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ABSTRACT. In this paper, we consider the iterative methods for the quasi complemen-

tar Lt problems of the orm

u-m(u) >0, T{ u) )0, u-m(u), T( u=0,

where m is a point-to-point mapping and T is a continuous mapping from R
n

into

itself. The algorithms considered in this paper are general and unified ones, which

include many existing algorithms as special cases for solving the complementarity

problems.
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I. INTRODUCTION.

variational inequalities theory introduced by Stampacchia and Fichera in 1964,

and later developed by the French and Italian schools, has enjoyed a vigorous growth

for the last twenty years, variational inequality theory not only reveals the fun-

damental facts on the qualitative behaviour of solutions (regarding existence, uni-

queness and regularity) to important classes of nonlinear boundary value problems,

but also provides highly efficient new numerical methods to solve fo example free

and moving boundary value problems. In brief, it is now clear that the theory of

variational inequalities provides a natural and elegant @ramework for the study of

many seemingly tmrelated free boundary value problems arising in fluid flow through

porous media, contact problems in elasticity, operations research, economics and

transportation euilibrium etc.

Equally important is the area of mathematical programming known as complemen-

tarity theory. This area of operations research is a relatively new one and one

whi;h has received much attention during the last two decades. The impetus behind

the [dent f Lcation of the complementarity problem in the early 1960’ s was the

Kuhn-Tucker conditions for nonlinear programming which give necessary co.ditions of

optimality, ,nr , i ,nq of. d[fferentiability. The linear complemen-

tarity problem was introduced by Le’he in 1964, but it were Cottle and Dantzig [I],

who formally defined the linear complementarity problem and called it the fundamental

problem. A survey paper by Lemke [2] outlines the early theoretical results, most of
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which were ,,otivated by applications to equilibrium type problems in operations

research and game theory. For most recent results and applications, see Bensoussan

and Lions [3] Crank [4] Baiocchi and Capelo [5] Oden and Kikuchi [6] and the

references therein. An important and useful generalization of the variational ine-

quality problem is the quasi variational inequality problem, introduced and studied

by Bensoussan and Lions [3] in the impulse control. For other applications of quasi

variational inequalities, see [4,5,6] and the references therein. The complemen-

tarity problem bs also been extended by Habetler and Price [7,8], and Karamardian

[9] Dolcetta [I0] has considered the implicit (quasi) complementarity problem,

which is an another generalization of complementarity problem. The relationship bet-

ween a variational inequality problem and a complementarity problem has been noted

implicity by Lions [11] and Mancino and Stampacchia [12]. However, it was Karamardian

[9,13], who showed that if the set involved in a variational inequality problem and

complementarity problem is a convex cone, then both problems are equivalent. It has

been shown by Pang [14,15], and Noor [16] that such a relationship is preserved in

both the ,uasi variational inequality problem and the quasi complementarity problem.

This equivalence plays a fundamental and central part in suggesting new and unified

terative algorithms for solving complementarity problem and its various generaliza-

tions. Noor [17] and Chan and Pang []8] have shown that the solution of a class of

quasi variational inequalities can be obtained from an iterative scheme, which is

obtained by using the projection technique.

Inspired and motivated by the recent research work going on in these fields, we

propose and analyze a new and unified algorithm for the quasi complementarity

problems. Most of the convergence properties of the Mangasarian’ s algorithm

discussed in [14,15,19] are carried over to this new proposed algorithm. For related

work, see Pang [15], where he has used the least element theory and contraction type

arguments based on the splitting of the underlying matrix to prove the existence of

the solution. In this paper, we use the variational inequality technique to study

the convergence properties of the suggested algorithm for both the linear and nonli-

near cases. Our results are an extension and improvement of the results of Noor and

Zarae [20], Pang [14], Ahn [21,22] and Mangasarian [19].

