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ABSTRACT. We generalize common fixed point theorems of Fisher and Sessa in

complete metric spaces, using some conditions of weak commutativity between a set-

valued mapping and a single-valued mapping. Suitable examples prove that these

conditions do not imply each of the others.
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I. INTRODUCTION.

In this paper (X,d) denotes a complete metric space and B(X) stands for the set

of all nonempty bounded subsets of X. The function 6 of B(X) B(X) into [0, +)

is defined as

6(A,B) sup {d(a,b): a e A, b e B}

for all A,B in B(X). If A {a} is singleton, we write 6(A,B) 6(a,B) and if

B {b}, then we put 6(A,B) d(a,b). It is easily seen that

6(A,B) 6(B,A) 0,

6(A,B) <= 6(A,C) + 6(C,B),

6(A,A) diam A,

6(A,B) 0 implies A=B {a}
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for all A,B,C in B(X). We recall some definitions and a basic lemma of Fisher [I].

Let {A n=l,2,...} be a sequence of ncnempty subsets of X. We say that the
n

sequence {A converges to a subset A of X if each point a in A is the limit
n

of a convergent sequence {a with a in A for n=l,2 and if for any
n n n

e>O, there exists an integer N such that A A for n>N, A being the union of
n e g

all open spheres with centers in A and radius g. The following lemma holds.

LEMMA I. If {A and {B are sequences of bounded subsets of (X,d) which
n n

converge to the bounded subsets A and B respectively, then the sequence

{6(An,Bn)} converges to 6(A,B).

A set-valued mapping F of X into B(X) is continuous at the point x in X

if whenever {x is a sequence of points of X converging to x the sequence {Fx
n n

in B(X) converges to Fx. F is said to be continuous in X if it is continuous

at each point x in X. We say that z is a fixed point of F if z is in Fz.

Following the notations of our foregoing paper [2], we denote by the set of

all real functions of [0,+) into [0,+) such that @ is nondecreasing,

right continuous and @(t) < t for all t 0.

2. SOME COMMENTS.

Let I be a mapping of X into itself such that

F(X) c_ I(X). (2.1)

Let x be an arbitrary point of X and let z be an arbitrary point chosen
o o

in Fx Since (2.1) holds, let x be a point in X such that Ix z Having
o o

defined the point x and chosen an arbitrary point z in Fx then we can define
n n n

inductively the sequence {Xn such that IXn+ Zn FXn for n=O,l,2...

Using this iterative process, Fisher [3] proved the following result.

THEOREM I. Let F be a mapping of X into B(X) and let I be a continuous

mapping of X into itself satisfying the inequality

6(Fx,Fy) <_- c max {d(Ix,ly), 6(Ix,Fx), 6(ly,Fy), 6(Ix,Fy), 6(ly,Fx)} (2.2)

for all x,y in X, where 0 c < I. If Flx= IFx for all x in X and if

(2.1) holds, then F and I have a unique common fixed point z and further

Fz {z}.

Fisher [I] also proved that

THEOREM 2. Theorem holds if one assumes the continuity of F in X instead

of the continuity of I.

The proof of both these theorems are based on the fact that the sequence

{6(Fxn,Fxl): n=0,1,2,...} is bounded for any Xo in X. As in [2], from now on we

assume that

sup {6(FXn,FX I) n=O,l,2...} < + (2.3)

for some point x in X. Further in [2], we defined two mappings F and I to be
o

weakly commuting if IFx e B(X) and

6(FIx,IFx) max {6(Ix,Fx), diam IFx} (2.4)

for all x in X. Clearly two commuting mappings F and I are weakly commuting,

but in general two weakly commuting mappings do not commute as it is shown in the

Example of [2].
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Using this concept, the first part of Theorem 3.1 of [2], that generalizes Theorem

I, runs as follows.

