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ABSTRACT. A monic endomorphism of a structure A can be extended to an
*

automorphism of a larger structure A . We investigate which properties

are preserved by this process.
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1. INTRODUCTION.

It is known [1, Thm. VII.3.4] that monic endomorphisms of an algebraic
*
structure A can be extended to automorphisms of a larger structure A of
the same type. In a recent paper [3], Jordan studied the relationship between

the two structures in the case in which A is an associative ring. The
constructions of A" in [1] and [3] are quite different.

In this paper, we investigate what can be said in general about the
relationship between the properties of A and the properties of A* .
main result is that all of the "universal formulas" satisfied by the
operations and relations on A which are compatible with the given

endomorphisms will also be satisfied by the extensions of the operations and
relations to A* . In comparison to [1], we slightly weaken the hypotheses
and broaden the scope of the investigation to include relations, universal
first-order formulas, and relationships involving more than one structure.

Our results apply to non-algebraic structures, such as metric spaces.
In Section 2, we start with a monoid M acting on a set A, and

construct a map from A to a "universal" A* on which M acts by

bijections. We show that A* is uniquely determined by certain of its

properties. After developing some additional properties, we turn in Section 3

*
to the question of extending operations and relations from A to A .
also indicate how the analogous procedure may be carried out when

Our
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relationships with other structures are involved. We conclude the paper with

three examples, showing how our techniques may bc empluyed.

2. UNIVERSAL M-SETS.

kecall that a monoid is a set M , together with ar associative binary
operation M x M ~ M (which we denote by juxtaposition) and an identity
element (denoted 1). A (right) M-set is a set A , tougether with a map
AxM> A such that al = a and (ac)g = a(u) for all a e A and
«,8 € M. A map of M-sets is a function z: A+ B on their underlying sets
for which ¢(ac) = z(a)e for all aeA ,a eM . The M-set A is an
M-subset of the M-set B if A is a subset of B and the inclusion map A »
B is a map of M-sets.

We say that the monoid M acts orn the M-set A by injections
(bijections) if for each o € M the map 02: A+ A given by aoé = ao
(a e A) is injective (bijective).

A munoid M is directed by left divisibility if for each o,s € M there
exist A,u € M with aX =gy . The monoid M satisfies left cancellation if
for o,B,y € M we have that vya = yB implies a = B .

THEOREM 1. Let M be a monoid which is directed by left divisibility
and which satisties left cancellatior. Let A be an M-set. Then there
exists an M-set A* and a map 1: A > A* with the following properties.

(1) M acts on Iy by bijections.

(2) Suppose that h: A > B is an M-set map, and M acts on B by

bijections. Then there exists a unique M-set map £: A* + B with
tov = h .

If (A")' and 1': A+ (A")' both satisfy (1) and (2), then there
exists a unique isomorphism ¢: A* - (A*)' with geu = '

The M-set A" (or any isomorphic (A*)' , as above) also satisfies

(3) For all a* e A* there exists a € M and a € A with a*a = 1(a).

(4) For a;, a, € A we have \(al) = 1(a2) if and only if there exists

a €M with ae = aa . In particular, if M acts on A by
injections, then 1 is injective.

Moreover, if A and 1: A > A* satisfy (1), (3), and (4), then they
also satisfy (2).

PROGF. We first show uniqueness. If 1: A » A* and 1v': A+ (A*)'
both have properties (1) and (2), then there exist unique M-set maps &¢: A* +>
(A*)' and ¢': (A*)' -> A* with zev = 1' and g'ev' = 1, Then ¢g'eger =1

*
and gog'er' = ' . By uniqueness, ¢'er is the identity on A , and geg'
*
is the identity on (A )' . Thus ¢ 1is an isomorphism.
+*
Now we construct A . We first define a relation ~ on AxM by:

(a,a)~(b,8) 1if there exist A,y € M with «i = gp and ax = by . This
relation is clearly reflexive and symmetric. Suppose that (a,a)~(b,B) and
(b,g)~(c,y) . We have Ar,n e M with ax =By and ax = by , and also

A,u' e M with gr' = yu' and bix' = cu' . Select 6,8' € M with
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p§ = A'6' . Then aré = gus =8r's' =yu's' , and axs = bys = br's' = cu's’,
so (a,a)~(c,y) . Thus ~ s an equivalence relation. We let A* be the
set of equivalence classes, and denote the equivalence class of (a,u) as
[a,a] .

