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ABSTRACT: Solutions of certain boundary value problems are shown to exist for the

(n-
(m)_ Bt Y, ¥ yenesy 0 1)), where f 1s con-

tinuous oan a slab (a,h) x R™ and f satisfies a Lipschitz condition on the slab.

nth order differential equation vy

Nptimal leagth subintervals of (a,b) are determined, in teras of the Lipschitz

coefficients, on which there exlst ualque solutions.
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1. INTRODUCTION.
We will be concerned with the existence of solutions of boundary value
problems for the nth order differential equation

y(n) = f(t:Y9y"-°-)y(n.l))’ (1.1)

where f 1s continuous on a slab (a,b) x R? and satisfies a Lipschitz condition,
- 0 -
f(t,yl,...,yn) f(t,zl,...,zn) S-—t-lkilyi zl', (1.2)

on the slab.

A number of papers have appeared in which optimal length subintervals of (a,b)
are determined, in terms of the Lipschitz coefficients ki’ 1< il n, on which
solutions of certain boundary value problems for (1.1) are unique; see, for example
[1-15]. Of motivational importance in this work are the papers by Jackson [10-11]
in which he applied methods from control theory in establishing optimal length
subintervals, in terms of the Lipschitz coefficients, on which solutions of
conjugate boundary value problems and right focal point boundary value problems for
(1.1) are unique. It then follows from uniqueness implies existence results due to
Hartman [16-17] and Xlaasen [18] in the conjugate case and Henderson [19] 1in the
right focal point case, that unique solutions exist on the optimal intervals given
ta [t0-11].
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Ta [7-3], we adaptad Jackson's coatrol theory argun2nts, {n coajuictinon with
urtquenass Laplies exlsteace results, and determined optimal length suhin-
tervals of (a,h) oa shlch thera exist unlque solatlons of savaril classes of
bouadary value prodblaas for taled and fourth order ordinary diffarential equatlons
satlsfylag Tipschitz conditions. 1In a racent work {9], we followed the pattera of
{7-8, 10-11], by applylng the Pontryagla “axLmum Prinz{ple to a linearizatlon of

(1.1), and detecrmined optimal langth sublntervals of (a,b), in tecas of kl’ on which
s2lutlons are unique foc bouadary value probleas for (l.1) satisfying

(l) ' = -
) =y 0 < 1< n-htk-1,
(1.3)

y“)(ti) =y k<1< b1,

a~h+(1+1)°

where a < tl < tk.i eee £ th—l <b, 0 {k<h<n, and v4€ R, 1<1<n,

In thls work, we now address the problem of exlstence of solutions of (1.1),
(1.3) on the optimal intervals for unlquenass 3ivea i1 [9]. We state in Section 2
some of the results concernlng optimality and unlqueness obtained in [9) which are
pertineat to the arguments hera, Then In Section 3, we are able to prove that on
sublintervals of length less than the optimal length jiven in Section 2 and for
certaln values of % and h, solutlons of (1.1), (1.3) exist., For this restricted
set >f k and h, the exlstence result is {n som2 sense analogous to the

aniqueness implies existence results ia [16-19].

2. OPTIMALITY AND UNIQUENESS,
In thls section, we statz a Theorem and a Corollary from [9, Thm. 3 & the
Cor.], In shich optimal length sublatervals of (a,b) In terms of the Lipschitz co-

efficients ki’ 1 <1 <n, are determined on which solutions of (1.1), (1.3) are
unique,

THEOREM 1. Let 0 {( k < h<mn be given and let vy = mlnfyllk < 2 < h}, where

Y {s the saill23t posftive number such that there exlsts a solution x(t) of the

LA
boundary value problen

n
MLV (-l)h-Q[k x+ J k{’x(i-l)’],

1 i=1

{
<1(0) = 0, 0 < 1< ahee-1,

x“)(v,,) =0, 2 <t < b1,
with x(t) >0 on (O’YQ)‘ or Y, = += {f no such solutfon exists. For any
k<2< h 1f y(t) and 2z{t) are distinct solutfons of (l.1) such that

y(”(ti) = z(”(ti), 0<1<n-h+e~-1,

y(i)(ct) = z(i)(ti), 2 <1<h-1,

A<ty <t oo < LA < b, and If - t; < v, it follows that y(t) = z(t) on

1 -1
(a,b), and this 1s best possible for the class of all differentfal equations

satisfylng the T.ipschitz condltion (1.2),
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REMARK. Jackson [137) i: p->ved Theorem 1 for the case when h =n and k = 0,

How; Ha sabintervals of length less thaa &1+ crvastant vy in Theorem 1, it
follows from Rolle's Theorem that solutions of a number of other hoqal-ry zilue
prodizas for (1.1) are unique. For example, we can state the following.