In section 2, after reviewing some basic notations and facts, we introduce the

quasi complementarity problem and discuss several special cases. Algorithms and con-

vergence results are discussed and derived in Sections 3 and 4o

2. PRELIMINARIES AND BASIC RESULTS.

We denote the inner product and norm on R
n

by (.,.) and I1.11, respectively.
n

Let C be a closed convex set in R
n

Given a continuous mapping T from a convex set C in R
n

into R we consider the

problem of finding ueC such that

(T(u), v-u) ) 0, for all veC. (2.1)

This type of problem is known as variational inequality problem, introduced by

Stampacch[a [23] and Fichera [24]. Note that if C Rn, then problem (2I) is
n

equivalent .[nding ueR such that

n
(T(u),v) 0, for all veR (2.2)
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proble., (2.2) is known as the wak for,nulat[on of boundary value problems, where T is

any dif[erential or integral operator associated with the given problem, see [5,11 ].

If is a convex cone in R
n

then problem (2.1) is equivalent to f[n.ing ueC such

that

(T(u),v))0, and (T(u),u)=0, for all veC.

This observation is 9ue to Lions [I and Mancino and Stampacchia [12]

(2.3)

Furthermore, we note that for some elements v, equality holds in the variational

inequalLty (2.1). This happens, when together with v, 2u-v also lies in C. In this

case, problem (2.1) is equivalent to finding ueC such that

(T(u) ,v-u)=0, (2.4)

Mosco and Stranq [25] have pointed out that if u is not an extreme point of the con-

vex set C, then there are directions in which u is interior to a line segment and in

these directions the euality holds. A similar conclusion has been drawn by Mancino

and Stampacchia [12] and Noor [26].

Lions and Stampacchia [27], and Glowinski, Lions and Tremolieres [28] used the

projection technique to prove the existence of a unique solution of the variational

inequalitv (2.1). In 1979, Noor and Noor [29,30] proved that the solution of the

variational inequality (2.1) can be obtained by an iterative scheme namely:

Pc[Un- pT(Un)], n=0,I,2 (2.5)Un+

where p>0 is a constant and P is the projection of R
n

into C and studied the con-
C

vergence criteria.

In the formulation of the variational inequality, the underlying convex set C

does not depend upon the solution. In many applications, the convex set also depends

implicity on the solution u itself. In this case, the variational inequality (2.1)

is known as quasi variational inequality. To be more specific, a quasi variational

inequality problem is indeed a problem of the type:

Given a point-to-set mapping C: u---> C(u), which associates a closed convex

subset C(u) of R
n

with any element u of Rn, find ueC(u) such that

(T(u), v-u))0, for all veC(u). (2.6)

In many importan t applications, see Mosco 31 Bensoussan and Lions 3 and

Baiocchi and Capelo [5], the set C(u) is of the following form:

C(u)=m(u)+C, (2.7)

n
where m is a point-to-point mapping and C is a closed convex set in R Note that if

the point-to-point mapping m is zero, then the quasi variational inequality problem

is exactly the variational inequality problem (2.1).

Related to the quasi variational ineguality problem, there is a quasi complemen-

tarity problem. For a given continuous mapping T from R
n

into itself and a point-to-

point mapping m, we consider the problem of finding ueC(u) such that
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u-m( u))0, T(u))0, (u-re(u), T(u) )=0, (2.8)

The proble,a (2.8) is known as the quasi complementarity problem, studied by Dolecetta

[10], Pang [14,15] and Noor and Zarae [20]. If the mapping T is nonlinear, then we

call it nonlinear guasi complementarity problem, which has be.en considered and

studied by Noor [32]. If the mapping T is an affine transformation of the form

T:u >Mu+q for MER
nxn

a matrix and qER
n

a vector, then problem (2.8) is equiva-

lent to finding u such that

,.-m(u))0, Mu+q)0, (u-re(u), Mu+q) 0, (2.9)

which is a linear quasi complementarity problem. Problem of type (2.9) has been

studied by Dolcetta [10], where it arises as a discretized version of variational

inequalities. Dang [14,15] and Noor and Zarae [20] studied a convergence theory for

a certain type of [terative algorithms to solve (2.9) and showed that their theories

unified and extended many previous convergence results for the successive-over-

relaxation method for solving (2.9). The basic device employed throughout Pang’s

work is a certain implicitly defined mapping, which is constructed from the splitting

of the matrix M, whereas Noor and Zarae [20] used the technique of variational ine-

qualities mainly developed by Noor and NOOr [29,30].

