

where Ji {j: im < j < Inf((i+1)m, n)}, the fields G are l-dependent. Moreover, if

ho,k’ h,,, for j .< k, we have U h’j,k and it is possible

EJj ’’ Jk O<J k’<[n/m]

to apply theorem A to this U-statlstlc. (It is very useful at this point that we did

not assume that h’j,k is of the form h(X
i, Xj) and to allow the case J k!). The

quantities involving the moments of the functions (h,k) can easily be expressed in

terms of the moments of the h,,. However, this does not seem to be the case of the

normalizing factor. This is why we do not state formally the result when m > I.

3. METHODS.

We shall use three basic techniques, viz. the method of R. Helmers and W. Van

Zwet [I], a method of V. Shergin [2] to deal with m-dependent r.v. and his result

about the convergence to normality of a sequence of m-dependent r.v. and an estimate
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by the author of "’IEeitS where S as a sum of m-dependent r.v. [3] (which

based on Shergin’s technique).

We shall denote by K I,K2,... universal constants. No attempt has been made to

find small numerical values: their choice is made crudely, to check the consistency

of the construction.

We suppose m I. We shall use Esseen smoothing inequality [4].

-1<.t I Itl-11E exp(itUo (3-I)suPlP(U )- (t)I-< KI{T
T -I

t -T

exp (-t2/2)I dt}.

We haveLet g o Yj
<-j <k<-n

-I 2/Im exp(itUo exp(-t 2) <. IE exp(it-Is)(exp(itA)-1)l
-I+Im exp(ito S) exp(-t2/2)l.

The second term will be taken ca,e of by Shergin’s theorem. Considering that

le it- it < 21tl p, we have

-I PE PIE exp(ito-Is)(exp(itA)-1)l <. ItlIE(A exp(ito S)) 21t IAI (3-2)

We shall evaluate these two terms directly. The above evaluation will De used

for t <. 101og L-I. For t => 101og L-I, we have ep(-t2/2) <- L5, and so it is enough

-I
to bound E exp(itUo Let I be an interval of [i, n], (to be chosen

appropriately). Let

-I
<nYj 2 A- AAI= o .

k
<Ij(kI
j ,kI

We have, by expanding exp(itA2).
-IIE exp(ituo-l)I < IE exp(it(o S+Ai)) (3-3)

ItIIE A2exp(ito-Is+A1)l 2ItlPEIA2 Ip

and we shall evaluate these three terms. In these evaluations, we shall several

times encounter the same difficulty. Say, for example we want to estimate

-I
Elexp(it( S+AI)) Let S’ fi" Then S’ depends on the -IF" for ieI. Moreover

-I
o (S-S’) A depends on the F for iI.

If we knew that the F. were independent, we would have
-i

-IIE exp(it(o S+AI)) IE exp(Ito-Is’)l

for which good estimates are known (of the type exp (-t2-2E(S’2)) for t not too

large). However, we must proceed in a different way. We shall use the technique

mentioned above to show that modulo a small perturbation one can (roughly speaking)

-I
do as if S’ and (S-S’) A were independent and then use the estimate of

theorem 4-5.
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In order to prove theorem A, one can suppose K 10 -3, so we can as.ume L <

10 -3. It then follows that if H [log L-I+ I], we have HL <. 10
-2

and H .> 7.
Moreover for each i,

Ef <. (Elfil3) 2/3 < oeL2/3 o2/1OO. (3-4)

4. LEMMAS.

This section contains some of the technical tools we need.

LEMMA 4-I [4]. Let X X
k

be r.v.. Then for r I,

m [ Xi Ir. k
r-1

ElXi Ir. (4-1)
k k

LEMMA 4-2 [53. Let X X
k

be a martingale dfference. Then for

p 2, we have

1 xl lxl .. -k k

LEMMA 4-3 [2]. For a sequence (Xi)n of m-dependent r.v. of mean zero and

r 2,

2 r/2
1 xl" (m+)"- ( x)

THEOREM 4-4. (V. Shergln [2]). Let S be a sum of 1-dependent r.v. (fi)n of

2 0-3 3zero mean and e ES2’ Let L [ Efi There exists a universal constant K
2

&n

such that

t-1E exp(ItSe-I) exp (-t-R/2)dt K2L. (4-4)

THEOREM 4-5. [3]. Under the hypothesis of the above theorem one has for

-IIE exp(itSo )I $ (1+K21tl) Max (exp(-t2/80), (tK2L)
-IIn particular, for o K

2 It and ItlKmU , we have

-I

IE exp(itS) (I K2olt I) Max (exp(-t2o2/80), (toK2L)I/4 log L

PROPOSITION 4-6. With the above notation, for a R let

_2 2F {i [I, hi: o Elfil.. 400L2}."

