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ABSTRACT. In this paper, we consider the iterative methods for the quasi complemen-

tarity problems of the form
u-m(u) >0, T(u)>0, (u-m(u), T(u)=0,

where m is a point-to-point mapping and T is a continuous mapping from R into
itself. The algorithms considered in this paper are general and unified ones, which
include many existing algorithms as special cases for solving the complementarity

problems,
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1. INTRODUCTION.

variational inequalities theory introduced by Stampacchia and Fichera in 1964,
and later developed by the French and Italian schools, has enjoyed a vigorous growth
for the last twenty years. Variational inequality theory not only reveals the fun-
damental facts on the qualitative behaviour of solutions (regarding existence, uni-
queness and regularity) to important classes of nonlinear boundary value problems,
but also provides highly efficient new numerical methods to solve for example free
and moving boundary value problems. In brief, it is now clear that the theory of
variational inequalities provides a natural and elegant €framework for the study of
many seemingly unrelated free boundary value problems arising in fluid flow through
porous media, countact problems in elasticity, operations research, economics and

transportation equilibrium etc,

Bqually important is the area of mathematical programming known as complemen-
tarity theory. This area of operations research is a relatively new one and one
which has received much attention during the last two decades. The impetus behind
the identification of the complementarity problem in the early 1960's was the
Kuhn-Tucker conditions for nonlinear programming which give necessary conditions of

optimality, mnier ~er+.. 1 =-a3irinns of differentiability. The linear complemen-
tarity problem was introduced by Letke in 1964, but it were Cottle and Dantziq [1],

who formally defined the linear complementarity problem and called it the fundamental

problem, A survey paper by Lemke [2] outlines the early theoretical results, most of
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which were wmotivated by applications to equilibrium type problems in operations
research and game theory, For most recent results and applications, see Bensoussan
and Lions [3], Crank [4), Baiocchi and capelo (S), oden and Kikuchi [6], and the
references therein, An important and useful generalization of the variational ine-
quality problem is the quasi variational inequality problem, introduced and studied
by Bensoussan and Lions [3] in the impulse control. For other applications of quasi
variational inequalities, see [4,5,6] and the references therein. The complemen-
tarity problem has also been extended by Habetler and Price [7,8], and Karamardian
[91. Dolcetta [10] has considered the implicit (quasi) complementarity problem,
which is an another generalization of complementarity problem. The relationship bet-
ween a variational inequality problem and a complementarity problem has been noted
implicity by Lions [11] and Mancino and Stampacchia [12]. However, it was Karamardian
[9,13], who showed that if the set involved in a variational inequality problem and
complementarity problem is a convex cone, then both problems are equivalent, It has
hbeen shown by Pang [14,15), and Noor [16] that such a relationship is preserved in
both the quasi variational inequality problem and the guasi complementarity problem,
This equivalence plays a fundamental and central part in suggesting new and unified
tterative algorithms for solving complementarity problem and its various generaliza-
tions., Noor [17] and Chan and Pang [18] have shown that the solution of a class of
quasi variational inequalities can be obtained from an iterative scheme, which is

obtained by using the projection technique.

Inspired and motivated by the recent research work going on in these fields, we
propose and analyze a new and unified algorithm for the quasi complementarity
problems. Most of the convergence properties of the Mangasarian's algorithm
discussed in [14,15,19] are carried over to this new proposed algorithm, For related
work, see Pang [15], where he has used the least element theory and contraction type
arguments based on the splitting of the underlying matrix to prove the existence of
the solution. 1In this paper, we use the variational inequality technique to study
the convergence properties of the suggested algorithm for both the linear and nonli-
near cases., Our results are an extension and improvement of the results of Noor and

Zarae [20], Pang [14], ahn [21,22]) and Mangasarian [19].

In section 2, after reviewing some basic notations and facts, we introduce the
quasi complementarity problem and discuss several special cases. Algorithms and con-

vergence results are discussed and derived in Sections 3 and 4.