If the point-to-point mapping m is zero, then problem (2.9) is equivalent to

finding u such that

u)0, Mu+q)0, (u, Mu+q)=0, (2.10)

which is known as the linear complementarity problem, originally introduced by Lemke

[2] and Cottle and Dantzig [I], and then studied by Mangasarian [19], Ahn [19,22],

Aganagic [33] and Pang [14] by using the iterative methods. For the applications of

these complementarity problems in general equalibrium theory, free boundary value

problems, and operations research, see Cottle [34], Ahn [22] and Crank [4].

Let C be a convex cone with its polar C* defined by C*={ucRn,(u,v))0 for all

veC}. We now consider the generalized quasi complementarity problem of finding

ueC(u) such that

T(u)C*(u), (u,T(u))=0, (2.11)

where C*(u) is the polar cone of C(u). The generalized quasi complementarity problem

was introduced and studied by Noor [16] along with the convergence criteria.

Frthermore, if the point-to-point mapping m is zero, then problems (2.8) and

(2.11) are equivalent to finding u such that

and

u)0, T(u) )0, u, T(u) )=0 2.12

ueC, T(u) eC*, (u, T(u) )=0, (2.13)

which are known as nonlinear complementarity problem and generalized nonlinear

complementarity problem respectively studied by Cottle [34],Fang [35], Aganagic

[33], Karamardian [9], Habetler and Price [7]
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3. ALGORITHMS.

We need the following results, the first one i. a generalization of pang [15]

and Kara.nard Jan [g

Lemma 3.1. If C is a convex cone in Rn, then ueC is a solution of the quasi

varzat[onal inequality (2.6) if and only if ueC solves the quasi complementarity

problem (2.8), where C is defined by the relation (2.7).

PROOF. Suppose that .I solves (2.6). since C(u) m(u)+C, so veC(u) can be written

as v m(u)+z, for all zeC. Now

T(u) ,v-u)= T(u) ,m(u) +z- u)

(T(u) ,m(u)-u)+(T(u) ,z)

=(T(u),z), since (T(u),m(u)-u)=0.

)0, since T(u) eC*(u)

mhus it follows tJat if u solves the problem (2.6), u also satisfies the quasi

variational inequality (2.8).

Conversely suppose that ueC(u) satisfies (2.8), then clearly u-m(u)eC, which

implies that 2(u-m(u))eC, since C is a convex cone by assumption. Also 0EC implis

that m(u)eC(u). Taking v 2(u-m(u)) and v m(u) in (2.8), w obtain

(T(u) ,u-m(u) ))0

and

(T(u) ,u-m(u) )0,
from which, it follows that

(T(u) ,m(u)-u) 0, (3.1)

Taking v m(u)+z, for all zeC in (2.8), we obtain

0((T(u),v-u) (T(u),m(u)+z-u)

(T(u),z), by (3.1).

This implies that T(u)eC*(u). Hence ueC(u) satisfying (2.8) is also a solution

of (2.6), which is the required result.

Lemma 3.2 [14.17]. If C(u) is defined by relation (2.7), then ueC(u) is a solution

of quasi variational inequality (2.6) if and only if u satisfies the following rela-

tion.

u=m(u)+P [u-pT(u)-m(u)],
C

for some p>0. Here P is a projection of R
n

into C and m is a point-to-point mapping.
C

Special Cases.

(I). If the point-to-point mapping m is zero, then lemma 3.1 is exactly the same as

proved by Karamardian [9] and Cottle [34] Furthermore, lemma 3.2 reduces to a

result of Noor and Noor [29] for a class of variational inequalities.

