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ABSTRACT. A monic endomorphism of a structure A can be extended to an

automorphism uf a larger structure A We investigate which properties

are preserved by this process.
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1. INTRODUCTION.

It is known [1, Thm. VII.3.4] that monic endomorphisms of an algebraic

structure A can be extended to automorphisms of a larger structure A of

the same type. In a recent paper [3], Jordan studied the relationship between

the two structures in the case in which A is an associative ring. The

constructions of A in [1] and [3] are quite different.

In this paper, we investigate what can be said in general about the

relationship between the properties of A and the properties of A Our
main result is that all of the "universal formulas" satisfied by the

operations and relations on A which are compatible with the given

endomorphisms will also be satisfied by the extensions of the operations and

relations to A In comparison to [1], we slightly weaken the hypotheses
and broaden the scope of the investigation to include relations, universal

first-order formulas, and relationships involving more than one structure.

Our results apply to non-algebraic structures, such as metric spaces.
In Section 2, we start with a monoid M acting on a set A and

construct a map from A to a "universal" A on which M acts by

bijections. We show that A is uniquely determined by certain of its

properties. After developing some additional properties, we turn in Section 3

to the question of extending operations and relations from A to A We

also indicate how the analogous procedure may be carried out when
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relatiolships with other structurt.s are i,volved. We co,clude thu paper with

three exan,ples, showing how our techniques may bc empluycd.

2. UNIVERSAL M-SETS.
Recall that a monoid is a set 14 together with a,, associative binary

operation M M M (which we denote by juxtaposition) and an identity

element (denoted I). A (right) M-set is a set # tugether with a map

A M / such that al a and (am)B a(u) for all a A and

c,B M A map of M-sets is a function " A B on their underlying sets

for which (a) 5(a)c for all a A M The M-set A is an

M-subset of the M-set B if A is a subset of B and the inclusion map A
B is a map of M-sets.

We say that the monoid M acts or, the M-set A by injections

(bijections) if for each M the map c)A" A A given by aC)
A a

(a A) is injective (bijective).

A monoid M is directed by left divisibility if for each , M there

exist ,,u M with ax Bu The monoid M satisfies left cancellation if

for ,B,y M we have that - xB implius B
THEOREM I. Let M be a monuid which is directed by left divisibility

and which satisfies left car,cellatiur.. Let A b an M-set. Then there

exists an M-set A and a map " A A with the following properties.

(I) M acts on A by bijections.

(2) Suppose that h" A B is an M-set map, and M acts on B by

bijections. Then there exists a unique M-set map {- A B with

o h

If (A)’ and " A (A)’ both satisfy (I) and (2), then there

exists a unique isomorphism {" A (A)’ with Co ’* )’ as above) also satisfiesThe M-set A (or any isomorphic (A*
(3) For all a* A there exists 6 M and a A with a*m (a).
(4) For a 1, a 2 A we have (a I) (a2) if and only if there exists

e M with al a2a In particular, if M acts on A by

injections, then is injective.

Moreover, if A and " A A satisfy (I), (3), and (4), then they
also satisfy (2).

PROOF. We first show uniqueness. If " A A and " A (A)’
both have properties (I) and (2), then there exist unique M-set maps {" A
(A)’ and ’- (A)’ A with {o ’ and {’o’ Then ’o{o

and {o’o’ ’ By uniqueness, {’o is the identity on A and o{’

is the identity on (A*)’ Thus is an isomorphism.

Now we construct A We first define a rlation on AxM by"

(a,c)~(b,B) if there exist ., M with ), u and a bu This

relation is clearly reflexive and syF,etric. Suppose that (a,)-(b,B) and

(b ,8)-(c ,x) We have ,u M with cX Bu and a>, bu and also
, M wih >,’ -f and b, c Select ,’ e M with