Then

lrl z oo.
PROOF. Let q card F. We have

4 2
o Z ml,l ooq I mltll3) z 40oq I mlr13) 2.
F $in F

From Holder’s inequality, we have

-II/4 log L

I/3 3 2/3

F F F

). (4-5)

(4-6)

(4-7)

So (4-7) gives
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iF

The result follows.

We -are going to bound at the sane tie E[A] p
and E[6[ p

(notice A A if

, n3.).

LEMA 5-1. EIA2 Ip K3o-P EIYj
(j ,)ev ’

where V {j, k: j < n, either j or k belongs to I}.

PROOF. Since

A2 Yj, k k
2

A’ A"

V {j, k: <- j < k < n, k I}

V
2

{j, k: < j < k < n, j e I, k I},

it is enough by (4-I) to bound each of these sums. We bound the first one.-- YTh.e proof for the second is very similar. For k I let Z
k

j.<k-2
j,k"

Then

For O, I, 2, let

The sequence Y3+i_1,3+

So (4-2) implies

Thus (4-I) implies

k I kI

A [. Y3+i-1,3+i"
3+iI

is a martingale difference, since if

FI
t V Fj, then z(z3t/i_ 3t+ll-j<3+i

O.

3+iI

E [ Yk p< 6 Y. -I_ p

kel
-I ,k kel ,k

The sequence (Z2k)2kei is a mrtingale difference. Indeed, if

H-k iV.<2k-IF, then Z2k is H
k
measurable and E(Z2k+21H_.k) 0. A similar result holds

for the sequence (Z2k+1). So (4-I) and (4-2) give

1 zkl p [ ’lzl p.
kgl

Let us fix k e I. Then, it is easily seen that both sequences (Y2j ,k 12j<.k-2

and (Y2j+1,k)1<2j+1.<k-2 are martingale differences. It then follows by (4-I) and

(4-2) that

<k-2 k

The result follows these estimates.
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-I6. BOUND FOR E(A exp it o S)

Let H- [log L-I I]. For Itl .> IOK2, let

(t) (1+K21tl) Max(exp(-t2/8000), (IOOK2tL)
and for Itl < IOK2, let (t) I.

-II/4(Iog L /1000)
(6-I)

LEMMA 6-I. There exist universal constants K4, K
5

such that for ItK4LI< I,

we have

We write

IE(A exp(ito-Is))l < K5{t2V(t)ML2/3+ t(t)NL1/3 MI(4OtL)H}.

-I -IolE(a exp(ito S)) < Z E(Yj kexp(Ito S))I.
<-j <k<n

We shall evaluate each of the terms of the rlght-hand’side
LEMMA 6-2 If k < j+2, we have for IOOK21tlL < I:

IE(Yj, kexp(ito-ls)
k+1

< 241tl(t)(EIyj k13/2)2/3(o-3 Elfll3) I/3 EIYj kl(40tL) H.
i-J

PROOF. First step: We prove that one of the following cases occurs.
First Case Their exist s < j satisfying the following conditions:

for s < s’ < J, E Z fll 2 >. o2/I0 and (6-2)

there are at least 2H indices E ]s, j-2[ for which ElfI, 12< 400 Lo2 (6-3)

Seoond Case There exists s > k satisfying the followlng oonditions:

El I a o2/10, for k < s’ < s and (6-4)
i=S’

there are at least 2H indices E ]k+2, s[ for which Elfll 2 < 400 Lo
2 (6-5)

2 2 ES 2 + 2Efjf ItIndeed, let $I= f and S S S We have o ESI 2
I< <-j

i’ 2 j+

follows from (3-4) that ES21 + ES a 98,2/100. We prove that the first case occurs

if ESa 49.2/100 (or even ESZ 24.2/100. Let F- {lI: Let s

be the largest integer such that ]s, J-2[ contains 2H indices which do not belong to

F For s’ > s since HL $ 10
-2

and L < 10-3 from (4-3) and (4-6), we get

J J
El l fil

2 < 2 l Ef ’ 2 I El2 2(2H+3)400L2o2
i=s’ +1 i"’ +1 t:F

2/<. o2/10 3.10-3.2 / 16,10 3.2 < 12. 100

It then follows that

J
El l I -2Ef fs>.ES -El I j,

i-S’+1
S’ ’+I

1<i<S’

