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ABSTRACT This paper provides a variational formalism for boundary value problems which

arise in certain feilds of research such as that of electricity, where the a,sociated

boundary conditions contain complex periodic conditions. A functional is provided which

embodies the boundary conditions of the problem and hence the expansion (trial) functions

need not satisfy any of them.
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i. INTRODUCTION.

Motivated by complex periodic boundary conditions which arise in certain problems

such as those of modelling the stator of a turbogenerator (see next section for detail),

we give in this paper a variational formalism which takes into consideration such boundary

conditions. We produce a functional which is stationary at the solution of agiven boundary

value problem for a class of expansion functions which do not satisfy any of the boundary

conditions" these are satisfied only at the solution point. Three types of conditions are

considered" I) Dirichlet conditions, 2) Neumann or mixed conditions and 3) periodic condi-

tions on parallel segments of the boundary.

Let R be a given complex domain with boundary F. Following the work of Delves and Hall

[I] we split the boundary into four non-overlapping segments F i 2 3 4 and assume
i

that periodicity conditions are imposed on the segments F3 and F such that for some fixed

, F {Z + I e F3 }. In this case we have the relations"

4( + (3 "-94 "3()
and (1.1)

I I()ds I I(+) ds
r r3

where 3 and 4 are the unit outward normals to F and F respectively and fds is a line

integral along the boundary with positive direction taken counterclockwise.

2. THE PROBLEM

Let the problem whose solution is sought be of the following form"
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-V2u + d(x)u g(!), &c 2 (2 .l.a)

with the prescribed boundary conditions-

u(x) g1(-x)’ _x E rl

Vu.n(x) qu(_x) + g2(x__), xE F2

u(x) ei0u(x_+ a_) x_EF3

(2. l.b)

-i@Vu.(!) =-e Vu.n(x + A), !E F3

where F2 and/or F3 may be void.

In modelling the stator of a turbogenerator where the rotor rotates at angular fre-

quency and is effectively a bar magnet generating a rotating magnetic field, periodic

boundary conditions of the form"

i@
u(i) e u(+i)

arise for the first harmonic component" and the normal gradient condition has:

-i@
Vu.n(x) -e Vu.n(x +)

where @ is the sector angle. These tvo conditions are exactly the last two conditionso

(2.l.b).

3. A FUNCTIONAL ’EMBODYING THE BOUNDARY CONDITIONS.

In this section we produce a functional which is stationary at the solution of

(2.1) for a class of functions which do not satisfy any of the boundary conditions sinc

thee conditJo-s are incornorated via suitable terms in the functional J given as"

J(V) fVV + BV2- 2gV] dE

+ 2 I (gl- V)(VV.) ds

(3.1)

2 [q/2 V + g2V] ds

i@V(x__) V(_x + a_)][VV(x_) (n3.4)e- VV(x_+a)].nds
F

Next, it will be shown that if we expand the trial function V about the true solution u,

of (2.1)- V u + Ew, where E is a scalar and w is an arbitrary variation, then J(V) is

stationary.

Define

G(E) J(u + Ew), then

d 2 | Vw. Vu + Bwu gw].n dx
dE R

+ 2 J [(gl u)Vw wVu].ds
Fi
2 J (qu + g2)w ds (3.2)

F2
[u() e u(+)][Vw() (R3._)e-io Vw(+)].Rds

Fa

I [w() e
io w(x +A)][Vu(x)- (3.4)e-Vu( + A).n ds

The first li-e integral in (3.2) reduces by Green’s theorem and (2.l.a) to"
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21 [Vw. Vu+Bu.... gw]dx 2 I :Vu.n_ds
F

