Internat. J. Math. & Math. Sci. 297
VOL. 11 NO. 2 (1988) 297-314

ON BEHAVIOR OF SOLUTIONS OF NON-LINEAR DIFFERENTIAL EQUATIONS
IN HILBERT SPACE i

VLADIMIR SCHUCHMAN

beparinent of Mattematics
North Texas State Lniversity
Denton, Texas 76203 USA

(Received December 30, 1981 and in revised form April 12, 1984)

ABSTRACT. This paper deals with the behavior of solutions of non-linear ordinary
differntial equations in a Hilbert space with applications to non-linear partial
differential equations.

KEY WORDS AWD PHRASES. Nonlinear differential equations, self-adjoint equations,
non-degenerate equa*ions and colution.

1980 AMS SUBJECT CLASSIFICATION CODE. 16A70

I. INTRODUCTION.
in tkis paper, we continwe ouvr study of behavior of sclutions of non-linecsr

ordinary differential equations in a Hilbert space H with applicatiens to non-
lTinear partial differential equaticns.

We introduce here nucn-linear cperator of self-adjoint type and we study the
cuasiuniqueress of Cauchy problem and the classical uniqueness of Cauchy problem for
this equation.

In the special case unaer condition A we obtain complete results abcut quasi-
uniqueness. Recall that we do rot have this situation in a linear case because this
part of our thecrems have nu araloy in the linear case.

As usual, we study twc cases of non-linear differential equations: the case of
degenerate equation in bounded interval of time and the case cf non-degenerate
equation in unbounded interval of time.

In the fir-t part of this peper, we study the following non-linear degenerate
equation:

tg—‘t‘= B(t,u(t)) (*)

where t e T =(0,1]. u(t) for each te I is an element of H and has cderivative

with respect to t, if t > 0. B(t,u(t)} is a non-lirear map frem H to H with

domain DB’ DB is the dense subset of H and for each t ¢ I anc wu(t) e

DB,B(t,u(t)) ic an element ¢t H also. B(t,u(t)) 1is not necessarily bounded.

Special case of equation (*) is the case (1.20), that B 1is a pruduct of the form
B(t,u(t)) = A(t,u(t)).u(t)

where A(t,u(t)) is a non-linear map from H tc H. In this situation, we obtain
complete results about the quasiuniqueness at the point t = 0. Our Theorem 7.3 is
the main theorer of the first part.
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The aon-degenerae eguation vhich we alse sluay 1s the couation of the torm

%%~= B(t,ulr), (**)
vhere t ¢ T = [1,4o). u(t) for cach t ¢ T dis an eiement of H and has deriva-
tive with respect to t. C(t,u(z)} < @ ron-Tinear map frou H to H with dorain
DE’ DB is the dense subcet of K and for eech t e 1 and u(t) e DB’ B(t,u(t)) s

an element of F also. B{i,u(t)) is rot necessarily bounded.

We obtain complete results for the same special case as sbove. The main theorem
of this part of our study is Thecrem 4.7 abcut the auasiuniqueness of equation (**)
in a special case at the point t = 4o

In §1 we study the gua<iuniqueness for cquation (*). In &2 we study the qrasi-
uniqueress in two special ceses and we obtain complete Theorem 2.3 in the special
case (1.20) of equation (*). in &3 we study the uniqueness of Cauchy problem for
special case of equation (*). We obtain partial results only for this problem. In
54 we study ncn-degenerate equation (**) ard we olitain for this equation the same
results as for ecuation (*). The Theorem 4.7 is a parallel to Theorem 2.3. Ir &5 we
study ceveral examples of non-iinear partial differential equations with condition
(1.20) and we obtain for the<e equations, the auasiuriqueness at the point t = 0 in
the degenerate cuse and at the point t = += in the non-degenerate case. Recall
that we have no aralog of these theorems ir a linear case.

The methed of this study was used first by Agmon-Nirenberg [1,2] for studying
the classical uniqueness of Cauchy problem in tilie non-degenerate linear case. This
nethod in the cegenerate case was used by the author in [3].

This method was used by the author for study of the quasiuniqueness in the
ron-linear case for the following special equatien:
and for the non-degenerate equation of the simiiar type [4]. Several theorems of
this paper are like thecrems of paper [4], but here we have the case of non-linear
equation, and in [4] we studied special case of quasilinear equations. Several
theorems for example, Theorem 2.1 or Theorem 4.5, were obtained in paper [5] also.
§1. On the quasiuniqueness in degenerate case, let us consider the following non-
Tinear equation in the Hilbert space H.

tg—g = B(t,u(t)) (1.1)

where t e I = (0,11, u(t) for each t € I is an element of H and has derivative
with respect to t, if t > 0.

B(t,u(t)) 1is a non-linear map from H to H with domain DB’ DB is the dense
subset of H, and for each t e I and for each u(t) e DB’ B(t,u(t)) s an element

of H also. B(t,u(t)) 1is not necessarily bounded. H 1is a Hilbert space with

scalar product (.,.) anc with norm ||.|| correspondingly.