THEOREM 3. Let F be a mapping of X into B(X) and let I be a continuous

mapping of X into itself satisfying the inequality

6(Fx,Fy) _-< (max{d(Ix,ly), 6(Ix,Fx), 6(ly,Fy), 6(Ix,Fy), 6(Iy,Fx)}) (2.5)

for all x y in X, where e$. If there exists a point x in X satisfying
o

condition (2.3), if F and I weakly commute and if (2.1) holds, then F and I

have a unique common fixed point and further Fz {z}.

Note that if we assume (t) c t for all t 0 and 0 I, (2.5) be-

comes (2.2). Following Itoh and Takahashi [4], we also consider two mappings F and

I such that IFx Fix for all x in X. In this case, we say that F and I

quasi commute and it is evident that if F and I commute, they also quasi commute.

When we wrote the paper [2], we were unaware about the result of [1] and, under

the same assumptions of Theorem 3, in the second part of Theorem 3.1 of [2], we

assumed the continuity of F instead of the continuity of I. In [2], we established

the following inequality (see inequality (3.6) of [2]),

d(Zm,Zn) <= 6(Zm,FXn) <= 6(FXm,FXn) e (2.6)

for any m,n p,p being a suitable nonnegative integer. This inequality implies

that {Zn} is a Cauchy sequence, which converges to a point z in X since X is

complete Unfortunately, the second part of the proof of Theorem 3.1 of [2] was

not correctly established. Strictly speaking, the gap consists in the fact that (2.6)

does not imply the following inequality of [2],

6(z,Fzn) =< d(Z,Zn + 6(Zn’FZn < d(Z,Zn + e

for n > p, from which, as n + one should deduce that Fz {z}.

Here we point out that the second part of Theorem 3.1 of [2] can be substituted

by the following result, which is a direct generalization of Theorem 2.

THEOREM 4. Let F be a continuous mapping of X into B(X) and let I be

a mapping of X into itself satisfying the inequality (2.5) for all x,y in X,

where e . If there exists a point x in x satisfying condition (2.3), if F
o

and I quasi commute and if (2.1) holds, then F and I have a unique common fixed

point z and further Fz {z}.

PROOF. It is a minor variant of the proof of Theorem of [I] and we omit it

for brevity.

Note that if F and I commute and (t) c’t for all t 0, 0 C < 1, we

deduce Theorem 2 from Theorem 4.

3. EXAMPLES.

The following example proves the greater generality of Theorem 4 over Theorem 2.

EXAMPLE i. Let X [0,I] with the function 6 induced by the Euclidean

metric d. Define the mappings F and I as Fx [0,x/(x+4)] for all x in X

and Ix x/2 if 0 x 2/3 and Ix if 2/3 < x i. Then we have that
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F(X) [0, 7] c__ [0, 7] U {i} I(X)

and

IFx [0,x/(2x+8)] c__[O’x/(x+8)] Fix if 0 -<- x -<- 2/3,

[0, I/5] Fix if 2/3 < x --< I.

Thus F and I satisfy condition (2.1) and quasi commute. Further, we have that

x _____} max6(Fx,Fy) maX{x--- Y + 4 2

I_/_ max 6 (Ix, Fx), 6 (ly,Fy)
2

if x and y are in [0,2/3] and

6(Fx,Fy)--max{ x Y 4} .i i___ max {6(Ix,Fx), 6(ly,Fy)}
x+4 y+ 2 2

if at least x or y is in (2/3,1]. Then the inequality (2.5) is satisfied if one

assumes (t) t/2 for all t_O and clearly (2.3) holds since X is a bounded

metric space. So all the assumptions of Theorem 4 hold but Theorem 2 is not

applicable since F and I do not commute. Note that F and I also weakly commute

since

x/(x+8) x/2 6(Ix,Fx) if O x 2/3,
6(FIx,IFx)

1/5 6(Ix,Fx) if 2/3x I,

but Theorem 3 is not applicable since I is not continuous in X.