EXTENDING ENDOMORPHISMS TO AUTOMORPHISMS 233

u6 Z’6’ Then ,6 u6 B,’a’ yu’6’ and a),6 bu b’6’ cu’’,

so (a,a)-(c,y) Thus is an equivalence relation. We let A be the

set of equivalence classes, and denote the equivalence class of (a,) as

Given (d,) AxN dnd M we would like to define (a,)6 A by

selecting x,] M with Bu and setting (a,a)B [a,u] Suppose

that we also have ’ B’ Select y,y’ M ith y y Then

y uy B’Y’ a’y’ so }. x’y’ We now have uy u’y’ ad

[a>,’ ’] Thus our definition of (a,a)(a),)y (a),’)y so [a;,,] ,,
does not depend upon the choice of ),,u Suppose that (a,m)~(a’,m’) Then

there exist y,y’ M with my ’y’ and ay a’y’ Say Y61 a2 for

i,2 M Then ’Y’I YI }’2 2 so (a’,a’)B [a’Y’l, 2]
[a.l,U2] [aY2,u,2] [a>.,p] (a,a)B Thus there is a well-defined

function A M A given by [a,a]B [a,,u] where ax B
Clearly [a,]l [a,] Given [a,a] e A and i,2 ( M we have

[a,] [a>,l,U I] where a;l BlUl and [a},l,l]B 2 [a>.l>.2,u 2] where

I2 B2u2 Then ax.x 2 ii),2 BIB2U 2 so [a,a]BIB2, [a},l},2,u 2]
([a,a]B1)B 2 Thus A is an M-set. Since for [a,a] A and 8 e M we

have [a,a] [a,B]B the action of each B M on A is surjective.

Suppose that [al,l]B [a2,2]B Then [al},l,p I] [a2),2,2] where

a1.1 tUl and 2)t2 Bu2 So there exists y1,Y2 M with Uly u2y 2
and aliY I a2,2y2 Since l},iYl ,BUly Bu2y2 22Y2 we have

[al,al] [a2,2] Thus M acts on A by bijections, and we have shown

(1).
The map t- A A given by t(a) [a,1] is clearly a map of M-sets.

Note that for a* [a,] A we have a*a [a,] [a,l] (a)

verifying (3). For al,a2 e A we have (a1) (a2) if and only if there

exists l,a2 M with I I2 and ala I a2a2 Since we must have

al 2 we have verified (4).
Let us now assume that we are given A and - A A satisfying (I),

(3), and (4). Let h- A B be an M-set map from A to an M-set B on

which M acts by bijections. Suppose that there exists an M-set map

" A B with o h Let a* A Select a M and a A with

a* (a) Then (a*)a (a*) ((a)) h(a) so (a*) h(a)(E)B) -I

Thus { if it exists, is unique To obtain existence, we must show that for

a* e A the expression {(a*) h(a)(E)B) -1 does not depend upon the choice

of M and a A with a*a (a) and yields an M-set map with

Let us first note that if (a 1) (a2) then by (4) we can find B M

(OB) B)-I h(a2B) B)-Iwith al.B a2B and so h(a I) h(al),B B -I h(alB)(E)B E)
B

h(a2)B(C)). h(a2 Now let a* A and suppose we have 1,a2 M and

al,a2 A with a*a (a 1) and a*a2 (a2) Select },i,},2 M with

i;i a2},2 Then (a,l!l= a*al, a*a2_(: (a2>,2) so h(a}, I) i
)h(a2;2) Thus h(al)(C) h(al)l(C) c)B )-I (al},l)(E)l),l
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h(a2,12)!o )-I,: h(a2)(ca_ so the function {" A I is well-defined.

Let 2e A 6 M .Z Select a M a e A with a*a t(a) Select

oBe m o.B(oB-1 (e)>.,p e M with a>, 6. Not that e e-6 u, so
^B u B-iSince (a’a), a’a}, (ax) we have (a*) h(a;)(o,)- h(a)e (e

-I B h and wen(a)(oB) (a*)6 lhus is an M-set map. Clearly ot

a re done.

Let M be a nonoid which is directed by left divisibility and which

satisfies left cancellation. Let P. denote the category of M-sets, and let

denote the category of M-sets on which M acts by bijections We

associate A Ob( to A e Ob(l) Let A" A A be the map given by

Theorem i. Now let g" A B be any M-set map. Since 1Bog is a map from

A to an M-set B on which M acts by bijections, we have by Theorem that

there is a unique map g A B with g IA Bg If h" B C is

another M-set map, then h og A h OtBOg cohog so h og (hog) by

uniqueness. Thus we have the following.