2. PRELIMINARIES AND BASIC RESULTS.
We denote the inner product and norm on Rn by (.,.) and ||.||, respectively,

Let C be a closed convex set in Rn.
. n . n .
Given a continuous mapping T from a convex set C in R into R, we consider the

problem of finding ueC such that
(T(u), v-u) > 0, for all veC. (2.1)

This type of problem is known as variational inequality problem, introduced by
Stampacchia [23] and Fichera [24]. Note that if C = Rn, then problem (2.1) is

n
equivalent to finding ueR such that

(T(u),v) =0, for all ver" (2.2)
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Problem (2.2) is known as the weak formulation of boundary value problems, where T is
any differential or integral operator associated with the given problem, see [5,11].
If ¢ is a convex cone in Rn, then problem (2.1) is equivalent to finding ueC such

that
(T(u),v)»0, and (T(u),u)=0, for all veC. (2.3)
This observation is due to Lions [11]) and Mancino and Stampacchia [12].

Furthermore, we note that for some elements v, equality holds in the variational
inequality (2.1). This happens, when together with v, 2u-v also lies in C. 1In this

case, problem (2.1) is equivalent to finding ueC such that
(T(u),v-u)=0, (2.4)

Mosco and Strang [25] have pointed out that if u is not an extreme point of the con-
vex set C, then there are directions in which u is interior to a line segment and in
these diractions the equality holds. A similar conclusion has been drawn by Mancino

and Stampacchia [12] and Noor [26].

Lions and Stampacchia [27], and Glowinski, Lions and Tremolieres [28] used the
projection technique to prove the existence of a unique solution of the variational
inequality (2.1). In 1979, Noor and Noor [29,30] proved that the solution of the

variational ineguality (2.1) can be obtained by an iterative scheme namely:

Uil = Pc[un - pT(un)], n=0,1,2,ee0 (2.5)
. . n . .
where p>0 is a constant and PC is the projection of R into C and studied the con-

vergence criteria,

In the formulation of the variational inequality, the underlying convex set C
does not depend upon the solution. 1In many applications, the convex set also depends
implicity on the solution u itself, In this case, the variational inequality (2.1)
is known as quasi variational inequality. To be more specific, a quasi variational
inequality problem is indeed a problem of the type:

Given a point-to-set mapping C: u ———> C(u), which associates a closed convex

subset C(u) of R with any element u of Rn, find ueC(u) such that
(T(u), v-u)>0, for all vec(u). (2.6)

In many important applications, see Mosco [31], Bensoussan and Lions [3], and

Baiocchi and cCapelo [5], the set C(u) is of the following form:
c(u)=m(u)+cC, (2.7)

where m is a point-to-point mapping and C is a closed convex set in Rn. Note that if
the point-to-point mapping m is zero, then the quasi variational inequality problem

is exactly the variational inequality problem (2.1).

Related to the quasi variational inequality problem, there is a quasi complemen-
tarity problem. For a given continuous mapping T from R into itself and a point-to-

point mapping m, we consider the problem of finding ueC(u) such that
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u-m(u)30, T(u)>0, (u-m(u), T(u))=0, (2.8)

The problem (2.8) is known as the quasi complementarity problem, studied by Dolecetta
[10], Pang [(14,15] and Noor and zarae [20]. 1If the mapping T is nonlinear, then we
call it nonlinear gquasi complementarity problem, which has been considered and
studied by Noor ([32]. If the mapping T is an affine transformation of the form
T:a ——->Mu+q, for Mennxn a matrix and qeRn a vector, then problem (2.8) is equiva-

lent to €finding u such that
n-m(u)20, Mu+q>0, (u-m(u), Mutq) = O, (2.9)

which is a linear quasi complementarity problem. Problem of type (2.9) has been
studied by Dolcetta [10], where it arises as a discretized version of variational
inequalities. Pang [14,15] and Noor and Zarae [20] studied a convergence theory for
a certain type of iterative algorithms to solve (2.9) and showed that their theories
unified and extended many previous convergence results for the successive-over-
relaxation method for solving (2.9). The basic device employed throughout Pang's
work is a certain implicitly defined mapping, which is constructed from the splitting
of the matrix M, whereas Noor and zarae [20] used the technique of variational ine-

qualities mainly developed by Noor and Noor [29,30].