COROLLARY 2. Let y be as {a Thasrr=a 1. 72 aay k £2<h and
h=-2<j<h 1f y(t) and 2z(t) are solutions of (l.1) such that

s e = 20, 0 <1 Gt oom,

y(i+j-h)(ti) - y(ﬂ'j-h)(ti), 2 <1<,

[

a < t{ < tf Leee £ th-l < b, an! if e T Y ‘t follows that y(t) = z(t) on

(a,b), and this 1s best posslihla.

3. EXISTENCE OF SOLUTIONS.

Analogous o % jleness Iimplies existence results proved by Hartman [16-17],
Klaasen [18], and Henderso: "19], we give a proof {n this section ti:i, »1 the
12121 [a Section 2 and for a restricted

optimal subintervals for uniquenesa
st of values of h and k, the boundary val:i2 problems (1.1), (1.3) have unique

i+t1tlons. For the proof, we use somewhat standard shooting methods. Ya 471 zive
the proof only for two-point problems, with the priaf for multipoint problems being

similar,

THEOREM 3. Let [n/2] < h { a be given, ([+] denotes th: g~ tust Integer
function). ULet k =0 and let y = min{Yl 0‘5 2 < h} be as defla2l Ia Thivcem 1.

Then the boundary value problem

y(n) (n-l))’

= £(t ¥y V's ey ¥

’
y‘“(tl) = Y41 0 £1 < n-hie-t,

gLt

y ey <,

“n-h+(1+1)’
where a < tl < t2 < b, 0 <2 <h, has a unique solutlon for .y :s:ignment of

v, € R, 1 <1 < n, providad t, - tl { Y. Furthermore, thls rasiit Is best possible

for the class of all differentlal equations which satisfy the 7.i,<:hiiz condition
(1.2).
PRIIF, Let a < Y < t, < b, with t, = tl <y, and Yy € R, 1L {1 <, be

given. We prove the axisitaiace of solutions for a much larger family of boundary
value problems than those in the statement of the theorem. 1In fact, we prove the
existence of solutions of the two-point problems which beloay =o the class of
probiems ia Corollary 2, For induction purposaes, .o :icrange these problems 1in a

lower triangular array,

(1,1)
2,1) (2.2)
(h,l) (h,Z) LA 4 (h)h);

where the bounlary wilue problem for (1) associated with the (u,v)-position,
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1 <v <u<h, satisfies

y(i)(tl) = Y4 0 S L L oevel,

y(l)(tz) = yn-u+(1+l)’ u=v <1 < p-l,

Under this arrangement, the boundary value problems for (1.1) along the principal
diagonal (u,u), 1 £ u < h, are conjugate type problems, whereas the boundary value
prohlems In the statement of this theorem are assoclated with the eatries along the
bottom row (h,v), 1 <v<h

By Corollary 2, solutions of all the problems in thls array are unique on
subintervals of length less than Y. Moreover, by the coastralants on h and k, it
follows that solutions of all conjugate type bouadary value problems for (1l.1) are
uniqne. Then, 1t follows from the uniqueness implies existence result of Hartman
[16-17) and Klaasen [18] that the conlugate boundary value problems, and in parti-
cular those associated with the entrles on the main diagonal, have unique solutions.
(This 1s the reason for the constraints on h and k.) For existence of solutions
of the remaining problems associated with the array, we will use the shooting method
coupled with an induction along the subdlagonals on the array.

