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ABSTRACT. It is shown that inversion is a convex function on the set of strictly positive

elements of a C*-algebra.
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1. INTRODUCTION.

A real-valued function f defined on a real interval is said to be convex if

f(ks + (1 k)t) < k f(s) + (1 k) f(t)

for s,t61 and 0<kK1. Convex functions play a fundamental role in the study of the

Lebesgue Lp spaces [1], [2]. Geometrically, a function f is convex if the chord joining the

points (s,f(s)) and (t,f(t)) lies above the graph of f. An interesting example of a convex

function is the function f(t)=t-I, t6I=(0,). Thus inversion is a convex function on the

set of positive reals. The notion of convexity has been generalized to functions with domain

and range more general than reals. For instance, through a diagonalization process it is shown

in [3] that inversion is a convex function on the set of positive-definite real symmetric

matrices. In this note we will show that this result holds in a C’-ilgebra. More precisely, we

use Banach algebra techniques to show that inversion is a convex function on the set of

strictly positive elements of a C’-algebra.

2. PRELIMINARIES.

Throughout this article t will denote a complex C’-algebra with identity e. An element

x 6.A is said to be self-adjoint if x’=x, where x* is the adjoint of z. A self-adjoint element

z is said to be non-negative, in notation x0, if its spectrum a(x) lies in the interval [0,o).

For self-adjoint elements x and y, we write x Ky if y--x >0. An element x will be termed

strictly positive if it is non-negative and invertible. Thus x is strictly positive if x is self-

adjoint and r(z) lies in the interval (0,oo). If c is an invertible element then we use x-t to

denote its inverse.

A subalgebra B of t is said to be self-adjoint if x 6 implies x’6B. The main tools we

need to establish our result are:

(A) If B is a closed self-adjoint subalgebra of t and z 6B, then cry(x)=cry(x). Here

r,BCx) and ;t(c} denote the spectra o[ x relative to and t, respectively.
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(B) If B is a commutative Banach algebra and x then cr(x)--{9(x)l a complex

homomorphism on ).

Proofs of (A) and (B) may be found, for example, in [4].

3. MAIN RESUI,T.

I.EMMA: If u: is a strictly positive element of t, then

[ke+(l --k)w]-t <ke+(l --k)u"-I for 0<k<l.
PROOF: Let B be the closed subalgebra generated by w and e. Since w is self-adjoint, B

is self-adjoint and commutative. Clearly w and ke 4-(I --k)w are elements of B. Since these

elements are invertible in ., u--[Xe4-(1--k)w]-: and v--- ke 4- (1-- k) w- are elements of B

by (A). Our goal is to show that aB(V- u) lies in [O,c). In view of (B) it suffices to show

that p(u.)K(v) for complex homomorphisms o on . Since p(u) [k + (1-- k) (w)]- and

p(v)---k +(1 --k)((w))-t, the result follows from the fact that f(t)--t- is a convex function

on (0, _-,:.).

THEOREM: If x and y are strictly positive elements of t, then

[kx+(1 --k)y]- <:hx-:+(1 --k)y- for 0<<_:1.
PROOF: First we recall that if p and q are self-adjoint elements of t with P Kq, then

r*pr r*qr for any r6t. This fact from C*-algebra theory will be used twice in the proof.

Now, since x is strictly positive, it possesses a unique strictly positive square root, say

z, in . Then w--z-yz- is strictly positive. By the lemma, we have

[ke -v (1-- k) w]- <: ke + (1-- k) w-Thus

z- [he 4- (1 h)w]-: z- z-:[ he + (1 h)w-llz-This in turn gives

The proof is thus complete.

[kx+(1--h)y]-: Khx- +(l -h)y-:
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