If the point-to-point mapping m is zero, then problem (2.9) is equivalent to

finding u such that
u>0, Mu+q>0, (u,Mu+q)=0, (2.10)

which is known as the linear complementarity problem, originally introduced by Lemke
[2] and cCottle and Dantzig [1], and then studied by Mangasarian [19], ahn [19,22],
Aganagic [33] and Pang [14] by using the iterative methods. For the applications of
these complementarity problems in general equalibrium theory, free boundary value

problems, and operations research, see Cottle ([34], Ahn [22] and Crank (4].

Let C be a convex cone with its polar C* defined by C'={uekn,(u,v)>0 for all
veC}. We now consider the generalized quasi complementarity problem of finding

ueC(u) such that
T(wec*(u), (u,T(u))=0, (2.11)

where C*(u) is the polar cone of C(u). The generalized quasi complementarity problem

was introduced and studied by Noor [16] along with the convergence criteria.

Furthermore, if the point-to-point mapping m is zero, then problems (2.8) and

(2.11) are equivalent to finding u such that

u20, T(u)>0, (u,T(u))=0 (2.12)
and
uec, T(u)ec*, (u,T(u))=0, (2.13)

which are known as nonlinear complementarity problem and generalized nonlinear
complementarity problem respectively studied by Cottle [34],Fang [35]), Aganagic

[33], kXaramardian [9], Habetler and Price [7].
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3. ALGORITHMS .
We need the following results, the first one is a generalization of Pang [15]

and Karamardian [9].

Lemma 3.1. If C is a convex cone in Rn, then ueC is a solution of the quasi
variational inequality (2.6) if and only if ueC solves the quasi complementarity

problem (2.8), where C is defined by the relation (2.7).

PROOF. Suppose that u solves (2.6). Since C(u) = m(u)+C, so veC(u) can be written

as v = m(u)+z, for all zeC. Now

(T(u),v-u)=(T(u),m(u)+z-u)
=(T(u),m(u)-w)+(T(u),z)
=(1(u),z), since (T(u),m(u)-u)=0.

>0, since T(u)ec*(u).

Thus it follows that if u solves the problem (2.6), u also satisfies the quasi

variational inequality (2.8).

Conversely suppose that ueC(u) satisfies (2.8), then clearly u-m(u)eC, which
implies that 2(u-m(u))eC, since C is a convex cone by assumption., Also 0€C implis

that m(u)eC(u)., Taking v = 2(u-m(u)) and v = m(u) in (2.8), we obtain

(1T(u),u-m(u))>0
and

(T(u),u-m(u))<o,
from which, it follows that

(T(u),m(u)-u) = 0, (3.1)
Taking v = m(u)+z, for all zeC in (2.8), we obtain

9<(T(u),v-u) = (T(u),m(u)+z-u)
(T(u),z), by (3.1).

This implies that T(u)eC*(u). Hence ueC(u) satisfying (2.8) is also a solution

of (2.6), which is the required result.

Lemma 3.2 [14.17). 1If C(u) is defined by relation (2.7), then ueC(u) is a solution
of quasi variational inequality (2.6) if and only if u satisfies the following rela-

tion,

u=m(u)+PC[u-pT(u)~m(u)],

. . . n . . . . .
for some p>0., Here PC is a projection of R into C and m is a point-to-point mapping.

Special Cases.
(1), If the point-to-point mapping m is zero, then lemma 3.1 is exactly the same as
proved by Karamardian [9] and Cottle [34]. Furthermore, lemma 3.2 reduces to a

result of Noor and Noor [29] for a class of variational inequalities,

n
(2). If C(u) is equal to the non-negative orthant R: = {uerR ; u>0}, for all u, then
lemma 3,1 reduces to a result of Pang [15], for linear quasi complementarity

problem (2.9).
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Remark 3.1. It is obvious that lemma 3.1 implies that if the convex set involved in
both the quasi variational inequality and the quasi complementarity problem is a con-
vex cone, then both the problems are equivalent, whereas lemma 3.2 together with
lemma 3.1 shows that the quasi complementarity problem (2.8) can be transformed to a

fixed point problem of solving
u = £(u)

where

f(u)=xm(u)+xpc[u-pw(u)-m(u)]+(1-x)u, (3.2)

with a positive constant p and a relaxation parameter 0<A€1 used after projection,

see [19] for more details.