Definition 1.1. The non-linear operator B(t,u(t)) 1is called smooth operator of

self-adjoint type if the foiiowing condition is satisfied:

Condition S. For each t ¢ I and for each u(t) ¢ DB the following scalar product
(B(t,u(t)),u(t)) (1.2)

is real and differentiable with respect to t if t > 0. We study in this paper the

behavior of the norm of the solutions of equaticn (1.1) under Condition S only.
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Definition 1.2. Llet f(t) be a scalar function in interval 1. f(t) s called a
flat at the point © =0, if for each K> 0

t™® (1) » 0 as t o0,
Cefinition 1.3. The solutior u(t) of equation (1.1) is called a flat solution, if
[Jult)!] s a flat function at the point t = 0. The question which we have now is
when equation (1.1) has no flat solutions. In the linear case with self-adjoint
operator B(t), the following statement is true.
Theorem 1.1. Let B(t) be a linear symmetric operator with domain DB(t) and

FB(t)x = B(t)x for each x ¢ Dg (¢} (1.3)
Let u(t) be a solution of the following equation
t9 = B(t)u (1.4)
such that one of the following conditions is satisfied:
!lé(t)U(t)ll < y(B)]]B(t)u(t)|] + s(t)}ul(t)}] (1.5)
or
(B),u(t)) = ~y(t)[(B(t)u(t),u(t))] - s(t)HU(t)H2 (1.6)

where y(t), g(t) are non-negative continuous functions in the interval 1' = [0,1].
Then for this solution wu(t), the followinc is true:

i) [u(e)]] = M{u(t )]tV (1.7)
where constant v > 0 depending on v(t), v(t) and u(t) ditself and constant y > 0
depending on v(t), g(t) orly.

ii) if u(t) s a flat solution of equation (1.4), then u(t) = 0 in the
interval 1.

Proof. (See [3]).

In the linear case, we do not have classical uniqueness at the point t =0,

only the type of uniqueness as in ii) above--the quasiuniqueness (see Definition 1.4
below).
Definition 1.4. We say that the quasiuniqueness takes place for equation (1.1} or
(1.4) at the point t = 0 if conclusion ii) of Theorem 1.1 is true for neighborhood
of the point t = 0 or, in other words, if we have uniqueness in the class of
flat-functions at the point t = 0. Let u(t) be a solution of (1.1). Let

q(t) = (u(t),u(t)). (1.8)
If ta%-= D, we have from (1.1) after scalar product with u(t)
Dg(t) = 2Re(b(t,u(t)),u(t)) = 2(B(t,u(t)),u(t)) (1.9)

and if we assume that u(t) e Cl(I,H), and B(t,u) has first derivative with
respect to all variables (see Condition S), then

0%q = 20(B(t,u(t)),u(t)) = 2[([0B(t,u(t))T,u(t)) + (B(t,u(t)),bu(t))]
2[([oB(t,u(t))T,u(t)) + (B(t,u(t)),B(t,u(t)))]

1

= 2([0g(t,u(t))1,u(t)) + 2 |B(tu(t))] | (1.10)
Let now (tl’to) be the interval with q(t) > 0 for te (tl,to), then if
2(t) = Inq(t), (1.11)

then from (1.9) we have

Dl(t) = gj_ = Z(B(tog%tg):u(tl) (1.12)
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and

.

075 (t) = E%S - (%ﬂ)2 (1.13)

or from (1.9) and (1.10) we obtain

) o(f ‘ , : 2
02i(t) = Z(LUB(ta?gj))],u(t)) ] chB(t&?E;))l|z . 4(Bt,u(t%2;?(t)) (1.14)
g\

The following statement is true:
Lemma 1.1. Let £(t) be a twice differentiable function in the interval 1 satis-
fying the following second-order differential inequality

Da(t) + ta(t)[DC(t)] + tb(t) > 0. te 1 (1.15)
where a(t), e(t) are non-negative bounded functions in I,
Then
(t) & 2(t,) + lnt + 2;11:1-1 (1.16)
0 to t 0

where ccenstant v > 0 depending on a(t), b(t) and 1(t) ditself, and constant
x> 0 depending on a(t), b(t) only.
Proof. (see [3,4]).
From (1.16) we obtain
2942y

expe(t) = [expz(to)]-t (1.17)
and from definition 2(t) we have
q(t) = expa(t), qlty) = expe(ty) (1.18)
and from this and from (1.17) we have the following estimate for q(t)
2v+2u

a(t) = q(tg)t
where constant v > 0 depending on a(t), b(t), and q(t) itself, and constant
u > 0 depending on a(t), b(t) only.

From (1.18) we obtain estimate (1.7). Our problem now is to obtain the inequal-
ity of type (1.15) for non-linear equation (1.1). From this discussion we obtain
that the following statement is true.

Theorem 1.2. Let u(t) be a solution of equation (1.1} such that

2
(et uteruce) + (o] |? - Zo{uBLA)
- ta(t)] (B(t,u(t)),u(t))] - tb(t)|u(t)]|? (1.19)

for some non-negative bounded functions a(t), b(t) in the interval 1. Then
i) )] = M||u(t0)||t“+“ where constant v 2 0 depending on a(t), b(t) and

u(t) itself, and constant u 2 0 depending on a(t), b(t) only.

ii) if wu(t) is a flat solution, then u(t) = 0 in the interval 1.
Proof. i) follows from Lemma 1.1 and ii) follows immediately from i). Let us
consider the special case of operator B(t,u). Let Hilbert space H satisfy the
following condition: for each u, ve H, u+ veH also. Let us now consider that
B(t,u(t;} 1is the product of the following form:

B(t,u(t)) = Alt,u(t)) » u(t) (1.20)
where A(t,u(t)) is a non-linear map from Hilkert space H t¢ H with domain DA’
DA being the dense subset of H, and A(t,u(t)) satisfies the following condition:
Condition A. For each u(t) € DA and for each v ¢ H the following function
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(A(t,u(t))v,v) s difterentiable with respect to t an¢ for each w ¢ M,
(A(t,uit M v,w) = (v,A(t,u(t))w). In a standaru case H is L2 on compact set of R"
cr compact smooth n-manifcld. In applications we have A(t,u) in the following
form:

n

Ju 3 u

Alt,u) = F(Et,Xgmo—ynns y—)
aX1 ax™

where xeft, 2 is compact set of R" or smooth compact n-manifold (for example, sphere
Sr).