(2). If C(u) is equal to the non-negative orthant R
n {ueRn; u)0}, for all u, then
+

lemma 3.1 reduces to a result of Pang [15], for linear quasi complementarity

problem (2.9).
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Remark 3.1. It is obvious dat lemma 3.1 implies that if the convex set involved in

both tJe quasi variational inequality and the quasi complementarity problem is a con-

vex cone, then both the problems are equivalent, whereas lemma 3.2 together with

lemma 3.1 shows t/%at the quasi complementarity problem (2.8) can be transformed to a

liked point problem of solving

u f(u)

where

f( u)=Xm( u)+pc[ u_0T(u)-m(u) ]+(1-)u, (3.2)

with a positive constant D and a relaxation parameter 0<I used after projection,

see [19] for more details.

Based on these observations, we now propose the following general and unified

algorithm .or the quasi complementaity problem (2.8).

ALGORITHM 3.1. For any given u0eC, co,,pute;

Un+1=Im(Un)+Ipc[un-DT(un)-m(un)]+(1-1)un’ n=0,1 (3.3)

where p>0, and 0<41.

nxn n
If T is a linear transformation of the type T:u-----> Mu+q, for MER and qeR

then algorithm 3.1 can be written in the following form:

ALGORITHM 3.2. For any given u0EC compute

Un+1 = (m( Un )+APc Un-DEn{MUn+C+Ln Un+1 -Un) }-m(Un) ]+ )Un n=0 I, ,2 (3.4)

where 0<A4I, >0 a constant, {E and {L are bounded seguencies of matrices in
nxn n n

R This algorithm is compatible with the algorithm of Mangasarian [19].

For the above algorithm to be. practical, L may be strictly lower or upper
n

triangular matrix, because the iterate u may be obtained by solving variational

inequality subproblem as pointed out in Pang [14]. Here the original data M remains

intact throughout iteration, allowing this algor[thm to be efficient both for large

scale and specially structured problems.

For simplicitv, we consider the case E =E and L =L. We here consider the
n n

following version of algorithm 3.2 for linear quasi complementarity problem (2.9).

ALGORITHM 3.3. For any given u0EC compute

Un+1=m(Un)+Pc[Un-0E{MUn+q+L(Un+1-Un)}-m(Un )]+(1-A)un’ n--0,I,2,... (3.5)

where p>0 is a constant and 0<141 is a relaxation parameter used after the projection.

It is clear that each iteration of algorithms .I, 3.2 and 3.3 is itself equiva-

lent to variational inequality problem as implied by lemma 3.1.

Special Cases 3.2.

I. If the point-to-point mapping m is zero, then Algorithm 3.1 and Algorithm 3.2

reduce to the algorithms of Noor [41] and Ahn [22] respectively.
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ALGORITHM 3.4 [41 ]. Let u0eC then co,npute

=( -l)Un+IPc[Un-T(un) n=0 2,
+]

where .9<II and O>O is a constant.

ALGORITHM 3.5 [22]. For given u0eC compute

u =(1-)u +IP [Un-PEn Un++ c {u++( -u}] :0

where 0<(I and p>0 is a constant.

hn [2_] has established the convergence criteria o6 Algorithm 3.5 for both tJ]e

.;ymetrkc and non-symmetric matrix M.

2. If I=I, then algorithm 3.3 and algorithm 3.1 are exactly the same as studied and

analyzed by Noor and Zarae [20], and Noor [32] respectively.

AOGORITHM 3.6 [20]. For given u0eC, compute

,, : )+_[u-l.u ++(u -)}-.(u.)]. o =o,,2
n+l n n n+

where p>0 is a constant.

ALGORITHM 3.7 [32]. For given u0eC, compute

-+ =( un)+Pc[ Un-P(u l-m( u ], n=0, I, 2
n n

with p>0 is a constant.

Moor and Zarae [20] have studied the convergence criteria of algorithm 3.6 for both

symmetric and non-symmetric matrix M.

n
3. If tle apping m is zero and C=R+, then algorithms 3.2 and 3.6 are exactly the

same as studied and analyzed by Mangasarian [19] and Ahn [21] respectively.