Given (d,u) € A<M and B € M, we would like to define (a,a)p € N by
selecting A,p € M with ox =gy and setting (a,a)s = [ax,u] . Suppose

that we also have ad' = By Select y,y' € M with uy = yu'y' . Then

ahy = Buy = Bu'y' =ax'y' , 50 Xy = A'y' . We now have yuy =u'y' and
(an)y = (ex')y' » so [ax,u] = [ax',u'] . Thus our definition of (a,a)g

does not depend upon the choice of A,y . Suppose that (a,a)~(a',a') . Then
there exist vy,y' € M with ay = a'y' and ay = a'y' . Say Y6, = A8, for
818, € M . Then a'y'al = ay§; = akb, = Bus, , SO (a',a')B = [a'y'él,pdz] =
[aYal’”52~ [ayéz,uaz] = [arx,u] = (a,a)B . Thus there is a well-defined
function AY o« M A given by [a,als = [ax,u] , where ax =By .

Clearly [a,a]l = [a,a] . Given [a,a] € A" and BysBy € M, we have
[a,a]s1 = [axl,pll where aX; = Blul , and [axl,ul]s2 = [ax P ’“2] where
uhp = Bpup - Then adjhy = Buphp T BiBaup 5 SO [a,a]sls [ax Apsupl =
([a,a]al)sz . Thus A is an M-set. Since for [a,a] s A and B eM we
have [a,a] = [a,sal8 , the action of each 8 € M on A is surjective.
Suppose that [al,al]e = [a ,uz]B . Then [a l’”l] = [azxz,uz] , where
°1 17 sul and az 2 Bu2 . So there ex1sts YisYp € M with H1Y] T HYp
and 310Y T 3ovp - Since ajryy < E"IYI BugYp = andyys » W have
[al’°1] = [az,az] . Thus M acts on A by bijections, and we have shown
(1). .

The map 1: A > A given by 1(a) = [a,1] is clearly a map of M-sets.
Note that for a* = [a,a] € A* we have a*a = [a,ala = [a,1] = 1(a) ,
verifying (3). For 31,3, € A we have 1(a1) = \(az) if and only if there
exists ajsay € M with lal = 1a2 and a0y = A, . Since we must have
ap = a, , We have verified (4). .

Let us now assume that we are given A and 1: A > A satisfying (1),
(3), and (4). Let h: A+ B be an M-set map from A to an M-set B on
which M acts by bijections. Suppose that there exists an M-set map
g2 A" 5B with gor=h. Let a* €A . Select o €M and a eA with
*a = 1(a) . Then g(a%)a = ¢la%a) = t(i(a)) = h(a) , so g(a*) = h(a)(eD)™!
Thus ¢ , if it exists, is unique. To obtain existence, we must show that for
a* e A the expression g(a*) = h(a)(eg)'1 does not depend upon the choice
of oeM and a e A with a*a = ((a) , and yields an M-set map with
gov = h .

Let us first note that if 1(a1) = 1(a2) then by (4) we can find a € M
th 25 = 0g8 » and so hlay) - h(a)g(o%) ™" = h(a;8) (63)™" = h(aye) (o)™
h(a2)3(9 ) h(a 2) Now let a* € Iy , and suppose we have apso, € M and

25,3, € A with a*q, = ‘(a ) and a*a, = 1(a2) Select Apsd, € M with
@A) = ayr, . Then l(aéxl) = a%apa = a* a2 =Bl(a Ap) » so h(agxg) -1
h(apa,) . Thus h(al)(ea])' . h(al)xl(@ G )1 h(any) (e ]) -
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(a,AZ)( ) h(az)( ) , so the function ¢: A* > B is well-defined.
Let 2*2e A ,BeM. %2 Select a € M, a e A with a*a = 1 (a ) Select
A,u € M with ox = gy . Note that esef SE s SO oB(o ) (o ) 12 .
Since (a*8)u = a*ar = :(ax) , we have g(a*s) = (aA)(o ) = h(a)e (0 )

h(a)(oS)'IOE = g(a*)e . Thus ¢ is an M-set map. Clear]y Lo = h , and we
are done.

Let M be a monoid which is directed by left divisibility and which
satisfies left cancellation. Let M denote the category of M-sets, and let
M* denote the category of M-sets on which M acts by b1Ject10ns We
associate A € Ob(M ) to A e Ob(M) . Let W A~ A be the map given by
Theorem 1. Now 1st g: A+ B be any M-set map. Since 1g°9 is a map from
A to an M-set B on whlch M acts by b1Ject1ons, we have by Theorem 1 that
there is a unique map g : A > B w1th g °ip = 1g°9 - If h B~ C :s
another M-set map, then h og oip = h °1g°g = 1 ehog , SO h °g = (heg) by
uniqueness. Thus we have the following.