In this special case, it is possible tc obtain more complete results and more
simple form of condition (1.19). Namely, it is possible to rewrite the first term of
(1.19} in the following form:

(foB(t,u(t)l,u(t)) = ([DA(t,u)ul,u) = ([DA(t,u)lu,u) + (A(t,u)Du,u) =
([DA(t,u)Ju,u) + (Du,A(t,u)u) (1.21)

And from (1.1) anc (1.20) we have that the last term is
2
HACLu(t))u(e) ]

or

2
HB(t,u(i)]]
From this and (1.19) we obtain

2
)
(LOACt,u)u,u) + 2] [ACt.u(t))ul |2 - Zpltaltiuu)

> - ta(t)] (Alt,u(thult),u(t)| - tb(t)||u(t)]|? (1.22)
and since
[(ACt,u(t))ult),u(t))] < [JACtu(t)Iu(t)|] - Jtu(t)]],
we obtain that (1.22) is satisfied, for example, if the following condition is
satisfied:

([DA(t,u(t))Ju(t),u(t)) = - ta(t)] (A(t,u(t))u(t),u(t))] - to(t)||u(t)]|? (1.23)

or, since D = ta%3 after dividing on t:

([a%A(t,u(t))]U(t),U(t)) 2 - a(t) | (A(t,u(t))u(t),u(t)] - b(t)]u(t)]%. (1.28)

This condition is very similar to condition (1.6) in the linear case. From the
previous discussion we obtain that the following statement is true.

Theorem 1.3. Let wu(t) be a solution of equation (1.1) under Condition A such
that condition (1.24) is satisfied for some non-negative bounded functions a(t),
b(t) in the interval I.

Then:

) Hu(e)]] 2 M fu(eg) |V (1.25)

where constant v > 0 depending on a(t),b(t) and wu(t) itself, and constant
p 2 0 depending on a(t), b(t) only.

ii) if wu(t) 1is a flat solution, then wu(t) = 0 1in the interval I.
Proof. i) follows from previous discussion and Lenma 1.1 and ii) follows immediately
from estimate (1.25).
Remark 1.1. Our condition (1.24) is not simple enough, and in concrete situations,
it is difficult to check it. But in the following special case, when
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(A(t,ult))v,v) = G fcr each v g H, (1.26)
it is pessible to write other corditions in the following form.
If (A(t,u)v,v) as a function of t satisfies the following condition for
solution u(t) of ecuation (1.1):

SHATEu)vav)T = -ClA(E,u(t))v,v) (1.27)

for some constant C > 0, and for each v, Hvll = 1, then for this solution u(t),
the conclusion of Theorem 1.3 is irue.

It is possible to obtain the following s'atement abuut the quasiuniqueness.
Theorem 1.4. Let conditions A and (1.26) he satisfied. Let condition (1.27) be
satistied for each function wu(t) ¢ Dy with flat nomm [fu(t)}]|. Let wu(t) te a
flat sciution of equation (1.1). Then wu(c) = G in the interval 1. Or, in cther
worcs, under these conditions, the quésiuniqueness takes place ot the point t = 0
for solutions of equation (1.1).

Proof. tLet u(t) be a flat solution. Then for u(t), condition (1.27) is satis-
fied, and therefore for g(t) = 1n||u(t)||: we have inequality (1.15%). From Lemna
1.1, we have for Ilu(t)H2 an estimate of the type (1.18). This is a contradiction
with flatness wu(t). Therefore, u(t) is & trivial solution in the interval I, or
the quasiuniqueness takes place at the point t = 0 for solutions of equation (1.1)
under conditions A, (1.26), (1.27).
Remark 1.2. Let f(t) be a scalar function in the interval 1. Let f(t) satisfy
the following condition
frt) > -Ct(t)

or

fr(t) + cf(t) = 0.
It is possiblie to rewrite this condition in the following form

[eCte(t) 1 = 0.
In other words, the following function
eCte(t)

is monotonic and not decreasing in the interval 1. It is easy to see that each
function f(t) will satisfy thi% condition in the interval (0,¢), if

i) f(0) >0

ii) f'(0) s bounded.
Interval (0,e) depends on function f(t).
From this discussion, we obtain that the following statement is true.
Theorem 1.5. Let conditions A and (1.26) be satisfied. Let A(t,u) for each
u(t) e Lp with flat norm [Tu(t)]| satisfy the following conditions:

i) (A(t,u(t))v,v) > O in some interval (0,e) with ¢ depending on u(t)
for each ||v e H, ||v|]| = 1.

ii) E%{(A(t,u(t))v,v)] is bounded in interval (0.e) for each v e H, ||v]] =1
(this condition follows from Conaition A,).
If u(t) 1dc a flat solution of equation (1.1), then wu(t) = O in the interval
(0,€) with e depending on u(t), or the quasiuniqueness takes place at the point t
= 0 for solutions of equation (1.1) under those conditions.
§2. The special cases