2/48o2/100 12o2/100 2o2/100 => o 10
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Similarly, the second case occurs for ES 49o2/100.
Second Step. We suppose that the first case occurs, the second being similar. We

can pick for < < H, indices s < p() < j-2 such that p() F and

p(+1) < p()-2 for < <. H-I. Let

-I -IZo= o . f. z- o . f-zoj-1 =<i.<k +I i>p(1

and for .< <-H (resp. <. H-I), let

-I -I
Z2 fp() (resp. Z2+I- o . f

p(+1)<i<p()

-ILet S o S Z
0 Z. Let us define Y exp(itZ) I. It is easy to check

that

-I
Yj,kexp(it So Yj,kexp(ItZ0) exp(It S I)

2H-I

Yj kexp(itZo " Y (itS
-I q-1

q +I

(6-6)

2H

Yj kexp(itZ 0) qeXp(itS2H).
q=1

Note that for each q, ..IYql-< 2 and EIYql,. < ItlEIZ I- The last term of (6-6)q

has an expectation bounded by
H

2HEIYj k =[lIEl2ql < EIYj,kI(4OtL)
H

q

-I -I I/2
since EIZ2q o Elfp(2q) < o (Ef (2q)) .< 20L. For < < 2H-I,

(6-7)

Y exp(itS is measurable for the o-fleld generated by the F for j-2 and

q=l
q ,+1

So, if YO exp(itZ0)-1, since E(Yj,k

E E(Yj k
exp(itZO) I[ YqeXp(itS+1

qIl

N Y exp(itS ))E(Yj ,k q +I
q-0

II Yq, we getSince S+ is independent of Yj,kq 0

lEvi ElYj kVOI n EIX2ql.2[’/2]+llE exp(ttS+l)
2qs,

< 2ElYj ,kxO (40tL)
[/2] IE exp (itS+l)

s
-I

where s < s’ < j by construction, itSince S+ is of the form S1+1 o fl
2 2 > I/I0 So we havefollows from step that o’ ES+

s’
-1 3 -1L,- o ,-3 E Io fil s o2o L.

i=1

k+2, hence independent of Yj,k"
we get
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It follows from (4-5) that for I02K21tlL <. we have IE exp(itSE+1) (t).

Moreover, since K
2

.> and I02K21tlL <. I, we have (20tL) [/2] < 2-[E/2].
Finally,

EIYj,kOI -< tEIYj,kZ01 -< t(EIYj,kI3/2)2/3(EIZoI3) I/3.
In the same manner, we have

elYj,kexp(itZo)exp(itS1) .< EIYj,kYOI(t).
The lemma follows from these estimates and the estimate of EIZo 13 from (4-I).

LEMMA 6-3. If k > j+2, we have for IOOK21tlL _< I,

cIE(Yj k exp(itc-Is))l
-< 40t2(t)(EIYj k13/2)2/3(0-3 7. ElfiI 3 )I/3"(0-3 7. El f 13)I/3

EIYj,kI(40tL) H.
PROOF. First Step. One of the following cases occur:

first case, second case: identical to the first and second case of lemma 6-2

respectively. Third case, there exists j+2 < s < s
2

< k-2 satisfying the following

conditions: for j+1< s’< s1< s2< s"< k-l, we have

E 7. fi 12 >. o2/10 and (6-8)
S <i <-S"

there are at least 2H indices e ]j+2, st[ for which Elfi 12 400c2L
and 2H indices e ]s2, k-2[ with the same property. (6-9)

The proof uses the same method as in lemma 6-2. We omit it.

Second Step. We shall treat only the first case. The second case is identical and

the third uses the same idea. For .< H, we pick indices s <. p() < j-2 such

that Eft(f) 400o2L2 and p(+I) & p()-2 for I & H-I. Let

Z’ o fi’ Z" c fi and ZO- Z’ + Z",
[i-j l1 ll-kll

and for < < 2H, define Z and as in lena 6-2. Then (6-6) holds.