THEOREM 2. Let M be a monoid which is directed by left divisibility
and which satisfies left cancellation. Then there is a functor ()* from the
category M of M-sets to the category M of M-sets on which M acts by
bijections, which associates to each M-set A the "universal” M-set A on
which M acts by b13ect1ons, and to each M-set map g: A > B the unique
M-set map g : A +> B fgr which g °1p = 1p°9 -

We shall refer to g as the extension of g .

In the next section, we will need an additional property of the functor
()* . Let A,...,A_ be M-sets. Then Alx"‘xAr is an M-set, with M
acting via (al,...,ar)a = (ala,...,uru) for (al,...,ar) € A1X...><Ar and
a € M. This M-set is the product of Al’ .,Ar in Ehe category M . It is
easy to zee that M acts by blaectloni on AlX...XAr , and thus that
Alx Ar is the product of Al’ ’Ar in M

PROPOSITION 3. The functor () preserves finite products. More
exp11c1t1y, Ior any M-sets A . ,Ar , the unique map ¢ from (A x...xA )
to Alx .xA_ such that (°1A T lALX...*lA 1s an 1somorph1sm

r
PROOF. By Theorem 1, it luff1ce§ to show that"” Alx... Ar and

‘A] xlA satisfy (1), (3), and (4). We have a]ready observed that it is
easy to see "that (1) holds. Given (al,...,a ) e Alx ..xA , there exist
o5 e M and aJ € A (j=1,...,r) with aJuJ = (aJ) , each j . Select
Yohpseoeohp € M SO that adi =y all j . Th%n %y =1y (a5 he )y, all

Jj o, so (al, ..,ar)y = (‘A ...XIA )(alxl, L0 ) , and we have ver1f1ed
(3). For (al,...,ar),(ai,...,a ) € Alx xAr we have

1A]x...x1Ar((a1,:..,a )) =1 .A#(al, ,ar)) if ?nd only if ther? exist
u},...,ar e M with aJ j = aiuj y J = 1,..:,r . In %h]S case we can find a
single y = aghy T T oAy with an = ajy ,all j , so

(al"”’ar)Y = (ai,...,a;)y . As the reverse implication is trivial, we have
verified (4), and we are done.
Let us also observe that for any M-set A and any r > 0 there is an
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(r): A~ A(r) {where A(r) denotes the product of r copies of

toset mP 54 (1) (r)y*
A) given by GAr (a) = (a,...,a) for all a e A, and that we have (6A ) =

6%

3. EXTENSION OF OPERATIONS AND RELATIONS

In this section, we show how the results of Section 2 can be used to
extend operations, functions, and relations from A to A* .

we refer to elements of A as constants. A constant c is admissible
if ca =c forall o eM. Note that there is a trivial M-set {.} , for
which «a =+ for all o €M, and that we may view an admissible constant of
A as being the same thing as an M-set map from {-} to A. For r > 0 , an
r-place operation on A is a function f: A(r) > A . We say that the
operation is admissible if it is a map of M-sets. More generally, an r-place
function on A , with values in the set B , is a function f: A "5 B . The
function f s admissible if B is an M-set, and f is a map of M-sets.
(Any set B may be given the trivial M-structure, with ba =b for all
beB,ae€eM.) Anr-place relation on A is a subset R of A(r) . We
may view R as being a function R: A(r) + T, where T =1{0,1} is our set
of "truth values". Then for a = (al,...,ar) € A(r) , we say that a e R iff
R(a) = 1 . The relation R 1is admissible if for all a e A" and o €M, we
have a € R if and only if ax € R . If we consider R as a function with
values in the set T , with T given the trivial M-structure, then this
condition is simply that R be an admissible function, that is, an M-set map.

We see that admissible operations, functions, and relations on M-sets may
be viewed as M-set maps. By Theorem 2, each has a unique extension from M
to M* . Moreover, any relationship between certain M-sets which may be
expressed as saying that a certain composite of M-set maps into the M-set T
has constant value 1 will hold when we pass from M to M* 3 by Proposition
3, a composite defined in terms of a product in M will be defined in the
corresponding manner in M .

This result is quite powerful. We shall work out some consequences for
the case in which a single M-set is involved.