Rased on these observations, we now propose the following general and unified
algorithm for the quasi complementarity problem (2.8).

ALGORITHM 3.1. For any given uoec, compute;

un+1=Xm(un)+XPc[un-pT(un)-m(un)]+(1—A)un, n=0,1,... (3.3)

where p>0, and 0<A<1,

nxn n
> Mu+q, for MEeR and geR ,

If T is a linear transformation of the type T:u

then algorithm 3,1 can be written in the following form:

ALGORITHM 3.2. For any given uoec, compute

unﬂ=k(m(un)+)\PC[u"-plzn{Mun+q+r.n(un+1 -un) }—m(un) ]+(1-X)un, n=0,1,2,... (3.4)

where 0<A<1, p>0 a constant, {Bn} and {Ln} are bounded sequencies of matrices in
nxn

R . This algorithm is compatible with the algorithm of Mangasarian [19].

For the above algorithm to be practical, Ln may be strictly lower or upper
triangular matrix, because the iterate L may be obtained by solving variational
inequality subproblem as pointed out in Pang [14]. Here the original data M remains
intact throughout iteration, allowing this algorithm to be efficient both for large

scale and specially structured problems.

For simplicity, we consider the case En=E and Ln=L. We here consider the
following version of algorithm 3,2 for linear quasi complementarity problem (2,9).
ALGORITHM 3.3. For any given uoec, compute

unH=xm(un)+XPC[un-pE{Mun+q+L(un”-un)}-m(un)]+(1-A)un, n=0,1,2,... (3.5)

where p>0 is a constant and 0<A<1 is a relaxation parameter used after the projection,

It is clear that each iteration of algorithms 3.1, 3.2 and 3.3 is itself equiva-

lent to variational inequality problem as implied by lemma 3.1,

Special Cases 3.2.
1. If the point-to-point mapping m is zero, then Algorithm 3.1 and Algorithm 3,2
reduce to the algorithms of Noor [41] and Ahn [22] respectively.
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ALGORITHM 3.4 [41]). Let uﬁEC, then compute

n“+]=(I—X)un+XPc[un—pT(un)], n=0,1,2,...

where 2<A<1 and p>? is a constant,

ALGORITHM 3.5 [22]. For given uoec, compute

=(1=-\ - - =i
u,,=0 )un+>‘pc[un pEn{Mun+q+Ln(un+1 u ], n=0,1,2,...

where J<A<1 and p>0 is a constant.
Ahn [22] has established the convergence criteria of Algorithm 3.5 for both the

symmetric and non-symmetric matrix M.

2. If A=1, then algorithm 3.3 and algorithm 3.1 are exactly the same as studied and
analyzed by Noor and Zarae [20], and Noor [32] respectively.
AOGORITHM 3.6 [20]. For given uoec, compute

= +2 - - - for n=0,1 o
B mmlu ) C[un pE{Mun+q+L(un+‘ “n)} m(un)], or n=0,1,2,...,

where p>0 is a constant,

ALGORITHM 3.7 [32). For given uoec, compute

u“+1=m(un)+PC[un—pT(un)-m(un)], n=0,1,2,4+0.,

with p>) is a constant,

Noor and Zarae [20] have studied the convergence criteria of algorithm 3.6 for both

symmetric and non-symmetric matrix M,

3. I1f the mapping m is zero and c=n:, then algorithms 3.2 and 3.6 are exactly the

same as studied and analyzed by Mangasarian [19] and Ahn [21) respectively.
ALGORITHM 3.8 (19]., For given u0>0, compute

uq_”=(1—X)un+k[un—pEn{Mun+q+Ln(un”-un)}]+, n=0,1,2,...

for 0<A<1 and p>0, a constant,
ALGORITHM 3,9 [21). For given u0>0, calculate

un+1=[un-pE{Mun+q+L(un+1-un)}]+, n=0,1,2,¢00e,
Concerning the convergence of the algorithm 3,8, Mangasarian [19] established a
general convergence result under the crucial assumption that M is symmetric. The
result asserts that there exist accumulation points of the sequence generated by

algorithm 3,8, and each point solves the linear complementarity problem
u»0, Mu+q>0, (u,Mu+q)=0 (3.6)