Let W H qeXp(ltS+l ). For .< <- 2H-1, the r.v. exp(ltZ")W is
q-

measurable for the o-field G generated by the E for I-JI >. 2. (Here" we use the

fact that k >- j+3). Since E(Yj,kI_.G O, we have E(Yj, k exp(itZ")W) 0. Similar

E(Yj, k exp(itZ’)W) 0 and E(Yj,kW) O. It follows that if

YO-- (exp(itZ’)-1)(exp(itZ")-I),

we have

E E(Yj kexp(itZ0) n YqeXp(ItS+ ))
q=l

E(Yj kTO H exp(itS
q-1

q +I
)).
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The rest of proof is entirely similar to lemma 6-2, except that we estimate

EIYj,kYOI -< t2EIYj,kZ’Z"I .< t2(EIYj,klB/2)2/3(EIZ,Z,,I3) I/3

< t2(EIYj,klB/e)2/3(EIZ, 13)I/S(EIZ,,13) I/3.
PROOF OF LEMMA 6-I Follows from lemmas 6-2 and 6-3 by the use of Holder’s

inequality (with K4-- I00K3).
REMARK: If, in the estimate of EIYj,kY0 I, we use Holder’s inequality

with exponents p and q p/(p-1), we get in lemma (6-I) the bound

I/2 2/q 1/2Q1/q MI )HK5(t2(t)Mp
Q Itl(t)Np (40tL

n
where Q

-q . Elfi lq.
i=I

7. HOW TO CHOOSE .
Le 10

-2 > 8 > 3.103HL2 which will be chosen later. The next lemma shows how

to pick a subinterval I of {I, n} which roughly speaking will play the role

that interval {I inS]} would play the i.i.d, case. Let

F a {I n} zlfil
2

>-400 L2}.
LEMMA 7-I. There exists an interval I {I n} which has the following

properties.

I is reunion of ten subintervals Ii, Ii0 which (7-I)

extremities does not belong to F, and such that for

< <- 10, each I contains at least 2H elements which

does not belong to F, and is such that E( . fi )2 a 28a 2.

n. ElfiI 3 24008 Elf iI 3 (7-2)
iI i=I

If A {j, k; j < k, j or k belongs to I}, we have

a-P EIYj
p < 5000eM (7-3)

(j,k)A ,k p

PROOF. Let s(1) I. We construct by introduction a sequence s(i) in the

following way:

s(i+1) Inf{s: s(1) < s < n, s-l, s F, is{i), s[ \ F contains

at least 2H elements, E( Z f)2 >. 28o2}.
s(i)<<s

The construction goes until we reach an integer s(h) such that eltheP s(h) n or no

s e ]s(h),n[ satisfies the required conditions. In the second case we set

s(h+1 n.
We show now that 58(h-I) >. I. For each < h, let s’(1) be the largest

index s .> s(i) such that E( . f)2 28o 2. The definition of s(i+1) implies
s(i)<.t<_s

easily if A ]s’(i), s(i+1)[ F, then if B ]s’(i), s(i+1)[ \ Ai, we have

card B. -< 2H card A.. For each i, we have



ASYMPTOTIC NORMALITY FOR M-DEPENDENT U-STATISTICS 197

It follows that

E( [ f)2 .< E( [ f)

Ef
2

Ef
2

2 . Ef2 2 Efs’Ci) s’Ci)+1 A. cB.

h h
2 2 f2 Ef2<-2he (E

s(i)-1 s(i) [ (Ef2
i-2 i=I

s’(i)

ieF

Since s(i)-1, s(i) F it follows easily

Ef
2
s’(i)=1

2 2
h

2
o < 2h8o 4 [ Ef 1600hL2o2 + 800L2 [ card B io

iF i=I

h
But card B. - 2Hh card F, from (4-6) we got 400L2card F . o2/20,

i=I

so we get finally

2
o 602/20 ho2(20 + 1600L2 1600HL 2)

Since H >. 7, We get 7o/10 <. 3ho2. So h 7/30. Since 10-28 I, we have h 20, so

5e(h-1) -> 1.

For <. <. h-l, let Ji ]s(i), s(i+l)[. Let

a 0-3 :lr.l , ,:,. o-p lj.l p

eJ (J ,k)eA

where A {(j,k): .< j < k <- n, j or k belongs to J }"