In that direction, choose any boundary value problem for (1) assoclated with the
first subdiagonal (u,u-1), where 2 < u £ h; that is, we are concerned with

solutions of (1) satisfying

y(l)(tl) =Yy 0SS0,

Y(i)(tz) =y 1 <1<l

n-p+(1+1)’
In applylng the shooting method, let 2z(t) be the solution of (1) satisfying
conditions associated with the (u,u)-position,

z(i)(tl)

= Y41 0<1<oy-l,

" ey 1L 0L

and define S = Iy(n°U)(tl)|y(t) is a solution of (1) satisfying y(i)(tl) =
z(l)(tl), 0< 1< o-u-1, and y(i)(tz) = z(l)(tz), L<1<pl}. S+ @ since

z(n-U)(tl) € S, and since solutions of the problems corresponding to (u,u=1)-

position are unique, it follows from a standard application of the Brouwer Invariance
of Nomain Theorem that S 1is open, (see [20-21] for a typical argument).
We claim that S {s also a closed subset of R. Assuming the claim to be

false, it follows that there is a limit point r, € S \S. Hence, there exists a

0]
strictly monotone sequence {rj}CI S of numbers converging to £, We may assume with-
out loss of generality that rj4r0. For each j > 1, let yj(t) denote the solution

of (1) given by the definition of S satisfying,
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0 ) ,
y§ e =2V, 0 <1 Cnmuet,

(a-u) "
9y (tl) €5
(D, y . (1
vy (eg) =2 Ey), 1L K-l
From Corollary 2, it follows that, for each j > 1, yj(t) < yj+1(t) on (tl,tZ].
Furtharmore, slnce f satisfies the Lipschitz coandition (2), it follows that a

compactness conditloa on sequences of solutions of (1) is satisfied, (see [10]); from

this compactness condition and the €act that £y $ 3, 42 have that {yj(t)} is not

uniformly boualad 4 each compact subinterval of (a,b), and in particular, is not
uniformly bounded above on each compact subinterval of [tl,tzl.

Now let a(t) be the solution of the problem for (1) assoclated with the
(u=1,u=1)-position,

1 d
u( )(tl) = Y4 0< 1< a1,

(o=y1)
u o (tl) = r{)’

(D, -
u ) = Yo (i) P ST S 02

(1)(t)

It follows that, for some & > 0, yfi)(t) <u on (tl, 4yt §), 0 <1< oy,

i+1

and etther (1) <D™y Pv) < DD () on (£6, £, 0 < 1 <y, when o

1s odd, or (i) (-1)1yl(i)(t) < (-l)tu(i)(t) on (tl-s, tl), 0 <1< n-y, when n-y
is even. We will assume that 1-u 1is odd and also that tz - (tl -8) <.

It follows that there exists a subsequence {yj (t)} such that, for each k>1,
k

(ﬂ'u)(t)

{ St -
i u)(t:) intersects u(n l")(t:) at a point o ¢ (tl, L+ §) and Y
k

I
intecrsects u(n.u)(t) or yl(n_U)(t) at a point o € (r.l -6, tl) and ckftl and

ok+tl. By choosing successive subsequences and relabeling, we may assume that

tl-ﬁ < %y < tl< LI < tl + & are the flrst polnts where these Intersections occur.

Now, if there is an infinfte subsequence, which we relabel as {yj (t)}, such that
k

(n-u)(c ) =y (n-u)(c ), we have that, for each k, (-1)1+ly (1)(t)
jk k 1 k 1
< (-l)iﬂyj (t)(t) < ('1)1+1u(i)(t) on (uk, tl), 0< 1< n-p. In this
X
case lim y (1)(ok) = yl(l)(tl), 0 <1< n-yu. But, it is also the case that
k> k

y§l)(t2) = yl(i)(tz), 1 <1< u-1, and so from the continuous dependence of solutions
k
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on bouadary conditions of problems assocliated with the (u,u=1)-position, it follows

J

’ ’
that fvii)(t)1 convarges unlforaly to yl‘l)(c) on compact subintecvals of (a,bh),

J <1< -1, This is imprssihle, since y(n-U)(t )=r, >r,>r =y (n—U)(t ).
$tg N 1 EE I Bt 1

In the case that there i{s an Infinlte siahsejuence, which we relabel agala as

(n=u) (a=p) {(n-u) (a=u)
f ] ) K = =
yj (t)}, such that yj (0,) = u (ol) aud yj (p‘) =u (ok), it

follows that, for each k, (-l)1+lyl<L)(t) < (-l)(klyj (l)(t) < ('1)1+lu(i)(t) on
k
Wy uWey