It was Ahn [21], who proved that, if the matrix M is nonsymmetric, then the sequences

generated by Algorithms 3.6 and 3.9 converges to the unique solution of (3.6).
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4. We also note that by taking Ln=0, En=1, A=1 and the point-to-point mapping m
equal tn zero, the algorithm 3,2 veduces to the alqorithm of Aganagic [33],
where he has studied the convergence of this algorithm,

ALGORITHM 3.10 [33]. For given uaec, compute

“n+1=Pc[“n"°(Mun+q)]’ n=0,1,2,...,

For the corresponding variational inequalities, these algorithms are mainly due to

Noor and Noor [29] and Noor [36], where they have discussed the convergence criteria

and applications in infinite dimensional spaces,

From the above discussion, it is clear that Algorithms 3.1, 3.2 and 3.3 proposed
in this paper are wmore general and include many previously known algorithms as spe-
cial cases, which are mainly due to Cryer [37], Aganagic [33], Cottle and Goheen
[38], Ahn [21,22], Chan and pang [18] and Pang [14].

4, CONVERGENCE ANALYSIS. In this section, the convergence criteria of the approxi-
mate solution obtained bfy the suggested algorithms 3.1, and 3.3 are studied, For
the algorithm 3,3, we only consider the special case, when C=[0,b] is a closed convex

set in R'. 1In this case, we consider the projection operator PC' which is defined as

P.(u) = arg mia||v-ul].

vecC
n
If C=R*, then
(Pc(u))i = max{O,ui}, i=1,2,400,0,
In our case, we have
(Pc(u))i = (Pio,b](u))i
= min{max(o,ui),bi}, i=1,2,.00,n,
For notational purpose, P[O bl will be denoted as PC. The operator PC has the
’

following properties, see Ahn [22].
Lemma 4.1, For any u and v in Rn,

(i) wu<v implies Pc(u)<PC(V)

- _ < _

(ii) Pc(u) PC(V) Pclu v)

<

(111)Pc(u+v) Pc(u)+Pc(V)

(iv) PC(u)+Pc(-u)<|u|; with equality, if and only if -b<u<b,

In addition, we also need the following concepts. A real matrix MeRnxn is said
to be Z-matrix (a P-matrix), if it has non-positive off-diagonal entries (positive
principal minors). A square matrix with non-positive off-diagonal elements and with
A non-negative inverse is called an M-matrix. It can be shown that a matrix which is
both a Z-matrix and P-matrix is a M-matrix, see [39] for full details. Given Meknxn
we define its comparison matrix

Mo=(Cyy) By =Myl and e, 825, 15=1,2,.0000.
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xn
If MeR" , then [MI denotes the matrix obtained from M by replacing each element

Mij by its absolute value.

The convergence of the sequences {un“) generated by algorithms 3.1 and 3.3 are
now studied., We modify the technique of Ahn [22] to prove the main results of this

section,

THEOREM 4.1. Suppose that there exists a non-negative matrix Nennxn such that
|m(u)-m(v) |<N|u-v], for all u,v. (4.1)

If {unﬂ} and (un} are the sequences generated by Algorithm 3,3 then

unl<(r—xpz|L|)“[zxn+lz-xpn(u-L)|]|un-u (4.2)

,um-l - n-1'"
and

|un+1-u|<(I-XpE|L|)-1[2XN+|1—XpE(M-L)|]Iun-ul. (4.3)

for each n and u is the solution of linear quasi complementarity problem (2.9).