We shall describe what we mean by a "universal formula" for an M-set A .
The basic building blocks for the formula are the admissible constants of A
and the variables X sXpseee - The formula will be a finite expression; let
us say that the variables that occur in it are among XpseeoXp - We first
explain, recursively, what we mean by a term of the formula. Each term is an
M-set map from A(") to A . A constant ¢ 1is the map sending a € A(") to
ceA. Avariable x; fis the map sending (al,...,an) e A\ o a; € A.
If tys...ot, are terms and f 1is an r-place operation on A , then
f(t;,...,t.) is the term sending a e Aln) 4o f(ty(a),...ht (@) e AL We
next explain, recursively, how to create formulas. Each formula will be an
M-set map from A(n) to the trivial M-set T = {0,1} . If R 1is an r-place
relation on M and tl""’tr are terms, then the composite R(tl""’tr) .

235
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defined by R(tj,....t)(a) = R(t;(a),..st (a)) for aeal™  isa
formula. If A 1is a formula, then (;A) is the formula given by (qA)(a) =
if Afa) =0, (1A)(a) =0 if A(a) =1 . Similarly, if A and B are
formulas, then (AvB) , (AaB) , (A+B) , (A#B) are the formulas obtained by
viewing the logical operations "v" (or), "a" (and), “+" (implies), and "&"
(iff) as M-set maps L: TxT » T , and composing with the map A( n) + TxT
sending a to (A(a),B(a)) . Note that this latter map is (AxB)oSXfJ) .

Thus a universal formula for A , involving variables from XpseeosXy s
is interpreted as an M-set map from A(") to T . We say that the formula
"holds" if, as a function, it is constant with value 1. We call the formula
"universal" because, formally, we interpret it as holding if and only if it
holds "with a universal quantifier for each variable that appears."

By Theorem 2, Proposition 3, and the observation following Proposition 3,
we have the following.

THEOREM 4, Let M be a monoid directed by left divisibility and
satisfying left cancellation. Let A be an M-set. Then every admissible
operation and relation on A has a unique extension to A" . These
extensions satisfy the same universal formulas in A* that were satisfied by
the original operations and relations in A .

Let us now discuss the uses of this result, as well as its limitations.

The most important limitation has to do with the "equals" relation. We
often want to express the idea that two composites are equal. For example, if
"+" is a binary operation on A , then the formula X X, = Xotx, means that
= ((a1+a2),(a2+a1)) is 1 for all a;,a, € A . In order to be able to apply
the theorem, = must be an admissible relation.

PROPOSITION 5. The equals relation is admissible iff M acts on A by
injections. In this case, = is the equals relation on A* .

PROOF. For equals to be admissible we require a,=a, iff 3ja = aa ,
for all a3, € A, a€eM. This is c]early the cond1t1on that M act on A
by injections. In th1s case, suppose that al- a2 for al,a2 € A . There
exists y € M with aly e A and a Yy € A (ThlS makes senseg since ‘A is
injective.) Then aly = azy » S0 a; = (aly)(eY )’1 = (a )(e )" 1. a2 .

When M acts on A by injections, then from Theorem 4 and Propostion 5
we can often get that A* is the same type of algebraic object as A . For
example, the operation + on A is assoc1at1ve 1ff it sat1sf1es (x1+x2)+x
= x1+(x2+x3) , and in this case (x1+ x)+ X3 = Xpt (x2+ x3) , S0 + is an
associative operation on A

Sometimes some reformulation is required. Suppose that A is a field,
and that M acts injectively on A as field endomorphisms. For a € A , set
vla) = if a=0, v(a) = al if a #0 . Then y is an admissible
operat1on on A, and A satisfies the formula (x -0) v (x1 v(X )=1) .

Since A satisfies the same formula, we obtain that A is a f1e1d

Our next result provides another method for obtaining properties of Iy

in terms of properties of A .
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Let f be an admissible r-place operation on A , and let f* be its
extension to A* . We first note that f* is defined on 1(A) by
Fllap)yenla)) = fay, soeea) forall (ap,....a) e A0 Now Tet
LI ERERPLM be elements of A . Thsre exists an element y of M and
elements a,,...,a_. of A w1th a,y = 1(a;) for j=1,...,r . We have

*, * * A% -1 *

£ (a],.en0a,) = - el ) G E ™ = Pl e
(0? )'1 = (1f(al, “esdy ))(e ) . Since the same argument goes through for
relations, we have the fo]low1ng result.

