RESEARCH NOTES

A CONVEX OPERATOR FUNCTION

DERMING WANG

Department of Mathematics and Computer Science California State University, Long Beach Long Beach, California 90840

(Received September 23, 1987)

ABSTRACT. It is shown that inversion is a convex function on the set of strictly positive elements of a C^* -algebra.

KEY WORDS AND PHRASES. Convex function, C*-algebra. 1980 SUBJECT CLASSIFICATION CODE. 47C15

1. INTRODUCTION.

A real-valued function f defined on a real interval I is said to be convex if

 $f(\lambda s + (1 - \lambda)t) \leq \lambda f(s) + (1 - \lambda) f(t)$

for $s,t \in I$ and $0 \le \lambda \le 1$. Convex functions play a fundamental role in the study of the Lebesgue $L^{\mathcal{P}}$ spaces [1], [2]. Geometrically, a function f is convex if the chord joining the points (s,f(s)) and (t,f(t)) lies above the graph of f. An interesting example of a convex function is the function $f(t) = t^{-1}$, $t \in I = (0, \infty)$. Thus inversion is a convex function on the set of positive reals. The notion of convexity has been generalized to functions with domain and range more general than reals. For instance, through a diagonalization process it is shown in [3] that inversion is a convex function on the set of positive-definite real symmetric matrices. In this note we will show that this result holds in a C*-algebra. More precisely, we use Banach algebra techniques to show that inversion is a convex function on the set of strictly positive elements of a C*-algebra.

2. PRELIMINARIES.

Throughout this article \mathcal{A} will denote a complex C^{*}-algebra with identity e. An element $x \in \mathcal{A}$ is said to be self-adjoint if $x^* = x$, where x^* is the adjoint of x. A self-adjoint element x is said to be non-negative, in notation $x \ge 0$, if its spectrum $\sigma(x)$ lies in the interval $[0,\infty)$. For self-adjoint elements x and y, we write $x \le y$ if $y - x \ge 0$. An element x will be termed strictly positive if it is non-negative and invertible. Thus x is strictly positive if x is self-adjoint and $\sigma(x)$ lies in the interval $(0,\infty)$. If x is an invertible element then we use x^{-1} to denote its inverse.

A subalgebra B of \mathcal{A} is said to be self-adjoint if $x \in \mathbb{B}$ implies $x^* \in \mathbb{B}$. The main tools we need to establish our result are:

(A) If B is a closed self-adjoint subalgebra of \mathcal{A} and $x \in B$, then $\sigma_{\mathcal{B}}(x) = \sigma_{\mathcal{A}}(x)$. Here $\sigma_{\mathcal{B}}(x)$ and $\sigma_{\mathcal{A}}(x)$ denote the spectra of x relative to B and \mathcal{A} , respectively.

D. WANG

(B) If B is a commutative Banach algebra and $x \in B$ then $\sigma_B(x) = \{\varphi(x) | \varphi \text{ a complex homomorphism on } B\}$.

Proofs of (A) and (B) may be found, for example, in [4].

3. MAIN RESULT.

LEMMA: If w is a strictly positive element of \mathcal{A} , then

 $[\lambda e + (1-\lambda)w]^{-1} \leq \lambda e + (1-\lambda)w^{-1} \text{ for } 0 \leq \lambda \leq 1.$

PROOF: Let B be the closed subalgebra generated by w and e. Since w is self-adjoint, B is self-adjoint and commutative. Clearly w and $\lambda e + (1 - \lambda)w$ are elements of B. Since these elements are invertible in \mathcal{A} , $u = [\lambda e + (1 - \lambda)w]^{-1}$ and $v = \lambda e + (1 - \lambda)w^{-1}$ are elements of B by (A). Our goal is to show that $\sigma_{\mathcal{B}}(v - u)$ lies in $[0, \infty)$. In view of (B) it suffices to show that $\varphi(u) \leq \varphi(v)$ for complex homomorphisms φ on B. Since $\varphi(u) = [\lambda + (1 - \lambda)\varphi(w)]^{-1}$ and $\varphi(v) = \lambda + (1 - \lambda)(\varphi(w))^{-1}$, the result follows from the fact that $f(t) = t^{-1}$ is a convex function on $(0, \infty)$.

THEOREM: If x and y are strictly positive elements of A, then

$$[\lambda x + (1-\lambda)y]^{-1} \leq \lambda x^{-1} + (1-\lambda)y^{-1} \text{ for } 0 \leq \lambda \leq 1.$$

PROOF: First we recall that if p and q are self-adjoint elements of \mathcal{A} with $p \leq q$, then $r^*pr \leq r^*qr$ for any $r \in \mathcal{A}$. This fact from C^{*}-algebra theory will be used twice in the proof.

Now, since x is strictly positive, it possesses a unique strictly positive square root, say z, in 4. Then $w = z^{-1}yz^{-1}$ is strictly positive. By the lemma, we have

$$[\lambda e + (1 - \lambda)w]^{-1} \leq \lambda e + (1 - \lambda)w^{-1}$$

Thus

$$z^{-1} [\lambda e + (1 - \lambda) w]^{-1} z^{-1} \leq z^{-1} [\lambda e + (1 - \lambda) w^{-1}] z^{-1}$$

This in turn gives

$$[\lambda x + (1 - \lambda)y]^{-1} \leq \lambda x^{-1} + (1 - \lambda)y^{-1}$$

The proof is thus complete.

REFERENCES

- [1] Royden, H.L., Real Analysis, 2nd ed., Macmillan, New York, 1968.
- [2] Rudin, W., Real and Complex Analysis, 2nd ed., McGraw-Hill, 1974.
- [3] Moore, M.H., A convex matrix function, <u>Amer. Math. Monthly</u>, 80 (1973) 408-409.
- [4] Douglas, R.G., Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.