THEOREM 2. Let M be a monoid which is directed by left divisibility

and which satisfies left cancellation. Then there is a functor () from the

category F, of M-sets to the category of M-sets on which M acts by

bijections, which associates to each M-set A the "universal" M-set A on

which M acts by bijections, and to each M-set map g- A B the unique

M-set map g A B for which g A Bg
We shall refer to g as the extension of g

In the next section, we will need an additional property of the functor

() Let A Ar be M-sets. Then AIX...xAr is an M-set, with M

acting via (a ar) (ala ra) for (a a r) e AIX...xAr and

e M This N-set is the product of A 1 r in ,the category It is

easy to see that M acts by bijections on AI...Ar and thus that

AI...Ar is the product of AI,...IAr in

PROPOSITION 3. The functor () preserves finite products. More

explicitly, for any M-sets A 1, Ar the unique map frn (AI...Ar)
* is an isomorphism.to AIX...xAr such that A.x...xA tsx"’XtA , ,

PROOF. By Theorem i, it uffice to ow thatr Aix...xAr and

AlX...XA satisfy (1), (3), and (4),. We,have ,already,bserved that it is

easy to seerthat (i) holds. Given (a ..,ar) e AI...Ar there exist

aj e M and aj e Aj (j=l ,r) with ajaj IA (aj) each j Select

’I ’’r e M so that j>.j y all j Thn ay A.(ajj) all

j so (a a) (A ..xA )(alx arXr) and we ave verified

(3). For (a I ar),(al,. ,a’r)r AIX...xAr we have

tAI...IA ((a ,ar) ... (a ar)) if and only if there exist

al’" ’ar M with ajaj .j j 1,. ,r In this case we can find a

single y iXl ...= arX r with ajy ajy all j so

(a I ar) Y (a a)y As the reverse implication is trivial, we have

verified (4), and we are done.

Let us also observe that for any M-set A and any r > 0 there is an



EXTENDING ENDOMORPHISMS TO AUTOMORPHISMS 235

6(r). A A (r) (where A(r) denotes the product of r copies ofM-set map AaA(;)(a)- (a ,a) for all a e A and that we have (ar))*"A) given by

A(,)

3. EXTENSION OF OPERATIONS AND RELATIONS

In this section, we show how the results of Section 2 can be used to

extend operations, functions, and relations from A to A

We refer to elements of A as constants. A constant c is admissible

if c c for all e M Note that there is a trivial M-set {.} for

which . for all e M and that we may view an admissible constant of

A as being the same thing as an M-set map from {-} to A For r > 0 an

r-place operation on A is a function f: A (r) A We say that the

operation is admissible if it is a map of M-sets. More generally, an r-place

function on A with values in the set B is a function f" A (r) B The

function f is admissible if B is an M-set, and f is a map of M-sets.

(Any set B may be given the trivial M-structure, with b b for all

b B e M .) An r-place relation on A is a subset R of A(r) We

may view R as being a function R- A (r) T where T {0,1} is our set

of "truth values". Then for a (a I, ,ar) e A (r) we say that a e R ff

R(a) The relation R is admissible if for all a e Ar and e M we

have a R if and only if as e R If we consider R as a function with

values in the set T with T given the trivial M-structure, then this

condition is simply that R be an admissible function, that is, an M-set map.

We see that admissible operations, functions, and relations on M-sets may

be viewed as M-set maps. By Theorem 2, each has a unique extension from M

to M* Moreover, any relationship between certain M-sets which may be

expressed as saying that a certain composite of M-set maps into the M-set T

has constant value 1 will hold when we pass from M to M by Proposition

3, a composite defined in terms of a product in I will be defined in the

corresponding manner in (

This result is quite powerful. We shall work out some consequences for

the case in which a single M-set is involved.