The Example 2 of [2] proves that the weak commutativity is a necessary condition

in Theorem 3. Now we prove that the quasi commutativity is a necessary condition in

Theorem 4.

EXAMPLE 2. Let X {x,y,z} be a finite set with metric d defined as d(x,y)=

d(x,z)=l,d(y,z)=2. Define F and I as Fx=Fz=x}, Fy={x,z} and Ix=y, ly=x, Iz=z.

Of course F is continuous in X and the conditions (2.1) and (2.3) are trivially

satisfied. Further, we have that
6(Ix,Fy) if a=x,

2
6(Fy,Fa)= max {d(x,y),d(x,z)}= 2

6 (Iz,Fy) if

and 6(Fx,Fz) O. Hence the inequality (2.5) is satisfied if (t)=t/2 for all

tO and then all the assumptions of Theorem 4 hold, except the quasi commutativity

since IFy= I{y,z} {x,z} {x} Fx =FIy but F and I do not have common fixed

points.

The Example 3 of [2] proves that the condition (2.1) is necessary in Theorem 3.

The next example proves that the same condition is necessary in Theorem 4, even if

F and I are single-valued mappings.

EXAMPLE 3. Let X [0,+ ) with the Euclidean metric d,Fx=x for all x in X

and Ix=l if x=0, Ix=2x if x > 0. Then we have that F and I (quasi) commute and F

is continuous in X. The sequence {d(F ,F ):n=0,1,2 is bounded for any xx x o
n

in X-{0} since it is easily seen that

-nIXn+ Fx 2 x
n o

for any x ( X {0}. Further we have that
o



COMMON FIXED POINT THEOREMS 293

2yIx-Yl - 12x- - d(Ix,ly) if x >0, y >0,

d(Fx,Fy)

y 2y I_!__ d(ly,Fx) if x=0, y > 0.
2 2

Thus the inequality (2.5) Is satisfied if (t)=t/2 for all t>0 and hence all

the assumptions of Theorem 4 hold except the condition (2.1) since F(X)=X’#_X-{0}
I(X), but I does not have fixed points.

The Example 4 of [2] proves that the continuity of I is a necessary condition

in Theorem 3. Now we show that the continuity of F is necessary in Theorem 4.

EXAMPLE 4. Let X= [0,I with the function 6 induced by the Euclidean metric

d and define F and I as Fx i/2 if x=0 and Fx=(0,x/2] if x>0, Ix=1 if x=O and Ix=x

if x>0. Of course, condition (2.3) holds since X is a bounded metric space and

(2.1) is satlsfied since

F(X) (0, ---] c_ (0,11 I(X).

Note that F quasi commutes with I since

IF0 I( --- (0, ] F1 FI0

and
x xIFx I(0,--] (0, ---] Fx Fix

if x>0. Further we have that

I__ .max {x,y} l_J__, max {6(Ix,Fx), 6(ly,Fy)} if x >0,y>0
2 2

(Fx,Fy)
.6(Ix,Fy) if x =0,y >0

2 2 2

Then the inequality (2.5) is satisfied if (t)=t/2 for all t>0 and all the

assumptions of Theorem 4 hold except the continuity of F, but F and I do not have

common fixed points.

4. ANOTHER FIXED POINT THEOREM.

In this Section we establish another result by using a weaker condition than

the commutativity between two single-valued mappings of X into itself, but, fol-

lowing the ideas of this work, we give this condition between a set-valued mapping

F of X into B(X) and a single-valued mapping I of X into itself. Precisely, we

say that F and I slightly commute if IFx B(X) and

6(FIx,IFx) _-< max {6(Ix,Fx), diam Fx} (4.1)

for all x in X. Note that if F is a single-valued mapping, then diam Fx diam

IFx 0 for all x in X and hence (2.4) and (4.1) become d(FIx,IFx) < d(Ix,Fx) for

all x in X, that is the condition given in [5].

