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ABSTRACT. Extending a result of Putcha and Yaqub, we prove that a non-nil ring must

be finite if it has both ascending chain condition and descending chain condition

on non-nil subrings. We also prove that a periodic ring with only finitely many

non-central zero divisors must be either finite or commutative.
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I. INTRODUCTION AND TERMINOLOGY.

Over the years several authors have given sufficient conditions for a ring R to

be finite, among them the following:

(I) (Szele, [9]) R has both ascending chain condition and descending chain

condition on subrings;

(II) (Ganesan, [4], [5]) R has non-trivial left zero divisors, of which there

are only a finite number;

(III) (Bell, [i]) R contains no infinite zero ring and no infinite subring with-

out non-zero nilpotent elements;

(IV) (Putcha and Yaqub, [8]) R is non-nil and has only finitely many non-

nilpotent elements.

The present study, which presents some new conditions for finiteness, was

motivated by the Putcha-Yaqub paper. Our first two theorems are ones suggested by

that paper; the third is a new result on the old theme of commutativity and finiteness.

Throughout the paper the term zero divisor will refer to a one-sided (i.e. not

necessarily two-sided) zero divisor. By a left (right) zero divisor we shall mean

an element y for which there exists x # 0 such that yx 0 (xy 0).

If Xl,X2,...,xk R, the subring generated by the x.lwill be denoted by

fxl,x2,...,X and for each x R, the symbols A(x) and Ar(X) will denote respec-

tively the left and right annihilators of x. The symbols C and N will be used for the

center of R and the set of nilpotent elements of R. The symbol Z will denote the ring

of integers, and Z
+

the set of positive integers.

Finally, the ring R is called periodic if for each x E R, there exist distinct

Z
+ m n

m,n for which x x
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2. TWO FINITENESS THEOREMS FOR NON-NIL RINGS.

Our first theorem, which employs (IV) in its proof, is an extension of (II).

THEOREM I. Let R be a ring, and let S be the set of non-nilpotent zero divisors

of R. If S is finite and non-empty, then R is finite.

PROOF. Let x S. Applying the pigeonhole principle to the powers of x yields
m n

distinct m,n Z+ for which x =x consequently, there exists a non-zero idempotent

zero divisor e, which we assume to be a right zero divisor. Write R eR + A (e).
r

Since each summand consists of zero divisors of R, each has only finitely many non-

nilpotent elements, hence by (IV) is either finite or nil. It is immediate that eR

is finite, and to complete the proof we proceed on the assumption that A (e) is nil.
r

s xS-I 0, so e+x is a zero divisor.Let 0 # x Ar(e), with x 0 # Then (e+x)xs-I

Moreover, e+x is non-nilpotent, since for any k > s, we have (e+x) k k-1 i
e + i x e;

k
and the assumption that (e+x) 0 gives, on left multiplication by e, the

contradiction e=0. It follows that the set {e+xlx Ar(e)} is finite, hence Ar(e)
is finite and so is R.

THEOREM 2. If R is any non-nil ring having both ascending chain condition and

descending chain condition on non-nil subrlngs, then R is finite.

PROOF. Note that by (I) and (III), any infinite ring R satisfying our hypo-

theses, and indeed every infinite subring of R, must contain an infinite zero ring.

Moreover, for any non-nilpotent element x, the chain <x>x2><x4 9 becomes

stationary at some point, hence there exist n Z+ and p(x) Z[X] for which
n n+l

x x p(x); and since this last condition is obviously satisfied by nilpotent

elements as well, a result of Chacron ([3], [2, Theorem I]) shows that R is periodic,

hence contains non-zero idempotents. The following lemma gives crucial information

about the idempotents.

LEMMA. If R satisfies the hypotheses of Theorem 2 and e is any non-zero

idempotent, then Ar(e) and At(e) are finite.

PROOF. Assume without loss that e is a left zero divisor; note that in any

periodic ring, idempotents have finite additive order. Recall our initial remark,

which implies that if A (e) is infinite, it must contain an infinite zero ring.
r

Let B be any zero ring contained in A (e), and let u be an arbitrary element of
r

B. Considering the chain ,e,u,2 ,e,2u9 <e,4u> yields k Z+ such that

2ku e,2k+lu> that is, there exist p,q,t Z such that

2ku pe + q2k+lu + t2k+lue.

t2
k+l

Left-multiplying by e yields pe=0, hence <2
k q2k+l)u ue, and the fact that

e has finite additive order shows that u does also. We now know that any subring E

of R generated by e and a finite number of elements of B is finite. Choosing a

maximal E, say E and noting that B E we see that B is finite. The proof of the

lemma is now complete.