PROOF. From algorithm 3.3, we have

un+1—un=xm(un)-km(un_1)+XPC[un-pE{Mun+q+L(un+1-un)}-m(un)]

-APC[unﬂ -pE{ Ma <|-q~|u'..(un-un_1 ) }-m( L ) J+ =20 ¢ w-u ),

which can be written as, by using lemma 4.1,

U -un-l(m(un)-m( LI ))=(1=}) (un-un_1 )

<Pc[{1—pE(M-l)}(un-un_1)+pEL(un+1—un)-(m(un)-m(un »]

-1

Again invoking lemma 4.1 and using the fact Pg = PC' we obtain

-un—l(m(un)-m(un_1))-(1-A)(un-u“_1)]<APC[{I-OE(M-L)}(un-un_ )

Pc[“nn 1

+pEL(u  -u )=(m(u )-m(u )] (4.4)

In a similar way, we have

p[-{u , -u -A(mCu )-m(u _0)-(1-2)(u —u )]

<XPC[—(I-DE(M-L) } (un-un_1 )-9!5:!..(\1m -un)+m( un)-vn(\:nn_1 ) ] . (4.5)

1
Again using lemma 4.1 and adding (4.4) and (4.5), we obtain

|un+1-un-x(m(un)—m(un_1))-(1-x)(un-un_1)|<x|m(un)-m(un_1)|

+A |1-pE(M-L) | Iun-un_1 [+rpE|L]| |un“-un|,

from which, it follows that
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(1-2pE|L]) lunH -u_ |<2x Im(un)-m(un_1 ) |+ |1-XpE(M-L) | Iun-un_.’ |

<{2xn+|1-xpE(M-L)|}|un-un |, by (4.1).

-1
Since L is either a strictly upper or lower triangular matrix, the matrix
(I-MpE|L|) is invertible for 0<A<1 and its inverse is non-negative, which implies

that (I-ApE|L|) is an M-matrix., Hence

I

u “n|<(I-X9ElL|)"[2AN+|1-A9E(M—L)|]|un-u

n+1” n-1

which is the required result (4.2). Tfsing similar arguments, we can obtained (4.3).

From theorem 4.1, we can establish a sufficient condition for the convergence
of the seguence {un”} generated by algorithmm 3.3 to be bounded and hence have an
accumulation point, which is the solution of the linear quasi complementarity problem

(2.9) and this is the main motivation of our next result,
THEOREM 4.2. Suppose that

a(G)<1,

where
G=(1-ka|L|)'1[zxu+|1-xpE(M-L)|], (4.6)

with o denoting the spectral radius. Then for any initial vector u, the seguence

{unH} generated by algorithm 3.3 converges to a solution of (2.9).

PROOF. The method proof is similar to that of pang [14] and Noor and Zarae [20]. We
observe that the matrix G defined by (4.6) is non-negative. Hence from theorem 4.1,

we have

Iu 1-un| < Glun--un_1 |.

n+
Since o0(G)<1, it follows that

limfu ~-u | =0 (4.7)
nee n+ n

Next, by inductive arguments, we deduce that

1

i+ i
< I G |u-u|
i=0 vo

|u

-u
n+1

ol
< (1-0)7" Ju, ~u_|
10!

where the last inequality follows from the fact that the matrix G is non-negative and
o*G)<1, see [40]. Hence we conclude that the sequence {un+1} is bounded and has an
accumulation point, say u*. Let {uni,,.1} be subsequence convering to u'. Then from
(4.7) we see that {u"l'”} converges to u* as well. Since the mappings are con-

tinuous, so by passing to the limit n; * «, we obtain

* * * * * *
u =(1=2)u +Am(u )+XPC[u -pE(Mu +q)-m(u )]
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which is equivalent to quasi complementarity problek (2.9) by lemma 3.1 and lemma
3.2, that is n* is the solution of quasi complementarity problem (2.9). We finally

show thak the seguence (unH} sonveryes to u*. From (4.3), we obtain

* *
I“n+1 -u <s lun-“ le

where G is as defined by (4.6). Since o(G)<1, it follows that the entire sequence

{un+1} converyes to u*, and this completes the proof of the theorem 4.2,

We note that for A=1, these results reduce to the earlier results obtained in
[20]. Also it is clear from theorem 4.2, that the condition 0(G)<1 provides
existence and uniqueness result for the linear quasi complementarity problem (2.9).