ALC43RITHM .8 [19]. For given u0>0 compute

Un+l 1-’ Un+A[ Un-P En{ MUn+g+Ln Un+ -Un) +, n=0 ,2

for 0<I1 and p>0, a constant.

ALGORITHM 3.9 [21] For given u0>0, calculate

u Un-E MUn+q+L Un+ ++, -u)}] .:o 2

Concerning the convergence of the algorithm 3o8, Mangasarian [19] established a

general convergence result under the crucial assumption that M is symmetric. The

result asserts that there exist accumulation points of the sequence generated by

algorithm 3.8, and each point solves the linear complementarity problem

u)0, Mu+q)0, u, Mu+q =0 (3.6)

It was Ahn [21], who proved that, if the matrix M is nonsymmetric, then the sequences

generated by Algorithms 3.6 and 3.9 converges to the unique solution of (3.6).
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4. We also note that by taking Ln=0 En=I I=I and the point-to-point mapping m

equal to zero, the algo.[th,, 3.2 reduces to the algorithm of Aganagic []3],
where he has studied the convergence of this algorithm.

ALGORITHM ].I0 [33]. For given u0eC, co,,.pute

=Pc n n
[u -, ,,,u n=0,1,2,

For the corresponding variational inequalities, these algorithms are mainly due to

Noor and Noor [29] and Noor [36], where they have discussed the convergence criteria

and applications in infinite dimensional spaces.

wrom the above discussion, it is clear that Algorithms 3.1, 3.2 and 3.3 proposed

in this paper are .,ore general and include many previously known algorithms as spe-

cial cases, which are mainly due to Cryer [37], Aganagic [33], Cottle and Goheen

[38], Ahn [21,22], Chan and Panq [18] and Pang [I 4].

4. CONVERGENCE ANALYSIS. In this section, the convergence criteria of the approxi-

mate solution obtained bfy the suggested algorithms 3.1, and 3.] are studied. For

the algorithm 33, w only consider the special case, when C=[0,b] is a closed convex
n

set in R In this case, w consider the projection operator PC’ which is defined as

PC (U) arg rain l-u l-
yeC

If C=Rn, then
+

(P (u)). max{0,u.}, i=1,2
C l

In our case, w have

(Pc(U)) (P (u))
i [0,b] i

min{max(0,ui),bi}, i=1,2,...,n.

For notational purpose, P[0,b].
following properties, see Ahn [22]

n
Lemma 4.1. For any u and v in R

will be denoted as PC" The operator PC has the

In addition, w also need the following concepts. A real matrix MER
nxn

is said

to be Z-matrix (a P-matrix), if it has non-positive off-diagonal entries (positive

principal minors). A square matrix with non-positive off-diagonal elements and with

a non-negative inverse is called an M-matrix. It can be shown that a matrix which is
n xn

both a Z-matrix and P-matrix is a M-matrix, see [39] for full details. Given MER

we define its comparison matrix

Mc:(Cij) by eli: {Mii and Cij=-

(i) uv implies Pc(U)Pc(V)
(ii) PC (u)-Pc(V) &Pc (u-v)
iii )Pc (u+v) &Pc u)+Pc (v)

(iv) Pc(U)+Pc(-U) lul; with equality, if and only if -bu&b.
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If MeRmxn, then IMI denotes the matrix obtained from M by replacing each element

M.. by its absolute value.

The convergence of the sequences {u generated by algorithms 3.1 and 3.3 are
n+1

now studied. We modify the technique of Ahn [22] to prove the main results of this

section.

nxn
THEOREM 4.1. Suppose that there exists a non-negative matrix NR such that

Im(u)-m(v) {4N{u-v{, for all u,v. (4.1)

If {Un+ and {Un are the sequences qenerated by Algorithm 3.3 then

(4.2)

and

(4.3)

for each n and u is the solution of linear quasi complementarity problem (2.9).