In this & we study two special cases for equation of type (1.1) for completing

Theorem 1.5. The first special case is the following:
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(B(t,u),u(t)) = C (2.1)

for each u(t; from the demain DB. In this cese, if

att) = [u(t)ir?
then
tq(t) = 2(B(t,u),u) < 0
or
q(t) = q(to) for ts (z.2)

and we obtain that the following statement is true. Theorem 2.1. Let u(t) be a
solution of equation (1.1) under condition (2.1). If wu(0) =0, then u(t) = 0 in
the intervel I. In this situation, we have classical uniqueress at the point t = 0.
kemark 2.1. Let operator B(t,u) satisfy condition A and let A(t,u) satisfy the
following condition:
[(A(t,u{t))v,v)] = 0

vor each u(t) e By with the flat [Tu(t)]] in the interval [C,e] with = >0
depending on u(t) may be and for each v e H, ||v]| = 1. Let wu(t) be a flat
solution of equation (1.1) under those conditions. Then wu(t) = 0 1in the interval
[G,e] or the quasiuniqueress take place at the peint t = 0 for solutions of
equation (1.1} under those conditions.
The seccnd special case is the following:
Let B(t,u) satisfy condition A and let A(t,u) as a function of t satisfy the
following condition:

(A(t,u)v,v) > Gas t >0 (2.3)
for each u(t) with flat norm and for each v e H with ||v]| = 1.
Let q(t) = (u(t),u(t)). If q(t) > 0 in the interval (tl,to) we introduce a new
function by formula

v(t) = %% (2.4)

or
u(t) = qa(t)v(t)
After scalar produce (1.1) with u(t) we obtain
tq = 2((A(t,qdv)u,u) = 2q(A(t,qdv)v(t),v(t)).
Let now u(t) be a solution of (1.1} under condition A and A(t,u) satisfies
condition (2.3). The following scalar product
[(A(t,qiv)v(t),v(t))] < &
in some neighborhood of the point t = 0. This neighborhood depends on a solution
u(t) idtself. From this we have that for each u(t) e DA with flat norm q(t) there
exist numbers ¢€,6 > 0, such that
[(A(t,qivivit),v(t))] <6 for O <t <e
where & depends on u(t).
From this we have for q(t) the following inequality:

E% <28 for0<t<e (2.5)
where & depends on u(t). From (2.5) we have the following estimate for q(t)

q(t) > (%B)ZGq(to) for t<tj<e (2.6)
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and trom this estimate, we have the quasiuniqueness. From the previous discussion we
obtain that the following statement is true.
Theorem 2.2. Let A(t,u) satisfy the following condition:

(A(t,ulv,v} >0 as t~>0
for each u(t) ¢ DA(t) with flat rorm and for each v ¢ H with ||v]| = 1. Then if
u(t) is e flat solution of equation (1.1) under conditions A and (2.6), then wu(t)
is a trivial in the interval (C,e) with ¢ > 0 depending on u(t) itself.

From Theorems 1.5, 2.1, and 2.2, we have that the following statement is true.
Theorem 2.3. Let operator B(t,u(t)) satisfy condition A. Then the quasiuniqueness
takes place at the point t = 0 for sviutions of equation (1.1) wunder those condi-
tions.

Proof. Let wu(t) be a flat sclution of (i.1). Let us consider the following

function:
(A(t,u(t))u(t),u(t)) = q(t)(A(t,ul(t))v(t),v(t))
where
a(t) = |lu(t)]|?
and

u(t) = v(t)as(t) [lu(t)l] = 1.
It follows from conditicn A that the following function
f(t) = (A(t,u(t))v(t),v(t))
is continuous and smocth in the same interval (0,e) with ¢ depending on u(t).
Then we have three cases:
i) f(t) < 0 in some interval [0,e'].
ii) f(t) > 0 1in some interval [0,e'],
iii) f(t) -0 as t - 0.
The quasiuniqueness follows for the case i) from Remark 2.1, for the case ii) from
Theorem 1.5, for the case iii) from Theorem 2.2.
Remark 2.2. Smoothness in the Theorem 2.3 is necessary for the quasiuniqueness. In
the finite-dimension Hilbert space, the smoothness also is necessary. Let us con-
sider the following equation:

dx _
taf = -xInx (2.7)
in the interval 1 = (0,1]. It is easy to see that the following function

1
exp(-§) t >0
x(t) 40 Freo (2.8)
is a solution of equation (2.7) for all t ¢ Rl. This function is flat and x(t) €
C”(Rl). More than this, let us consider the following first order non-linear

inequality

tq(t) = -Cq(t)Ing(t) q(t) 20 (2.9)
and we will look for the solutions with q(t) <1 for 0 < t < & only. It is
possible to rewrite inequality (2.9) in the following form

tq(t) + cq(t)Ing(t) = ¢(t) = 0. (2.10)
Let
1 (t) = -Ing(t) (2.11)

and
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1(t) = 0.
After dividing (2.10) over -q we obtain
tq _ t
- 69--C1nq(t) = - g t) <0 (2.12)
or after substitution (2.11) we obtain from (2.12) the following inequality for 1(t)
t1(t) + C1(t) = - %%%% <0 (2.13)
Mow we introduce a new function m(t) by formula
m(t) = Inl(t). (2.14)
This function is defined, since 1(t) = 0. From (2.13) we obtain for m(t)
tm(t) +¢C = ¢,(t) <0 (2.15)
ana
8,(t) = it (2.16
1 C(t)q(t)" -16)
After integrating (2.15) we get
t t
m(t) - m(to) = -Clnfa-+ té ¢1(r)d1 (2.17)
or
t) _ cipt v 0 (1)dr (2.18)
1 tO tG to 1 °
From (2.18) we obtain for 1(t)
ty-C_ ¢
H(e) = 1(t0)(129 exp té¢1(t)dr (2.19)
and from (2.11) and (2.19) we obtain for q(t)
Ing(t) = -1(t )(ILJ'cex } (t)d
q o5 P t0¢1 T (2.20)
or for q(t) we have
t,-c. ¢
at) = expl-1(t0) () Cexp Joy(x)ar] (2.21)