Returning to the proof of Theorem 2, suppose that e is an idempotent which is a

zero divisor, say a left zero divisor; and write R =eR+A (e) =eRe+ (eR A(e)) +Ar(e).r
The last two summands are finite by the lemma, and the first is a ring satisfying our
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original hypotheses and having a multiplicative identity element. Of course, if all

idempotents of R are regular, then R has a multiplicative identity element; therefore,

we have reduced the problem to proving the theorem under the additional hypothesis

that R has i, in which case the periodicity of R implies that R has non-zero

characteristic.

If there exists a non-zero idempotent f # I, the decomposition R fR + (1-f)R

shows that R is finite, since both summands are finite by the lemma. Therefore,

assume that is the only non-zero idempotent, and use the periodicity of R to obtain

the property that every element is either nilpotent or invertible a property that
R

forces N to be an ideal [7]. The factor ring has ascending chain condition and

descending chain condition on subrings, hence is finite by (I). Now consider N, and

let B be any zero ring contained in N. Among subrings of R generated by and

finitely many elements of B I, choose M to be a maximal one. Note that M is finite

and B M; hence B is finite, N is finite, and R is finite.

3. A THEOREM ON PERIODIC RINGS.

The final theorem may be thought of as an extension of Herstein’s result ([6],

[2, Theorem 2]) that periodic rings with N C are necessarily commutative.

THEOREM 3. Let R be a periodic ring having only finitely many non-central zero

divisors. Then R is either finite or commutative.

PROOF. Let n(R) denote the number of non-central zero divisors, and note that

Herstein’s result implies commutativity of R if n(R) 0. Assume henceforth that

n(R) I; and consider first the case that every element of R is a left zero divisor

or, more generally, the case that the set D of left zero divisors is a non-trivial

additive subgroup of R. Then for d D and u D 0 C, d+u D\C; hence

{d+ulu 6 D C} is finite. Thus, D is finite; and R is finite by (II). This argument

covers the case R=N, so we assume that R # N and therefore R contains non-zero

idempotents.

If every non-zero idempotent is regular, there exists a unique non-zero idem-

potent, necessarily I; and every element is invertible or nilpotent. It follows,

again by [7], that N is an ideal; and since N is equal to the set D of left zero

divisors, R is finite.

Assume now that we have a counterexample R with n(R) as small as possible. Then

there exists y D and therefore an idempotent e D. Thus R has a left identity

element; and since we can repeat our previous arguments for right zero divisors, R

has a right identity as well, hence R has I. Moreover, by the argument in the

previous paragraph, R has an idempotent e which is a zero divisor. If e C, then

at least one of eR and Re must be non-commutative. On the other hand, if e C, then

R eR (l-e)R, where denotes a ring-theoretic direct sum; and since R was a

counterexample, one of the summands must be non-commutative. Thus, in any event we

may assume eR to be non-commutative.

Now eR must contain a non-central element d which is a left zero divisor in eR;

otherwise, eR would be commutative by Herstein’s result. For u (l-e)x ( C (l-e)R,

we have eu=ue=0, hence u left-annihilates eR and d+u is a non-central left zero

divisor in R. Thus, C (l-e)R is finite; and since (l-e)R consists of zero divisors
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in R, it contains only finitely many elements not in C, hence must be finite. Now

eR cannot be finite as well, since R eR + (l-e)R; therefore n(eR) n(R), and

every non-central zero divisor in R must be a zero-divisor in eR. It follows that

(l-e)R C. But then for any non-central zero divisor d and any element u (l-e)R,

d+u is a non-central zero divisor, so both d and d+u are in eR and therefore u eR.

But this implies (l-e)R {0}, which is a contradiction. This completes the proof.

4. REMARKS.

In Theorem 3 the hypothesis of finitely many non-central zero divisors cannot

be replaced by the assumption that R has only finitely many non-central nilpotent

elements. A counterexample is the direct sum F S, where F is an infinite periodic

field and S is a finite non-commutatlve nil ring.

A plausible extension of the Putcha-Yaqub result namely, that a ring R having

only a finite number of regular elements must either be finite or consist entirely

of zero divisors is also false, even for commutative rings. To see this, consider

the algebra A over GF(2) having basis (l,el,e2
e
n

}, where the e
i

are pairwise

orthogonal idempotents. Certainly A is not finite, and it is easily shown that is

the unique regular element.
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