PROOF. From algor thin 3.3, we have

U,+l-Un=lm(u,)-lm( Un_ +IPC[ Un-P E{ MUn+q+L Un+ -u,) }-m( Un

-kPc[Un-l-pE{MUn-1+q+L(Un-Un-, )}--m(Un_ )]+(,-A)(Un-Un_l

which can be written as, by using lemma 4.1,

u -u -A (m(u)-m( u )-( - (u -u
n+1 n n n-1 n n-1

(Pc[{I-PE(M-1)}(Un-Un-1)+pEL(Un+I -un)-(m(un)-m(un-1 ))]

2
Again invoking lemma 4.1 and using the fact PC PC’ we obtain

Pc[Un+l -un-(m(un)-m(un-1 ))-(1-k)(un-Un_l )]4APc[{I-pE(M-L)}(Un-Un-1)

+pEL(Un+l-un)-(m(Un)-m(Un-1 )) (4.4)

In a similar way, we have

PC[-{Un+l-Un-A(m(Un)-m(Un- ))-(1-A)(Un-Un_l )]

(APc[-{I-PE(M-L)}(Un-Un_1)-pEL(un+l-u )+m(u )-m(u )]
n n n-1

Again using lemma 4.1 and adding (4.4) and (4.5), we obtain

(4.5)

lun+ -Un- (m( Un )-m( Un_ )-( 1-I )( Un-Un_l I(x Ira( Un }-m( Un_

+ II-PE(M-L) lu.-u._ I+XP-IL lu -U
nn+1

from which, it follows that
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{2XN. IT-Xp.(,-L)t} lun-Un_ I, by (4.1).

.Since L is either a strictly upper or lower triangular matrix, the matrix

(I-XpEILI) is invertible for 0<41 and its inverse is non-negative, which implies

that (I-ApEIL I) is an M-matrix. Hence

which is the required result (4.2). Using similar arguments, we can obtained (4.3).

From theorem 4.1, we can establish a suffkc[ent condition for the convergence

of the sequence [u generated by algorithmm 3 3 to be. bounded and hence have an
n+l

accumulation point, which is the solution of the linear quasi complementarity problem

(2.g) and this is the main motivation of our next result.

THEOREM 4.2. Suppose hat

(:/(G) <
where

G=(T-XPEIL I)-’ [2x.+ IT--APE(S--L)I], (4.6)

with O denoting the spectral radius. Then for any initial vector u, the sequence

{Un+ generated by algorithm 3.3 converges to a solution of (2.9).

PROOF. The method proof is similar to that of Pang [14] and NoOr and Zarae [20]. We

observe that the matrix G defined by (4.6) is non-negative. Hence from theorem 4.1,

we have

lUn+1-un G lUn-Un_ I-
Since O(G)<I, it follows that

lira lUn+1 -Un 0
n-i,.

Next, by inductive arguments, e_ deduce that

(4.7)

i+1

lu..l-u.I : Gilu-uol
i=O

< (l-G)
-1 lu-uo I,

where the last inequality follows from the fact float the ,atrix G is non-negative and

O*G)<I, see [40]. Hence we conclude that the sequence {u is bounded and has an
n+1

accumulation point, say u*. Let [Uni/l} be subsequence convering to u*. Then from

(4.7) we see that {Uni+1} converges to u* as well. Since the mappings are con-

tinuous, so by passing to the limit ni + , we obtain

u =(1-l)u +Xm(u )+lPc[U -pE(Mu +ql-m(u )]
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which ks equivalent to quasi complementarity problek (2.g) by lemma 3.1 and lemma

3.?, that [ .** [. the solution of quasi complementarity problem (2.g). We finally

show that the sequence {u :onverges to u*. Prom (4.3), we_ obtain
n+1

lun+-u* IG lu,-u* I,

where G is as defined by (4.6). Since O(G)<I, it follows t/at the entire sequence

{u converges to u and this completes the proof of tile theorem 4...
n+1

We note that for A=I, these results reduce t) the earlier results obtained in

[20] iso it is clear from theorem 4.2, that the condition 0(G)<I provides

existence and uniqueness result fo tJe linear quasi complementarity problem (2.9).