Note also that the matrix M is not assumed to be symmetric,

If the mapping m is zero, then the non-negative matrix N becomes the zero
matrix, Consequently our results veduce to the results of Ahn [22]. Thus we
conclude that the algorithms of the Mangasarian types can be extended to study the
linear quasi complementarity problem. The results proved here are an improvement as
well as extension of the ones obtained by Ahn [21,22], Mangasarian [19], Pang [14,15]

and Noor and Zarae [20] for certain special cases.

In order to discuss the usefulness of theorem 4.2, we need the following con-

cept.

. -1 .
Definition 4.1. If B is an invertible matrix, B >0 and C»0, then A=B-C is known as

regular splitting of A.

Now let

B=I-ApE|L|
and

C=2AN+ |I-ApE(M-L) |.

It is clear that the matrix B is invertible and B-1 ?0. Furthermore, C>0. Hence from
(4.6) and a result of Ortega and Rheinboldt [40], we obtain

o()=0(B"'c)<1
if and only if A-1 exists and non-negative,
Note that
A=B-C=1-ApE|L|-2AN~ |I-ApE(M-L) |

is a 2Z-matrix, If the matrix A is a P-matrix, then it follows that A has non-

negative inverse,

From the above discussion, we obtain the following results, which appears to be

new ones,

Corollary 4.1. If a=I-|I-ApED|-ApE(|L|+|K+U-L) |)-22N,

where  M=K+D+U, is a P-matrix, then the sequence {u

n+1} generated by algorithm 3,2
with L=K,U, or 0 and
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converges to a solution of the linear quasi complementarity problem (2.9).

For A=1, C=R!:, and the point-to-point mapping m equal to zero, all our results
reduce t> the results of ahn [21].

From now onwari, we shall assume that

M=K+D+U,

where D is diagonal (not necessarily positive). K is strictly lower triangular and U
is strictly upper triangular and the point-to-point mapping m is zero. We now give

some specific cases of the fundamental and general algorithm 3.2,

By taking L=0, in algorithm 3.2, we obtain the following algorithms, which are

Agains new ones.
Algorithm 4.1. (Projected Jacobi over relaxation).
Let uOEC, then

=(1~ - + n=0,1,2,e0
a =0 x)un+xpc[un PE(Mu_ ], 1142, 1
where J<A<1, p>0 and E is a positive diagonal matrix such that 2(ApE) -M is positive

definite,

Note further that, if D is a positive diagonal matrix, E may be taken equal to

-1 . . . . Ces
D , as in the case of Jacobi over relaxation method, If in addition, A=p=1, we

obtain the projected ordinary Jacobi iteration.

By taking IL=K or U, in algorithm 3,2, where E is a positive diagonal matrix, we

obtain the followiny algorithm.
Algorithm 4,2. (Projected SOR)

Let uoec, compute

a L, =(1=0u e [u -pE(M +q+L(a  -u D],  n=0,1,2,...

where
1
< —_—————————a
0<A<1,p>0 and Ap< max . Ejj)'
349,
with J+={J:Djj>0, J=1,2,400}e

Remark 4.2, For A=1, E=D, L=K, C=Rn, and the mapping m equal to zero, algorithm 3.2
becomes the projected SOR method studied by Cryer, Eckhardt and many others. If in
adition p=1, algorithm 3,2 becomes the projected Gauss-Seidel method.

Remark 4.3. It is evident that the convergence analysis of the algorithm 3.3 holds

only for C = [0,b]. The question arises can this restriction be relaxed, The answer
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to this is partly true. 1Indeed, this is true for the nonlinear quasi somplementarity
problem as shown below, For the linear complementarity problem, howevar, the

question still remains open.

It has been shown by Pang [14] that the condition 4.1 for the point-to-point
mapping m is equivalent to the fact the mapping m is Lipschitz coantinuous, that is

there exists a Y>) such that
| |mCu)-m(v) | |<y | fu=v]|]|, for all u,v.
We also need the following concepts:
n . .
Definitions 4.1. A mapping T; Rn—-—>R is said to be
i). Strongly Monotone, if there exists a constant a>0 such that
2 n
(Tu-1v,u-v)>a||u-v||", for all n,veR

ii). Lipschitz Continuous, if there exists a constant B>0 such that

| lTu-1v | (<8 | |u-v]], for all u,veR .
In particular, it follows that a<B.