PROPOSITION 6. Let M be a monoid divided by left divisibility and
satisfying left cancellation. Let A be an M-set. Then A* is the directed
union of the sets 1(A)(®A*)'1 » vy € M. The admissible operations and
relat1ons on A are extended from .(A) to 1(A)(eA ) 1 yia eA ; thus

(A)(o ) -1y "jsomorphic" to 1(A) Y

Note however, that 1(A)(e ) may not be closed under the action of
M if M is not commutative.

We now present our three examples. Note that [1, Thm. VII.3.4] does not
apply in these cases, either because the "locally K" conclusion of that
theorem does not allow us to infer that certain relations and formulas extend
from A to A*, or because we need to consider two M-sets simultaneously,
together with a map between them.

EXAMPLE 7. Let N denote the monoid of natural numbers under addition.
Let A be the set NxN . Define a relation < on A by: ("1’"2) < (ml,mz)
iff Ny, < motm, Then < s a strict order on A — that is, it satisfies
the un1versa1 formulas 1(x1<x1) 5 (x1<x2) + 1(x2<x1) ; and ((x1<x2)/\ (x2<x3))
+ (x1<x3) . We give A an N-set structure by ("1’"2)°" = (0,n1+n2+n) for
all ("1’"2) €A . neN. The relation : is admissible. By Theorem 4, the
universal N-set A has a strict order < which extends < . Let the set
Z of integers be an N-set under addition. Define j: A+ Z by j((nl,nz))
= np*tn, . Then j is an N-set map; with Z and j satisfying (1), (3), and
(4) of Theorem 1, so we may take A and . tobe 2 and j . We see that
& is the usual order on 7 .

EXAMPLE 8. Let A,N be as above. Change the action of N on A to
("1’"2)'" = (n1+n, n2+n) for ("1’"2) eA,neN. Then < is still an
admissible relation, and now N acts on A by injections. Thus we can view
A* as being a set containing A . We can equip A with the metric d: A +R
given by d(("l’"z)’ (ni,né)) = ‘/(nl-ni52 + (nz-né)2 for ("1’"2)’ (ni,né)
€ A. We give R the trivial N-set structure; then d is a map of N-sets.
That d is a metric is expressed by the universal formulas: d(xl,xz) 203
(d(xl,xz) =0) & (xl—xz) 3 d(xl,xz) d(XZ’xl) 3 d(xl,x3) < d(xl,xz)

+ d(xl,xz) Each formula may ?g)1nterpz§§ed as asserting that a certain
composite of N-set maps from A (or A*”’) to T = {0,1} has the constant
value 1. By Theorem 2 and Proposition 3, the corresponding result holds for

* *
A . Thus we have that A is a metric space containing A , equipped with a
*
strict order < , on which N acts by isometric automorphisms. Using Theorem
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1 we see that A* can be realized as ZxZ , with d* and <* given by the
formal extension to ZxZ of the formulas defining d and < respectively.

EXAMPLE 9. Let F be a field, and let K = F(Xl""xt) be the field of
rational functions over F in t indeterminates. Let o: K » K be the
F-algebra homomorphism sending Xi to X?, for 1 < i < t, and give K the N-set
structure (k,n) - ko for k e K, n e N. Let G =RU{=}. Extend the
operation "+" and the relation "<" from R to G by settinga + « =« = » +
a=w+woand a <~ for all a € R. Make G into an N-set via (a,n) » a2" for
ae R,neNand (», n) » . Let CPERRRF be rationally independent
elements of R. Define a function y: K > G as follows: v(0) = =3 v(im), where
m = axfl.. Xit is a nonzero monomial (0 # a € F), is efay t ...t eiays
v(f), where f = my + ...+ mg is the unique representation of 0 # f e
F[Xl""’xt] as a sum of distinct monomials L is inf(v(mi)}?=1, and v(f/g) =
v(f) - v(g) for 0 # f, g ¢ F[Xl""’xt]' The function v satisfies v(xy) =
v(x) + v(y) for all x, y € K, and v(x + y) s inf {v(x), v(y)} for all x, y € K
[2, Theorem 18.3]; that is, v is a valuation on the field K. It is easy to
see that v is a map of N-sets. We note that the ring operations on K are
admissible, and that +, <, and inf are admissible on G. Arguing as in Example
8, we see that N acts as automorphisms of an extension field K* of K. Since N
already acts bijectively on G, we see that G* = G, and that v*: K* + G is a
valuation on K*. The structure of K* is tolerably complicated; it is an
infinite algebraic extension of K.
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