In (2.20) l(to) > 0 and ~l(t0) < 0. The following integral

t t t t
0
t6¢1(t)dr = - ¢t(1)d = tf0-¢ (t)d = tfo TT%;%%?)dT >0 for t«< tos

since ¢(t) = 0, 1(t) 2 0, q(t) = 0. From this we have that

t
exp t6¢1(r)dr > 1 (2.22)

and since -1(t) < 0, then we have from (2.21) and (2.22) that the following esti-
mate holds
a(t) = exp(-1(t,) (t—;)'c) = x(t) (2.23)

Function x{(t) din (2.23) is a flat and from this discussion we obtain that the
following statement is true.
Theorem 2.4. Let q(t) be a solution of inequality (2.9) with the condition
q(t) <1 for 0 <t <.
Then in this interval, q(t) will be flat-function which satisfies the estimate

(2.23).
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Remark 2.3. From Theorem 2.4, we obtain that if we have the following equation

d P
td-: = B(t,u) (2.28)

and B(t,u) satisfies the following condition

Re(B(t,u),u) > -Cllu(t)(1%nlu(t)i]?, (2.25)
then each solution of (2.24) such that

q(t) = llu(t)||? <1 for 0<t<s

must be fiat.

This is not a theorem about existence of flat solutions, but if there exists
solution (2.24) such that ||u(t)|| < 1, then ||u(t)|] must be flat.
§3. On the uniqueness

In §§1-2 we obtained results about the quasiuniqueness for solutions of equation
(1.1) at the point t = 0. It is pessible to obtain some results about uniqueness
for solutions of this equation.

The first and the simplest result about uniqueness was obtained in Theorem 2.1.
In the special case of operator B(t,u) with condition A we obtain the following
.statement.
Theorem 3.1. Let condition A be satisfied and let for each wu(t) e DA’ u(t) # 0 and
for each t ¢ 1 the following condition be satisfied:

([%gA(t,u)Ju(t),u(t)) > =CLUL(A(tu)u(t),u(t)] + [lu(t)| D (3.1)

for every t e I and for some constant C 2 0.
Then for ecach non-trivial solution wu(t) under those conditions, the following
estimate holds

Hu(t)]] > |lult )||(§-0)u for t <t (3.2)

where constant u > 0 depends on C from (3.1) and u(t) itself.
Proof. Proof of this theorem is similar to proof of Theorem 1.3 and is based on the
following staterment (like Lemma 1.1).
Lemma 3.1. Let 1(t) be a twice differentiable non-trivial function in the interval
I, satisfying the following second-crder differential inequality

p21(t) + ta(t)[D1(t)] + tb(t) > 0, t I (3.3)
where D = t%;, a(t), b(t) are non-negative functions, bcunded in I. Then

1(t) > 1(t.) + 2vint + 2uInt (3.4)
0 T T

where constant v > 0 depending on a(t), b(t) only and constant u = O depending
on af(t), b(t) and u(t) itself. From this lemma, we obtain the estimate (3.2).
From estimate (3.2) we obtain that the following function

™ lu(t)l] (3.5)
is a strongly monotonic in the interval I = (0,11 and this function is decreasing
ir this interval. From this we have the classical uniqueness under these conditions
for every t = to > 0.
Theorem 3.2. Under conditions of Theorem 3.1, we have the classical uniqueness for

solutions of equation (1.1) in the following sense:
i) if u(to) #0 for t0 e I = (0,1], then u(t) # 0 in the interval I = (0,1].
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ii) it u(to) =0 for tooE T = (0,17, then u(t) = C ir the inter.ci 1 = (0,17.
Proof. ii) follews from i) ena i) follows immediateiy from the fact that function
(3.5) is strongly mcnotonic. 1f A(t,u) satisfies the foliowing condition

i) (A(t,u)v,v) s strongly positive for each wuf{t) : Dy. and for each v ¢ H

livil = 1 &nd for each t ¢ I, or (A(t,u)v,v) 2 ¢ > 0, ¢, may be dependent on
u(t).

i) (A(t,u}v,v) has bounded first derivatives for each wu(t) e Dp and for each
v with |lvl] = 1 and for each t ¢ T with respect to t, maximum of those

derivatives depends on u(t), then the classicel uniqueness takes place in the
intervel 1 in the sense of Theorem 3.2 or the following statement is true.
Theorem 3.3. Let B(t,u) satisfy condition A and A(t,u) satisfy the conditions
i) - ii) of the previous discussion. Then, the conclusion of Theorem 3.2 is true.
Proof. Let wu(t) be a non-trivial solution of equation (1.1) under conditions of
this theorem. Then there exists constant C > O which depends on u(t) maybe, such
that the following is true for each v with |[v!'l =1
(gz{A(t,u)]v,v) + C(A(t,u)v,v) > C in the interval I.