(ok,tl) and yl(l)(t) < /jk

on (tl,pk), 0< 1< o-y, and

(n—u+1)(1k) - u(n-U+l)’T N

Ty

It follows that 1lim y 0

some 1, £ (0
’ k Koo Ik

P ). (o)
jk k’"k k
= u(l)(tl), 0<1i< oy, and that 1lim y (n-U+1)(Tk) = u(n.U+l)(tl); it i{s also the

k+oo k

case that (I)(tz) = u(l)(tz), 1 <1 < u=2, From uniqueness of solutions of

y

jk
boundary value problems for (1) corresponding to the (u=l, u=-2)-position coupled with
10 argument similar to the one usedi in the proof of the first theorem of [13, Thm. 1]

aad the fact that t, - (t1 - &) < v, solutioas of this latter type of problem for

(1) are unique and thus depend continuously upoa boundary conditions; it follows that

r
ryj (i)(t)1 coaverges uniformly to u\{)(t) on compact subintecrvals of (a,b),
k

0 <1< nl. In particular, u(u—l)(tz) =9y (”-1)(t2), for all k, and it then
k

follows that d(n-U)(tl) = ¢, € 3; azaln, a contradiction.

n

Thus, S 18 also closed and hence S = R. Choosing yn-u € S, the corresponding

solutlon of (1) satisfies the boundary value problem corresponding to the
(u,u=1)-position. Hence, boundary value problems for (1) assoclated with the first
subdiagonal, (u,u-1), 2 £ u < h, have unique solutlons.

For the induction, assume uov that 2 { mtl < h and that, for each 1 { s < m,
the boundary value problems for (1) associated with the subdiagonals
fi,u=-{3-1)), s < u < h, have unique solutioans.

For 8 = a+l, we now argue that boundary value problems for (1) corresponding to
the subdiagonal (u,u-m), where m+l < v £ h, have unique solutions. Choosing any

such (u,u-m), we are concernel 4ii solutlons of (1) satisfying

1
y( )(tl) = Ve 0 < 1 < nmutmel,

y(i)(tz) =y ys @ <1< yp-l.

n=p+(i+1
For the shooting scheme here, let 2z(t) be the solution of (1) corresponding to the
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(1 ,u=(m=-1))~position satisfying

s

i ,
z( )(tl) = Y 0t <= pim=2,
2"V =0,

z(l)( ] TR AEETE BN

g amp (1)’

2

In this case, define S, = ry(“-"+m-1)(tl) y(t) 1s a solatlon >f (1) satisfying

Y(t)(tl) = 1(1){t1), 0 < 1< o=p+m=2, and y<i)(t2) = z(i)(tz), m<i<y-l}. Ina
manner analogoas oy hava, it saa be argued that 91 is a nonempty subset of R which

fs brth opwn .l closed, so that S, = R, Choosing vy S the corresponding

1 1

solution of (1) 1s the du:lred solution. Hence, boundary value problems for (1)

€
n=-p+m

assoclaned wi<'u Tis 1lagonal (p,pu-m), m+l < u < h, have unique solutions.
Therefore, by inductlon, houndary value problems for (1) 1:srciated with each

entry in the triangular array have unique soluilon:; 1l the conclusion of the

theorem holds from the ci;:: .orrespondlng to the bottom row (h,v), 1 < v < h,

.

Using shooilay aathods and aa induction similar to above, one can prove
existence of solutions 5% 117 nipoint boundary value problems (1), {3) with the same
constraints on h and k.

THEOREM 4. T.at [n/2] < & < n be given. Tet k =0 and let y = nin {YQ 2<{2<hn}

be as defined in Theorem 1. Then the bouandary value problem

-1\
‘,<" Loy

)
y( = £(t,Y,7'y o0y ¢ B

y(i)(ti) = Y40 0 S 1 < nmhie-l,

(1,
y) = Yy 2 LS

where a < ti < tz Leen £ th—l < h, 7 <2< h, has a unique solution for aany assign-

ment of v, € R, 1< 1< n, provided L ti < y. This result is hest possidle

for the class of all liffarential equations which satisfy the Lipschitz coudition
(1.2).
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