We shall describe what we mean by a "universal formula" for an M-set A

The basic building blocks for the formula are the admissible constants of A
and the variables Xl,X 2 The formula will be a finite expression; let

us say that the variables that occur in it are among x I xn We first

explain, recursively, what we mean by a term of the formula. Each term is an

M-set map from A(n) to A A constant c is the map sending a A(n) to

c A A variable x is the map sending (a an) A (n) to a A

If t tr are terms and f is an r-place operation on A then

f(t t r) is the term sending a A(n) to f(tl(a) tr(a)) A We

next explain, recursively, how to create formulas. Each formula will be an

M-set map from A (n) to the trivial M-set T {0,1} If R is an r-place

relation on M and t t r are terms, then the composite R(t ,tr)
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defined by R(t I tr)(a) R(tl(a) ,tr(a)) for a A(n) is a

formula. If A is a formula, then (IA) is the formula given by (iA)(a)
if A(a) O, (lA)(a) 0 if A(a) Similarly, if A and B are

formulas, then (AvB) (A^B) (A/B) (AB) are the formulas obtained by

viewing the logical operations "v" (or), "m" (and), "" (implies), and "-"
(iff) as M-set maps L" TxT T and composing with the map A (n) TxT

sending a to (A(a),B(a)) Note that this latter map is (AxB)OOA(n)
Thus a universal formula for A involving variables from x xn

is interpreted as an M-set map from A(n) to T We say that the formula

"holds" if, as a function, it is constant with value I. We call the formula

"universal" because, formally, we interpret it as holding if and only if it

holds "with a universal quantifier for each variable that appears."
By Theorem 2, Proposition 3, and the observation following Proposition 3,

we have the following.

THEOREM 4. Let M be a monoid directed by left divisibility and

satisfying left cancellation. Let A be an M-set. Then every admissible

operation and relation on A has a unique extension to A These

extensions satisfy the same universal formulas in A that were satisfied by

the original operations and relations in A
Let us now discuss the uses of this result, as well as its limitations.

The most important limitation has to do with the "equals" relation. We

often want to express the idea that two composites are equal. For example, if

"+" is a binary operation on A then the formula Xl+X2 x2+x I means that

((al+a2),(a2+al)) is 1 for all al,a 2 e A In order to be able to apply

the theorem, must be an admissible relation.

PROPOSITION 5. The equals relation is admissible iff M acts on A by

injections. In this case, is the equals relation on A
PROOF. For equals to be admissible we require al=a2 iff al: a2:

for all al,a 2 e A e M This is clearly the condition that M act on A

by injections. In this, case, suppose, that al: a2 for al,a2 A There

exists y e M with ,alY e A and ay e A,. (This makes sensel since is
* * 1 * -I ,A

injective.) Then alY a2Y so a (alY)(E) )" (a2Y)(o a2
When M acts on A by injections, then from Theorem 4 and Propostion 5

we can often get that A is the same type of algebraic object as A For

example, the operation + on A is associative iff it satisfies (Xl+X2)+x3
Xl+(X2+X3) and in this case (Xl+ x)+ x3 Xl+*(x2+*x3) so + is an

associative operation on A
Sometimes some reformulation is required. Suppose that A is a field,

and that M acts injectively on A as field endomorphisms. For a A set

(a) 0 if a 0 (a) a"1 if a 0 Then is an admissible

operation on A and A satisfies the formula (Xl=O) v (Xl.V(Xl)=l)
Since A satisfies the same formula, we obtain that A is a field.

Our next result provides another method for obtaining properties of A
in terms of properties of A
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Let f be an admissible r-place operation on A and let f be its

extension to A We first note that f is defined on (A) by
f ((a) 1(a )) if(a ar) for all (a ar) e A (r) Now let, 1" r ,
a ar be elements of A There exists an element y of M and

elements,, ,a f,
ra of A with, ajy 1(a)A, -1)fr j 1,..,r.We,,. have

f
a(al ar) (1(al)(c)A*)-iya ((ar)(E)Y) f*((al ’(ar))

(C)*)-1= (f(al ar))(E)*) -1 Since the same argument goes through for
relations, we have the following result.