Note also that the matrix M is not assumed to be symmetric.

If the mapping m is zero, then the non-negative matrix N becomes the zero

matrix. Consequently our results reduce to the results of Ahn [22] Thus we

conclude hat the algorithms of the Mangasarian types can be extended to study the

linear quasi complementarity problem. The results proved here are an improvement as

well as extension of te ones obtained by Ahn [21,22], Mangasarian []9], Pang [4,15]

and Noor and Zarae [20] for certain special cases.

In order to discuss the sefulness of theorem 4.2, we need the following con-

cept.

-I
Definition 4.1. If B is an invertible matrix, B )0 and C)O, then A=B-C is known as

regular splitting of A.

Now let

and

C=2AN+ [I-Ap E(M-L) I"
It is clear tJ,at the matrix B is invertible and B-l)0. Furthermore, C)0. Hence from

(4.6) and a result of Ortega and Rheinboldt [40], we obtain

-IO(G)=o(B C)<1

-Iif and only if A exists and non-negative.

Note that

A=B-C=I-ApE IL I-2),N-{I-ApE(M-L)

is a Z-matrix. If the matrix A is a P-matrix, then it follows tllat A has non-

negative inverse.

From the above discussion, w obtain the following results, which appears to be

new ones.

coronary 4.+. If .=I- II-XpED I-ApP..( IL I+ IK+U-L) 1>-2AN,
where M=K+D+U, is a P-matrix, then the sequence {u generated by algorithm 3.2
with L=K,U, or 0 and

n+]
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o<p< I+21N
max(M.. E..)

converges to a solution of the linear quasi complementarity problem (2.9).

For I=I, C=R, and the point-to-point mapping m equal to zero, all our results

reduce b) the resultg of Ahn [21].

From now onward, we shall assume that

M=K+D+U,

where D is diagonal (not necessarily positive). K is strictly lower triangular and U

is strictly upper triangular and the point-to-point mapping m is zero. We now give

some specific cases of the fundamental and general algorithm 3.2.

By taking L=0, in algorithm 3.2, we obtain the following algorithms, which are

agains new ones.

Algorithm 4.1. (Projected Jacobi over relaxation).

Let u0EC, then

Un+l=(1-)Un+Pc[Un-PE(MUn+q) ]’ n=0,1,2

-Iwhere 0<I(I, p>0 and E is a positive diagonal matrix such that 2(IpE) -M is positive

definite.

Note further that, if D is a positive diagonal matrix, E may be taken equal to
-I

D as in the case of Jacobi over relaxation method. If in addition, l=P=1, we

obtain the projected ordinary Jacobi iteration.

By taking L=K or U, in algorithm 3.2, where E is a positive diagonal matrix, we

obtain the following algorithm.

Algorithm 4.2. (Projected SOR)

Let u0eC compute

Un+1 =(1-1)Un+IPC[ Un-E(MUn+q+L(Un+1 -Un)) ], n=0,1,2

where

0<I(I,p>0 and lp<
max (D.. E..),

+

with J ={j:Dj >0 j=1 2
+

Remark 4.2. For I=1, D, L=K, C=Rn, and the mapping m equal to zero, algorithm 3.2

becomes the projected SOR method studied by Cryer, Eckhardt and many others. If in

adition =I, algorithm 3.2 becomes he projected Gauss-Seidel method.

Remark 4.3. It is evident that the convergence analysis of the algorithm 3.3 holds

only for C [0,b]. The cgestion arises can this restriction be relaxed. The answer
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to tllis is partly true. Indeed. this is true for the nonlLnear quasi ,:o,.plementaLty

problem as shown elow. For the I Lnear complementa ty problem, howevec, the

question still remains open.