_This cuncition is encugh for obtaining second-order differential irequality (3.3) and
by using Lemma 3.1, we have that the function (3.5) is strongly decreasing in the
intervel 1. From this, statement of our theorem follows immediately.
Remark 3.1. Recall that ir this section, we require for the classical uniqueness of
solutions of equation (1.1) in the intervai I, more tough conditiors than for the
quasiuniqueness at the point t = C in §§1-2. Recall also, that we do not have here
complete results about the classical uniqueness in the interval I, as Theorem 2.3
about the quasiuniqueness at the point t = 0.

In the case of condition (2.6) it is possible to obtain also the classical
uniqueness. Namely, let condition (2.6) be satisfied and let u(t) be a non-trivial
solution of equation (1.1). Then, if

att) = |u(t)]]2,

we have for q(t) the following equation

ta(t) = 2q(A(t,qiv)v,v) where u(t) = q*(t)v(t). (3.6)

From (2.6) we obtain that the following form

(A(t,q*v)v,v) >0 as t » 0
and for each e > 0 there exists ¢ > 0 such that

|(A(t,q%v)v,v)[ < ¢ whenever t < § (3.7)
with e, & depending on wu(t), then from this we have for q(t) the following
inequaiity

or

or



308 V. SCHUCHMAN

or
alt) = altglexp®Ing = q(to)(%g)ﬁ (3.8)

oid since thi« is true fcr each ¢ > 0, from this discussion we obteain that the
following statement is true.
Theorem 3.4. Let B(t,u) satisfy the condition A and A(t,u) satisfy the condi-
tion (2.6). If for each u(t) e DA the following function

(A(t.u)v,v) >0 as t >0 for each v with ||v]] =1,
then the conclusion of Theorem 3.2 is true.
Proof. The proof follows immediately from our estimate (3.8).
&4. The non-degencrate case
Let us consider the following non-degenerate non-linear equation in the Hilbert space
H:

M- B(t,u(t)) where te T = [1,40). (4.1)

u(t; for each t ¢ T 1is an element of H and has derivative with respect to
t. B(t,u(t)) is ror-linear map from H to H with aomain DB‘ DB is the dense
subset of H, and for each t « I and for each u(t) ¢ DB’ B(t,u(t)) 1is an element

of H also. B(t,u(t)) is rot necessarily bounded. H 1is a Hilbert space with
scalar preduce (.,.) and with norm ||.!] correspondingly.
As in the degenerate situation, operator B(t,u) 1is called a smooth operator of
self-adjeint type if the scaiar product
(B(t,u),u)
is real and has derivative with respect to t for each t ¢ T and for each
u(t) e DB. After the change of variable t by formula

we obtain from equation (4.1) the following equation

d%% = B(s,u) for sel=(0,1]. (4.2)

The equation (4.2) is the equation of the type (1.1) and because of this, it is
possible to rewrite our results for equation (4.1). It is easy to see that in this
situation, the following class of functions plays the role of the flat functions:
Class A:

(f(t), t e T: foreach C>0 e“%(t) »0 as t » +o}
In this situation, we have the following type of quasiuniqueness.
Definition 4.1. We say that the quasiuniqueness takes place for solutions of equa-
tion (4.1) &t the point t = +o, if the following statement is true:

If u(t) is a solution of equation (4.1) and ||u(t)]|| belongs to Class A or,
in other words: for each C > 0, e ||u(t)]] >0 as t + +=, then u(t) = 0 for
t >N for some N < o, Now it is possible to rewrite all theorems of §§1-3 for the
case of equation (4.1).

Theorem 4.1. Let u(t) be a solution of equation (4.1) such that

2
@ﬁunquwn)+HMnuwHF-Z“?Vfﬁﬁ”)z
u(t

-Ce't[l(B(t,u(t)),u(t))l + llu(t)llz] for some constant C > 0. (4.3)
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Then the following s true:
1 ()] oz Mllu(to)'lle_pt (4.4)

where constant > 0 depends on C from (4.3) and u(t) dtself.

ii) If u(tv) belongs to class A, then wu(t) = 0 1n the interval T = [1,+=),
or the quasiuniqueness takes place for solution of equation (4.1) unaer those condi-
tions at the point t = +w,

Proof. The proof fcllows from Theorem 1.Z.

Remark 4.1. In the linear case, these type of theorems and these type of estimates
were obtained first by Agmon-Nirenberg [1,2]. It is fpeossible also to study the
specia! case of equation (4.1 under condition A. From the Theorem 1.3, we have
that the following statement is true.

Theorem 4.2. Let u(t) be a solution of equation (4.1) under condition A such that

(A, W) Ju(8) u(t)) = -Ce T1 (A, wu,w)] + Hu(0)]17) (4.5)

tor some constant C > 0. Then the conclusion of Theorem 4.1 is true.
It is possible alsc to study equation (4.1) under condition (1.26) and if
A(t,u) as a function of t satisties the fcllowing cendition

(%E{A(t,u):v,v 2 -Ce-t(A(t,u)v,v) (4.6)

for each v with ||v|| = 1 with some constant C > 0, then the conclusion of
Theorem 4.1 is true also.
From (4.6) we have, if f(t) denotes (A(t,u)v,v) as function of t, that

£1(t) = -Ce tf(t) (8.7)
or
DLt , ot
or
t t
1 : E) > -C tfe-TdT = Ce'Itl = ¢(e"t-e7t0)
0 0 0
or
-t -t -t -t
£() > f(tglel® e = f(rg)eble e 0 (4.8)
or
-t

£(t) > MF(ty)e®
From (4.7) we obtain that the following function

-t
f(t)e'ce

1s a monotonic and it is not decreasing in the interval T = [1,+=). For example, if
f(t) s not decreasing in the interval T = [1,+=), this condition is enough to
satisfy the condition (4.7} or the condition (4.8) with C = 0.