PROPOSITION 6. Let M be a monoid divided by left divisibility and

satisfying left cancellation. Let A be an M-set. Then A is the directed

(A)(c)*)-I- y e M The admissible operations andunion of the sets

relations_ on A are extended
Y

from (A) to (A)(c)yA*)-I via c)A*Y thus
I(A)(c)A*) -I is "isomorphic" to (A)

Y (A)(c))-I may not be closed under the action of
A*

Note, however, that

M if M is not commutative.

We now present our three examples. Note that [1, Thm. VII.3.4] does not
apply in these cases, either because the "locally K" conclusion of that
theorem does not allow us to infer that certain relations and formulas extend
from A to A or because we need to consider two M-sets simultaneously,
together with a map between them.

EXAMPLE 7. Let N denote the monoid of natural numbers under addition.
Let A be the set NxN Define a relation < on A by- (n 1,n2) < (mI,m2)
iff nl+n 2 < ml+m2 Then < is a strict order on A- that is, it satisfies

the universal formulas l(Xl<X 1) (Xl<X2) l(x2<x I) and ((Xl<X2)^ (x2<x3))
(Xl<X3) We give A an N-set structure by (nl,n2).n (O,nl+n2+n) for

all (nl,n2) e A n e N The relation < is admissible. By Theorem 4, the
universal N-set A has a strict order < which extends < Let the set
I of integers be an N-set under addition. Define j" A I by j((nl,n2))

n1+n2 Then j is an N-set map, with Z and j satisfying (1), (3), and

(4) of Theorem I, so we may take A and to be ] and j We see that
< is the usual order on Z

EXAMPLE 8. Let A,N be as above. Change the action of N on A to

(nl,n2)-n (nl+n, n2+n) for (nl,n2) e A n e N Then < is still an
admissible relation, and now N acts on A by injections. Thus we can view

A as being a set containing A We can equip A with the metric d- A /
given by d((nl,n2), (n,n))=Vrnl-n)2 + (n2-n)2 for (nl,n2), (n,n)
e A. We give the trivial N-set structure; then d is a map of N-sets.
That d is a metric is expressed by the universal formulas" d(Xl,X2) >- 0

(d(Xl,X2) O) -> (Xl=X2) d(Xl,X2) d(x2,xl) d(Xl,X3) < d(Xl,X2)
+ d(Xl,X 2) Each formula may be interpreted as asserting that a certain

composite of N-set maps from A(2) (or A(3)) to T {0,1} has the constant
value 1. By Theorem 2 and Proposition 3, the corresponding result holds for
A Thus we have that A is a metric space containing A equipped with a
strict order < on which N acts by isometric automorphisms. Using Theorem
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we see that A can be realized as with d and given by the

formal extension to of the formulas defining d and < respectively.

EXAMPLE 9. [et F be a field, and let K F(X Xt) be the field of

rational functions over F in t indeterminates. Let c)" K K be the

F-algebra homomorphism sending X to X 2 for t and give K the N-set
structure (k,n) kc) n for k e K, n e N. Let G =IRu{}. Extend the

operation "+" and the relation "<" from R to G by setting a + ..... +

a + and a < for all a IR. Make G into an N-set via (a,n) a2 n for

a IR, n N and (, n) Let i a t be rationally independent

elements of R. Define a function " K G as follows" u(O) (R); u(m), where

m axel xtet is a nonzero monomial (0 a e F) is el I + + ett"
(f), where f mI + + ms is the unique representation of 0 f e

F[X I X t as a sum of distinct monomials m is inf{u(mi)}s and v(f/g)i=l
(f) (g) for 0 f, g e F[X I Xt]. The function satisfies (xy)
v(x) / v(y) for all x, y e K, and v(x + y) =< inf {u(x), u(y)} for all x, y e K

[2, Theorem 18.3]; that is, is a valuation on the field K. It is easy to

see that v is a map of N-sets. We note that the ring operations on K are

admissible, and that +, <, and inf are admissible on G. Arguing as in Example.
8, we see that N acts as automorphisms of an extension field K of K. Since N
already acts bijectively on G, we see that G G, and that u K G is a

*valuation on K The structure of K is tolerably complicated; it is an

infinite algebraic extension of K.
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