([ + I + I + I )(2wVu)-n_ds
"F1 F2 F3 F

(3.4)

where we have written the line integral of (3.3) as the sum of four llne integrals along

the boundarles into which F has been decomposed. The integrals over Ft and F2 of 3. 4)

cancel the corresponding integrals over Ft and F2 in (3.2) taking into consideration the

boundary conditions in (2.l.b). Also from (2.l.b), it is obvious that the first of the

two llne integrals over F3 in (3.2) is equal to zero. What is left is to show that the

last integral in (3.2)(hereafter referred to as LI) cancels the line integrals over Fa
and F in (3.4). But

[ w() Vu().dsLI
F

-iOw(x) [-e Vu(x + a) (n__3.9.4 ).n__3 ds

w(_x + a) [-eiO Vu(x) .n] ds

I w(_x +a) [Vu(_x +a) (n3.4) .n_.3 ds

Fa

Using the relations (I.I) nd the boundary conditions (2.l.b), we get"

2 [ w(x)Vu(x_).nds 2 [ w(x)Vu(x__).nLI ds (3.5)

These line integrals over F3 and F cancel the corresponding ones in (3.4). Hence the

functional J is stationary at the solution u.

4. MATRIX SET-UP.

To descibe the matrix set-up stage, we consider for convenience and simplicity the

solution of the following one dimensional problem:

d
[-x + B(zx)] f(zx) G(zx), -l<x<l (4.1.a)

together with the boundary conditions:

f(-z) a f(z) (4.1.b)

where z is regarded as a parameter that takes any complex value.

We seek an approximate solution fN(zx) to f(zx) of the form"

N

fN(zx) [ an(Z) hn(X), -l_<x_< (4.2)
n=l

Then the problem represents a one-dimensional form of (2.1); and the functional J given

in (3.1) reduces to"

2
J(V) [(V’) + BV2 2GV] dx 2[a V(-1)]V’(-1) + 218 V(1)]V’(1) (4.3)

The coefficients a (z) are defined by the stationary point of J (at the solution where V
n

f) that is, by the equations"

La A + B + S ]a G + H (4.4.a)
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where A, ., and S (rc _,7 mtrices" a}u ,J are -vectors, with components"

h’ h’A dx, B hiB(zx)h dx, G
i hiG(zx) dx,

Sj hi(-l)h’j(-]) + hj(-l)i(-I hi(1)j(1) hj(1)h(1), (4.4.b)

H ahi(-l) B hi(1 i j 2 N
1

When using global expansion functions, it is desirable for stability reasons to use

orthogonal polynomials see Mikhlin [2]). Accordingly, in (4.2) we take

h_2 h_l x h
n

-x2) Tn(X n=0,1,2 r (4.5)

where r=N-3 and T (x) is the nth Chebyshev polynomial of the first kind. The reason forn
this choice of basis is the need to handle the derivative terms in the matrix A wthout

introducing artificial singularities. To calculate the elements in (4.4.b), we expand the

functions B(zx) and G(zx) by Chebyshev series and use Fast Fourier Techniques to approx-

imate the expansion coefficients. Thence we relate the elements Aij Bij and Gi of

(4.4.b) to the coefficients of these expansions. This together with a numerical example

will be considered in a subsequent paper.

While we do not attempt an error analysis here,the rapidity of convergence in calc-

ulating the matrix equation (4.4) has been considered formally by Delves and Mead [3],
Freeman et al [4] and Delves and Bian [5]. In these papers it is shown that a complete

characterisation of the convergence of the calculation can be given in terms of an

assumed structure of the matix L in (4.4) and the convergence of the Fourier coefficients

of the right hand function G(zx) in (4.l.a). Both a priori and a posterior in

error estimates are provided by Delves [6] where a very similar treatment to the one given

in this section is used for Frdholm integral equations and from which we take ignoring

the a priori estimate since it contains an unknown constant ):

C N-(s-l) NaN (4 6)A posteriori estimate: -I
which is a standard bound; s min(p,q) where p and q depend on the differentiability of

B(zx) and G(zx). The procedure iven in this section can easily be extended to two dime-

sions in a straightforward manner and details are omitted.
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