From this discussion and Theorem 1.4, we cbtain that the following statemenrt is
true.
Theorem 4.3. Let conditions A and (1.26) be satisfied and let (A(t,u)v,v) be a
monotonic function with unique minimum for t = +o for each u(t) from class A and
for each v with ||v||= 1. Let u(t) be a solution of equation (4.1) from class A.
Then wu(t) = 0 in the interval 7. In other words, the quasiuniqueness takes place
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under theose conditions for solutions of equation (4.1) at the point t = +o. From
the previous discussion ana Theorem 1.5, we obtain that the following theorem is
true.

Theorem 4.4. Let conditions A and (1.26) be satisfied. Let (A(t,u)v,v} as
tunction of t for each wu(t) ¢ FA’ u(t) from class A satisties the following
cendition:

(A(t,u)v,v, is monotonic with local minimum at the point t = += in some
neighborhood of the t = +o with respect to t in the interval 1 = [1,+=) for
each u(t) from class A and for each v with ||vl| = 1. If wu(t) 1s a solution
o equaticn (4.1) from class A, then u(t) = 0 in the interval (N,+<) with N
depending on u(t) itself. From Theorem 2.1, we obtain that the following statement
is truc.

Thecrem 4.5. Let wu(t) be a solution of equation (4.1} under condition (2.1). If
[lu(t)]] > 0 as t » 4=, then wu(t) = 0 in the interval T = [1,+«). In this
situation, we have classical uniqueness at the point t = +«=, Let now A(t,u)
setisfy the following condition

(A(t,u)v,v) > 0 as t» += (4.9)
for.each u (t) from class A and for each v ¢ H with ||v]| = 1. From Theorem
2.2, we obtain that the following statement is true.
theorem 4.6. Let A(t,u) satisfy the conditior (4.9). Then if u(t)
1s a solution of equation (4.1) from class A, u(t) is a trivial in the interval
(N,+=) with N < = depending on u(t) itseif. From the previous theorems and
Theorem 2.3, we obtain that the following statement is true.
Theorem 4.7. Let B(u), not dependent on t, satisfy condition A for u from
class A or (A(t,u)v,v) = f(t) a function from cl HI(T) with respect to t,
t > N for each u(t) from class A and for each v(t) with |]v|]| = 1. Let u(t)
be a solution of equation (4.1) from class A. Then wu(t) = 0 in the interval
(N,+=) with N < += depending on u(t) itself.
Proof .

i) If (A(t,u)v,v) » 0 as t + 0 this statement follows from Theorem 4.6;

ii) If (A(t,u)v,v) < 0 in the interval (N,+o), this statement follows from
Theorem 4.5.

iii)  If (A(t,u)v,v)[u=0 > 0 in the interval (N,+) and (gf{l\(t,u)]v,v)lu=0
2 0 in this interval, this statement follows from Theorem 4.4 since condition (4.7)
is satisfied with C = 0.

iv) If (A(u)v,v)lu=0 > 0 in the interval (N,+») and (g—{{A(u)]v,v)lu=0 <0
in this interval, this statement follows from condition (4.7) since in this situation
in the derivative %z{A(")] we will have terms with u%(t) and from having u(t)
belong to class A, it follows that in the interval (N,+~) we can choose constant
C such that (4.7) will be satisfied in some neighborhood of the point t = +=. In
this situation, C depends on u(t) itself. Recall that interval (N,+~) depends
also on wu(t).

Remark 4.2. It is possible to rewrite our theorems from §3 about uniqueness for the
case of equation (4.1) and to prove these using Lemma 3.1 and monotonicity of functions
of type

t
e u(t)] (4.10)
in the interval T = [1,4o) with some , > O.
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§5. Examples
Let us consider the followirg equation

"

R L
t%% = F(t‘u,§¥3§;%,...,§;%)u (5.1)
where t e I = (0,1] and x ¢ @ C Rl, Q@ is compact or compact 1 manifold, F 1is a
cl-function with respect to all variables (t,u,zi,...,zm) for all values of these
variables. F is real-values function.

Frcr Theorem 2.3 we obtain that for equation (5.1) the quasiuniqueness takes
place at the point t = 0 for classical solutions. If function F belongs to C1
11 some neighborhood of the origin only, we obtain from Theorem 2.3 that the quasi-
unigueness takes place at the point t =0 too.

From flatness of solution u(t,») of equation (5.1) we cbtain that there existis
a neighborhood [C,c] with ¢ > 0 depending on wu(t) itself and in this neighbor-
hood u(t) = C for classical solutions.