In the next theorem, we study the conditions under which the approximate solu-
tion obtained from (3.3) converges to the exact solution u of nonlinear quasi comple-
mentarity problem (2.8). This result shows that the convergence of the approximate
solution to the exact solution also depends on the relaxation parameter A used after
projection like the linear quasi complementarity problem, Furthermore, we prove that
the restriction C is a closed rectangle in Rn can be relaxed for nonlinear quasi
complementarity problem and the convergence analysis hold for any general closed con-

vex set C in R'. The next result is an improvement of a result of Noor [16].

n
THEOREM 4.3, Let the continuous mapping T from R into itself be strongly monotone
and Lipschitz coantinuous. 1f the mapping m is also Lipschitz continuous with

Lipschitz coansttant Yy and LI and u are solutions satisfying (3.3) and (2.8), then

. n
u —=>u in R,
n

/7T -
for Jo - | < -—“—’-‘1%(-”—'— L w2sfyy2, Y < %- and  A<1/[1-2v-/1-20a+028%].
8

PROOF. From lemmas 3.1 and 3.2, we conclude that the solution u of (2.8) can be

characterized by the solution (3.3). Hence from (3.2) and (3.3), we have

a

n+1-u||<|Ilm(un)+APc[un-pT(un)-m(un)]+(1—X)un

-Xm(u)-APC[u-pT(u)—m(u)]+(1-A)u||

<x||m<un)-m(u)||+x||un-u-p(T(un>-m(u))-m(un)+m(u)||

+(1-2) ] |unou| |, since PC is a non-expansive [5].

<2A -
2 llm(un) m(u)l|+||u“-u-p<w(un)-r(u))||+(1-x)||un-u||,
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Now by the stroagly monotonicity and Lipschitz continuity of T, we have
2 2 2 2
u_-u- " <(1- -
| p U (T VT (u)) [ |7<(1-2ap+87p )||un ull®.
Thus using the above inequality and Lipschitz coantinuity of m, we obtain

[,y -ul lAve(1-2)4071-20040%8%) [ [u_-u]],

= llu_-ull,

where 6 = 2AY+(1-).)+H1-2up+8292 = 2Ay+(1-2)+At(p), with t(p) = 41-2ao+82p2

2
- - /. a

Now t(p) assumes its minimum value for p = 0—2- with t(p) = ¥V1 - — . We have
B B

to show that 8<1, if p satisfies 2AY+(1-1)+At(p)<1, which reduces to 2y+t(p)<1.

P, 2Y+t(p)<1 implies that Y < % and a > 23/1-72. Thus it follows

For op

that 8

2AY+(1-X)+At(p)<1 for all p with

a>28 Y-YZ and v < 1l .

/o - a8%(y=x%)
B2 4 2

lo - %1 <
82

/. 2 2
Also 630 leads to the requirement that A < 1/[1-27- 1-2ap+B p ].

Since 6<1, so the fixed problem (3.2) has a unique solution u and consequently,

the iterative solution LI obtained from (3.3) converges strongly to u, the exact
n

solution of nonlinear quasi complementarity problem (2.8), which is the required

result,
Special Cases 4.1.

i) It is also evident from the proof of theorem 4.3 that the convergence criteria

depends on the relaxation factor A used after the projection.

ii) 1If the point-to-point mapping m is zero, then theorem 4.3 is exactly the same as

proved in Noor [41],
iii) The case A=1 is considered by Noor [32].

iv) 1If the point-to-point mapping m is zero, that is the Lipschitz constant Y is
zero, then for A=1, theorem 5.5 is exactly the same as proved by Fang [35) and

Aganagic [33). For related work, see Pang and Chan [42].

CONCLUION. The algorithms suggested in this paper are the most general and unifying
ones, The results proved in this paper are an improvement as well as extension of
the previous ones for the complementarity problems, We have shown only the possibi-
lity that the iterative algorithms such as Algorithms 3.1 and 3.2 can solve the
nonlinear and linear quasi complementarity problems., Development and improvement of
implementable algorithms for this class of problems deserves further research

efforts.,
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