It is easy to see that

[ a. S L and [ b S 2Mp..
.<i-<h-1 Si &h-1

It follows that there are at least 19(h-I)/20 indices .< <. h-1 for which

-I -Ia <. 40(h-I) L and b S 80(h-I) Mp. Since (h-l) >. 19, it is possible to find ten

consecutive indices i+I, i+2 I+10 with thls property. The lemma follows by

10
letting I Ji+ for <- 10 and I U I

=1

8. BOUND FOR }E exp(it(o S+AI))I and IE A2exp(it(o
We shall bound the above quantities when I is chosen as in the preceding

paragraph. Let

(t,e) (1+K21tl)Max(exp(-t2e2/80), (2400tK2L)I/4 log(L-tel/2/2400))
-I

for t >. K
2

and (t,) otherwise. We first show that if Sl, s
2

I are such

that [Sl, s2] contains one of the intervals IE (2 E < 9) then, if

-IS’ o fi’ we have Elexp(itS’) < (t,) whenever 24001tlK2L < I.
s is

2

Indeed, if I (s’, s"), we have
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-3Moreover o

E(S’) 2 E( fi.)
2 E( : fi)

2 ( : fi)
2

s. <i<s’ ieI ,"< <s
2

2 Ef fs 2 Efs,,f s 28o
2 1600o2L2 8o

2
s’-1 "+I

[ Elfi 13 .< 24008L, so the result by (4-5).
s <.i <s"

LEMMA 8-I. If ItlK6L <- I, then

-IEIA2 exp(it(o S At)) < K5MI((t,O) (8OiL)H).

PROOF. Let us fix j < k. Then, among the intervals 11, Ii0, it is

possible to find three consecutive intervals J1’ J2’ J3 which do not contain either

j or k. So we can pick indices p(), < < H in J1 \ F such that q(+I) -> p()+2
for < <- H-I and indices q(), <. < H in J3 \ F’such that q(+I) < q()-2 for

< <-H-I. Let

and for -< <-H, [et

and for < <. H-I,

Let

-I -I
ZI " fi o fi A

i<p(1) i>q(1)

We have

-I
Z2 o (fp() fq())

-I -I
Z2_I o . f o [ f

i"
p()<i<p(+1) q(+1)<i<q(t)

-I
S ,o S g I) [ Zi and Y exp(itZ) I.

-I
Yj,kexp(ito S)-= Yj,k exp(itZl) exp(itS2)

2H-I

Yj k 7. exp(itZ1 [[ YqeXp(ItSz+1
=2 q=2

2H

Yj ,kexp(itz )q.2YqeXp(ItS2H)
So, by using the same type of majoratlons as in section 6, and since

lexp(it S) <- (t,8) for 2 & <- 2H by the preceding remarks, we get

-IE Yj,kexp(ito S)I 4EIYj,kl(t,8) + EIYj,kI(8OtL)
H

and the lemma follows by summation (with K6 2400K
2 K4).

A comparable but simpler proof yields the following.

LEMMA 8-2. If ItlK6L <. I, then

-IElexp(it(o S+AI)) K5((t,8) + (80tEN)).

9. PROOF OF THEOREM A.

Since we can suppose K
6

>_ 2400K2, straightforward computation from

(6-I) shows that for 0, I, 2,
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I Itli(t)dt < K?.
12

e ,ItlK6L <

Let us denote J(T) the integral in the right hand Ride (3-I). Let

TO
Inf ((80000-1og L)

I/2 (e-4OK6L) -I)

It follows from (3-2), theorem 4-4, lemmas 5-I and 6-I, and 9-I that

(since K6
> 40)

J(TO) <. K8(L (log L-I)p/2Mp ML2/3 NL I/3 +MIL I0).

-40K6L -I
For TO <- t -< (e (if such t exists) we let

Max (8000t-2 log
-I 24002L5/6)

(9-I)

The first term is 10
-2

and it is indeed possible to.assume e < 10
-2

for otherwise

ince we can take K (24000) 2
and theorem A will be automatically satisfied.

Moreover e >- 4.10 3HL. Hence choose I as in section 6 and use the estimates (3-3)

and lemmas 5-I, 8-I and 8-2. Notice that for this choice of e, straightforward

computation gives (t,O) <- K8L4. It then follows that

J((exp(-40)K6L)-1) J(TO) <. K9(L MIL3 M L5/6-P).
P

If we put all these estimates together we get theorem A, with the bound as stated,

but where the quantities with a "dash" are replaced by corresponding quantities

without a dash. However, since for .< r < p we have Elgj,k
lemma 4-I shows that the "undahed" quantities are bounded by a universal constant

times the "da.hed" ones. This concludes the proof of theorem A.

In order to get the extensions of theorem A mentioned as remarks after the

-40 e-(8q+2)statement of this theorem one replaces e by in the choice of T O and L5/6

by LY in the choice of .
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