In the sequel we use the following lemma of [6].

LEMMA 2. Let {An} be a sequence of nonempty bounded subsets of (X,d) and y be a

point of X such that

lim 6(A ,y) 0.
nn

Then the sequence IAn} converges to the set {y}.

Now we give the following result.



294 M. IMDAD, M. S. KHAN AND S. SESSA

THEOREM 5. Let F be a mapping of X into B(X) and I be a mapping of X into

itself satisfying the inequality (2.5) for all x,y in X, where e. If there exists

a point x in X satisfying condition (2.3), if F and I slightly commute, if (2.1)
o

holds and if F or I is continuous in X, then F and I have a unique common fixed point

z and further Fz {z}.

PROOF. We omit the first part of this proof since it is identical to the first

part of the proof of Theorem 3.1 of [2].

As in [2] we can prove that the sequence {Ix converges to a point z in X and
n

the sequence of sets {FXn} converges to the set {z}. Since F and I slightly commute,

we have that

6(Fix
n

IFx max {6(Ix Fxn) 6(Fx
n

Fxn)}n n’

for any n=0,1,2 and as n, we deduce by Lemma that

lim 6(Fix IFx d(z z) 0. (4 2)n’ n

Now we assume that F is continuous in X. Then the sequence of subsets {FIXn}
converges to the set {Fz} and using inequality (2.5), we have that

6(FIXn+l,Fxn)--< (max{d(I2Xn+l,IXn),6(12xn+l,FIxn+l),6(Ixn,Fxn),

6(I2Xn+l ,FXn), 6( Ix
n ,FIXn+

_-< (max{6(IFXn,IXn), 6(IFXn,YIXn+l),6(IXn,FXn),

since 12Xn+l
that

6(IFx Fxn) 6(Ix
n FIXn+ln’

=< (max 6(IFXn,FlXn) + 6(FIXn’ "Fx.n) + 6(FXn’IXn)’

6(IFx Fixn)+ 6(Fix
n FIXn+l 6(Ix

n
F Xn+ln’

is in IFx and is nondecreasing.

Since is right continuous, as n, using Lemma and (4.2), we obtain

6(Fz,z)(max {6(Fz,z), 6(Fz,Fz))}).

But again using (2.5) and the nondecreasingness of , we deduce that

6(FIXn+ ,FIXn+ )-< (max{d(I2Xn+l ,I2Xn+l ,6(I2Xn+l ,FIXn+

(4.3)

& (6 (IFx
n FlXn) + 6(Flx YlXn+l))n’

which implies, as n, by (4.2) that

6(Fz,Fz) (6(Fz,Fz))

and hence 6(Fz,Fz) 0 since #(t)<t for t>O. From (4.3), it follows that Fz {z}.

Since (2.1) holds, there exists a point w in X such that Iw=z and using inequality

(2.5), we have that

6(Fx Fw) (max{d(Ix
n

z) 6(Ix Fxn) 6(z,Fw) 6(Ix ,Fw) 6(z Fx )})n’ n’ n n

which implies, an n, that

6(z,Fw)-<_ (6H(z,Fw)).
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Thus Fw=z and since F and I slightly commute we have that

d(Fz,Iz)=6(FIw,IFw)max {6(Iw,Fw), 6(Fw,Fw)} d(z,z)= 0.

It follows that {z}=Fz={Iz} and thus z is also a fixed point of I.

Now we assume the continuity of I instead of the continuity of F. Then the

sequence {I2x converges to the point Iz and the sequence of sets {IFx convergesn n

to the set {Iz}.

We have that

6(FIXn, Iz)$6(FIxn,IFXn)+6(iFxn,IZ)
and, as n, we deduce from (4.2) and Lemma 2 that the sequence of sets {Fix

n

also converges to the set {Iz}.