It has been shown by Pang [14] that the co,lditton 4.1 for the point-to-point

mapping m is equivalent to the fact the mapping m is Lipschitz continuous, that is

the.e exists a >0 such that

We also need the following )ncepts:

Definitions 4.1. A mapping T; Rn----->Rn is said to be

L). Strongly Monotone, if there exists a constant =>0 such that

ii). Lipschitz Continuous, if there exists a constant 8>0 such that

In particular, it follows that

In the next theorem, we study the conditions under which the approximate solu-

tion obtained from (3.3) converges to the exact solution u of nonlinear quasi comple-

mentarity problem (2.8). This result shows float the convergence of the approximate

solution to the exact solution also depends on the relaxation parameter A used after

projection like the linear quasi complementarity problem. Furthermore, we prove that
n

the restriction C is a closed rectangle in can be relaxed for nonlinear quasi

complementarity problem and the convergence analysis hold for any general closed con-

vex set C in R
n

The next result is an improvement of a result of Noor [16]

THEOREM 4.3. Let the continuous mapping T from R
n

into itself be strongly monotone

and Lipschitz continuous. If the mapping m is also Lipschitz continuous with

Lipschitz consttant and Un+ and u are solutions satisfying (3.3) and (2.8), then

n
u -----> u in R
n

PROOF. From lemmas 3.1 and 3.2, we conclude that the solution u of (2.8) can be

characterized by the solution (3.3). Hence from (3.2) and (3.3), we have

lun+.,-ul I,ll..u )+APc[Un-PT(U )-m(u )]+(1-),)un n n n

-(u)-c[u-(u)-(u) ]+c,-)u

ll(u )-(u)I I+llun-U-((u )-(u))-=(u )+.(u)II
n n n

/(,-) Ilu_-ull, since PC is a non-expansive [5].

42A {{m(n)-m(u){{+{ {Un-U-p(T(u )-T(u))I {+(l_;k)l lun_uln



332 M.A. N00R

Now by the strongly monoto,icity and Lipschitz continil[ty of T, we have

82p2 2I1 -u-p(T(Un-T(u)) 112(,-2p+ )llu -ull!1 n

Thu tSLng the above inequality and Lipschitz continuity of i,, we obtain

lu./-u 1(2*(-X)+/-2+282) lu -ulln

where 8 2y+(1-1)+X/1-2ep+82p2
21y+(1-1)+It(p), with t(p) Z-2ep+82p

Now t(p) assumes its minimum value Eor p with t(p)
8-

We have

to show that 8<1, if p satisfies 21y+(1-1)+lt(p)<1, which reduces to 2y+t(p)<l.

Thus it followsFor P , 2+t(p)<1 implies that y < and e ) 28/-y2

that 8 2Xy+(1-1)+Xt(pl<1 for all p with

82 2

Also 8)0 leads to the requirement that I 1/[1-2’-/1-2clp+82p2].
Since 8<1, so the fixed problem (3.2) has a unique solution u and consequently,

the iterative solution u obtained from (3.3) converges strongly to u, the exact
n+1

solution of nonlinear quasi complementarity problem (2.8), which is the required

result.

Special Cases 4.1.

i) It is also evident from the proof of theorem 4.3 that the convergence criteria

depends on the relaxation factor I used after the projection.

ii) If the point-to-point mapping m is zero, then theorem 4.3 is exactly the same as

proved in Noor [41

iii) The case I=I is considered by Noor [32].

iv) If the point-to-point mapping m is zero, that is the Lipschitz constant y is

zero, then for I=I, theorem 5.5 is exactly the same as proved by Fang [35] and

Aganaqic [33]. For related wrk, see Pang and Chan [42].

CONCLUION. The algorithms suggested in this paper are the most general and unifying

ones. The results proved in his paper are an improvement as wll as extension of

the previous ones for the complementarity problems. We have shown only the possibi-

lity that the iterative algorithms such as Algorithms 3.1 and 3.2 can solve the

nonlinear and linear quasi complementarity problems. Development and improvement of

implementable algorithms for this class of problems deserves further research

efforts.
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