Remark 5.i. Recall that this statement is true for classical solutions cf equation
(5.1) only, because in this situaticn we have that

f-2>0i=1,...,m as t~>0

for flat furction u(t,x). In this case also from flatness of wu(t,x) follows the
flatness of aiulaxi for i = 1,...m. And if @ is compact, it is possible to
choose for each & > 0 the neighborhood of the point t = 0 the interval [0,€]
such that

i
B} <5 fori=0,1,...m ift<e.
X

2. Let us consider the following equation

m
£ - F(t,x,u,g—';,...,:)(;) (5.2)
where t e I = (0,1] end x e @ Rl and compact or & 1is a compact manifold, F
is a Cl—function with respect 1o all variables (t,x,u,zl,...,zm) for all values of
these variables or for some neighborhood of the point (0,x,0,...0) for each x e G.
If F does not change sign for each x e 9, or in other words, if one of the
following conditions is satisfied:

i) win {F(0,x,0,...,0){ > 0,

XeQ

ii) for each x e @ F(t,x,u,zl,...,zm) < 0 for all values tauszyseenszy such
that t = ¢, |u| < e,...,|zm| < e,
iii) ﬁ(t,x,u,zl,...,zm) » 0  wherever |U|‘|21|°|12|'---'|Zm| + 0 and
2 z 2 o .
|©+ |zll o4 |zml < & > 0, then the quasiuniqueness takes place at the point
= 0 for classical solutions of this equation. From flatness of solution u(t) of
eavation (5.2), we obtain that there exists e > 0 depending on u(t) itself such
that u(t) = 0 in the interval [0,cl.
3. Let us consider the following equation
m
t%% N F(t’u’5%%’axia::. RS TH ?.?8x. Ju(t,x) (5.3)

1 Y2 1 "m

where tel = (0,11, xe ¢C R" and compact or & 1is compact manifold, ik =1,...n

|u
t
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su F o ic @ C-function with vespect to all variabies (t,u,z],...;n) for ail
valvec i these variables. F is real-values function.
From Theorem 2.3, we obtain that tor equation {5.3) the quasiuniqueness take: place
at the point t = C for classicel solutions. [f functicn F  belongs to Ll n
scre neighborhcod of the crigin only, we obtain fror Theorem z.3 that the cuasi-
uniqueness takes place at the point t = 0 too.

Fron fiatness of solutior u(t,x) of equation (5.3), we get that there exists
e - 0 dependent on wu(%t,x) itself such that u(t) = C in the interval [0,e].
Remark 5.2. It is pessible to obtain resuits about the classical uniqueness cf
equition (5.1)-(5.4) in the interval I, Gbtut for this we must require that function
F catisfies one of the following conditions:

i) F < 0 for all values of all variables.

iji) F 248 - 0 for all values of all variatles.

/

Ther trom results of §3 we ob‘ain that the classical uriqueness takes place in the
senve of Theorem 3.2, or
i) it u(to) 0 for tycl = (0,1], tker wu(t) # 0 in the interval

1 = (0,1].

1) if u(ty) = 0 for ty e I = (0,11, then u(t) = 0 in the intervai
1= (0,17 including t = 0.
Recall that i)-ii) are like the standard conditions for uniqueness in the linear
cese.
4, Let us consider the following equation
au 2%y a"u

<o XU EE X ax: T YAX, ... 9Ky Ju(t.x)
i 9%i%% i in

where t ¢ I = (0,11, x ¢ @ C R" and compact ik = 1,...n and F is a real
Cl-function with respect to 11 variables (t,x,u,zl,...zn) for all values of these
variables for some neighborhced of the point (0,x,0,...0) for each x e . If
function F satisfies one of the conditions i)-iii) from example 2, then the
quasiunigueness takes place at the point t = 0 for classical solutions of equation
(5.4). From flatness of classical solution u(t) of equation (5.4), we obtain that
there exists ¢ > 0 dependent on u(t) dtself such that u(t) = 0 in the intervai

[0,e].

5. Let us consider the following equation

du _
tor = Fltaxgs.. (5.4)

2 m
W | gy 2U U cll"
ﬁ = F(t’b’ax.’axi 3"1 3---53)(1 ...3)(' )u(t,x) (5-5)
LS 1 "m
where t el = [1,4=), x € & R" and @ s compact or compact manifold

ik =1, ..., n and F is a C1~function with respect to all \variables

(t,u,zl,...,zn) for all values of these variables. F is a real-values function.
From Theorem 4.7 we cbtain that for equation (5.5), the quasiuniqueness takes

place at the point t = += for classical solutions. If function F belongs to Cl

in some neighborhcod of the point (t,0,C,...,0) for each t > N, < +o, we obtain

0
from Theorem 4.7 that the quasiuniqueness takes place at the point t = + also.

If solution wu(t) of equation (5.5) belengs to class A, we get that there
exists € > 0O dependent on u(t) itself such that wu(t) = 0 in the interval

(1/e, +=).
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€. Let us counsider the foliowing equation

m
du Ju 3 u
3t = F(t,xl,...,xn ,U,gjrj,~--,gyf—jjjjﬁzj-)u(t,x) (5.6)
i i i
m
where t e 1 = [i,v), x € @ C R" and compact of & is a compact manifold,

ik =1,...n and F 1is a Cl-function with respect to all variables for all
values of variebles or for sume neighborhood of the point (t,».0,...0) for each
x ¢ 0, ard for each t > %— for € > 0.

If F satisfies cne of the conditions of example 2, then the quasiuniqueness
takes place at the point t = += for classical solutions of equation (5.6). If
sclution u(t,x) of equation (5.6) belongs to class A, we get that there exists
€ > 0 dependent or u(t) itself such that u(t) = 0 in the interval (1/e,+=).
Remark 5.3. It is possible to obtain also results about the classical uniqueness of
equation (5.5)-(5.6) in the interval 1, as we obtained in Remark 5.2.
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