Using inequality (2 5) and since 12Xn+ is in IFx we get thatn’

d(12Xn+l,lXn+l) 6(IFXn,FXn)<= 6(IFXn’FlXn) + 6(FlXn,FXn)
6(IFx Fix )+ (max{d (I2x IXn) 6(I2x FIXn)n’ n n’ n’

6(Ix Fxn) 6(12x Fx 6(Ix
n

Fix )})n’ n’ n n

As n-, it follows from (4.2) that

d(Iz,z) (d(Iz,z)),

which implies Iz=z. Using again the inequality (2.5), we have that

6(Fz,Fxn) (max{d(z,Ixn), 6(z,Fz), 6(IXn,FXn )’ 6(z,Fxn )’ 6(IXn’FZ)})
and this implies, as n-, that

6(Fz,z) (6(Fz,z)).

Then Fz={z} and hence z is also a fixed point of F. In any case, z is a common

fixed point of F and I suppose that F and I have another common fixed point z’.

Using inequality (2.5), we have that

d(z,z’) 6(Fz,Fz’) _-< @(d(z,z’)).

This means that z=z and therefore z is the unique common fixed point of F and I.

This completes the proof.

REMARK I. We note that the mappings F and I of Example 2 satisfy all the

assumptions of Theorem 5 except the slight commutativity since

6(FIx,IFx)=d(y,z)=2> max {l,0}--max{6(Ix,Fx), diam Fx}.

Therefore the slight commutativity is a necessary condition in Theorem 5.

REMARK 2. The Example 3 proves that the condition (2.1) is also necessary

in Theorem 5.

REMARK 3. In Example 4, we note that F slightly commutes with I since

6(FIO,IFO)=I/2=d(IO,FO) and 6(FIx,IFx)=x/2=diam Fx if x > 0. Since all the

assumptions of Theorem 5 are satisfied except the continuity of F and I in X, we

can say that the continuity of F or I in X is a necessary condition in Theorem 5.

REMARK 4. It is not yet hno if (2.3) is a necessary condition in Theorems

3,4 and 5.
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If F is a single-valued mapping, we obtain the result of [5] from Theorem 5.

In Example I, we explicitly point out that Theorem 5, assuming the continuity

of F in X, holds good since the mappings F and I are also slightly commuting.

5. CONCLUDING COSENTS.

Independently from the fixed point considerations until now established, we

conclude this paper exhibiting some easy examples which show that the concepts of

weak, quasi and slight commutativity between a set-valued mapping and a single-valued

mapping do not imply each of the other two.

EXAMPLE 5. Let X={x,y,z} a finite set with function 6 induced by the metric

defined as d(x,y)=d(y,z)=2,d(x,z)=l. Define F and I as Fx={x}, Fy={x,z},Fz={y,z}

and Ix=x, Iy=z,Iz=y. Thus it is easily seen that F and I weakly commute, but they

do not quasi commute since IFy=I{x,z}={x,y} c {y,z}=Fz=FIy and further they do not

slightly commute since

6(FIy, IFy)=2>l=max {i,i} max {6(Iy,Fy),diam Fy}.

EXAMPLE 6. Let X={x,y,z} a finite set with function 6 induced by the metric

defined as d(x,y)=2, d(x,z)=d(y,z)=l. Let I be as in Example 5 and define F as

Fx={x}, Fy=Fz={x,y}. Then it is easily seen that F and I slightly commute but they

do not quasi commute since IFy=I{x,y}={x,z} {x,y}=Fz=FIy and further they do not

weakly commute since

6(Fly,IFy)=2>l--max{l,l}--max{6(Iy,Fy), diam IFy}.

EXAMPLE 7. Let (X,d) be as in Example 6 and define F and I as Fx={x},

Fy={x,y}, Fz={y} and Ix=x, Iy=Iz=y. Thus F and I quasi commute but they do not

slightly nor weakly commute since

(FIz,IFz)=2>0=max{6(Iz,Fz), diam Fz, diem IFz}.
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