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ABSTRACT. We consider the generalized heat equation of nth order 9u , nldu_q u
;;2 r Jr ;f
= g% . If the initial temperature is an even power function, then the heat transform

with the source solution as the kernel gives the heat polynomial. We discuss various
properties of the heat polynomial and its Appell transform. Also, we give series

representation of the heat transform when the initial temperature is a power function.
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1. INTRODUCTION.
In this paper we shall establish various properties of the polynomial solutions

and its Appell transforms of the generalized heat equation of the nth order,
02 _ 2
u nlou_ o _ Ou
~2 T or "2 &t
ar
where r2 = xi + xg + e 4+ xﬁ . Also we shall give a series expansion of the

generalized temperature in terms of Laguerre polynomials and confluent hypergeometric
functions. Most of the results derived here are similar to the ones found in [4 & 5],

which are for the less general equation

%u, wou _ou
axf x Ox Ot
which in turn is a generalization of the ordinary heat equation, [7]
2
du _Gu
oz

These known results can be considered as special cases of our more general results,

when « = 0 and n = 1.
2. PRELIMINARY RESULTS.
Consider the equation
ay
AnY(r,G) = 3T’
2 2

where r2 = X1 + Xy + e + xi and 6 = tan-l(r/xn). Then we have
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o 100, 1 0 s 20 2] - O
0—2' r Or 2 . n2, 30 a8 ~ at -
r r sin ]
Suppose the solution is of the type
?(r,8) = u(r,t)p(6),
then
d“u , n-1 Ou 1 d .n—2dp]]_0u
P(O)[o_rf + —I‘_ 5; + m ai[sln aaa- uj = R P(e)-
Letting
1 d [ . n-2.dpl _ 2
— sin “@ = (2.1)
p(e)sinn ] & d5 ’

we finally have
2
a
= RE T S @2
or r

where n = 2v + 1, the generalized heat equation. Now from (2.1), we have
1 d . n-2,dp}] _ 2
—nTaa-Sln aa'a- -—dp(O),
sin 7@
2
or Q_E_ + (n—-2)cot @ g—g = —azp .
dé
Let § = cos 8, then from above, we obtain
2
(l-rz)d—g - (n-1)¢ g% = %p,
d¢
which has a solution
1
p(®) = (2D 2 P,

where m = %(n—3), a2 = (v-m) (v+mt+l) and P:(g) is the Legendre function of the first

kind, [2,p.122]. Also by elementary methods [cf. 6], we can find the solution of
(2.2) as

u(r, t) =I U(s,r:t)u(s,0)ds,
[+]

where

1 1 1,2 2
Uls,r:t) = L vty gv (s sr
s,r:t) = 7T ® r e I” 2?], (2.3)

2
where uz = (v %) + 62, and I“(z), the usual modified Bessel function of the first

kind. We shall call the functioon U to be the source solution of the heat equation

(2.2). If U is considered as the kernel, then for a suitable f, its heat transform F

is defined by
.

rkF(r,t) = I U(s,r:t)skf(s)ds,
0
where k = u + % - v and F(r,0) = f(r), the initial temperature. Numerous properties

of the heat transform have been given in [6]. We note.that its inversion is given by
Q0

*e(r) =j U(s, ir:t) (s/i)*F(is, t)ds. (2.4)
0

Suppose now that the initial temperature is the power function
f(r) = r-, m real and positive, then from (2.3), its heat transform,

Py u(F08) = J'o U(s,r,:t)s" Pds (2.5)

ruvgm+ 1)  gm,
= r

2
1
— Tt @0 2 F [t
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u> -1, t>o0, (8 p.394]. Thus giving a solution of (2.2) involving the
Hypergeometric function lFl' As a special ease, if

m=2n, n=0,1,2,...
then

2 P
_ nku, 2 _ nk? I (u+n+1) [n] [x
Py u(Frt) = 0t (@)L (-P/at) = (at)"r pfo Wﬁ[p][ﬁ] (2.6)

defining the heat polynomial of degree 2n in r and of degree n in t, involving the
Laguerre polynomial. If we let k = 0, we have the special case given in [4].
Next we define the Appell transform of P‘ “(r,t), m real and positive as,
W-'M(r.t) = Ap[Pm’M(r,t)]
- . r 1
- Hu(o’r't)Pn,u(f’ t)’
where HM’ the Green’s function, is defined by

1
mty ok
U(s,r:t) = s (r/t) Hp(s,r:t),
- s2+r2
.and H (s,r:t) = t e it I [%5 . (2.7)
u 2(sr)¥ ullt
It can be seen readily that
-mk
= . = . 2.
W-’u(r,t) H"(O,r t)t P.,“(r t) (2.8)
1 vy 2/4¢
Now H (0,r:t) = —— t e /7, (2.9)
“ 277 (u1)
therefore we can write
2
- 1 —(mtu+l) -r°/4t _
W-’"(r.t) EEEIT;ZZ:I; t e Pm,y(r’ t),

where k = u + v - % .
3.  PROPERTIES OF Pn’"(r,t) AND Hn’”(r,t).

In this section we shall estasblish various results involving the function

P2n u(r,t) and its Appell transform "2n M(r,t). Using the asymptotic expansions, it
’ ’

is an easy matter to calculate the following estimates:
1 2

(s-r)
U(s,r:t) = 0(|s|ue—Zf ) as |s| — @

r2n+k) as r — ®

0(

P2n,u(r’t)
ant)"
= — as n — %,
P2n,u(r’t) 0[ e ]
IEMMA 1. For 0 £ x (=, t >0,

j Us,r:t)P  (s,-t)ds = 20, (3.1)
0

2n,u
PROOF. Using the above estimates, note that the integral converges. Now, using
(2.6) the definition of P2n,u twice, we have,

Io U(s,r:t)PZn’"(s,—t)ds

O r(umn+l) n-pol (" )5k 2Pgg
oo Tl (74 Bl vevreos

_ ¥ I(un+) n-p(n
- pfo rZu+p+I)(_4t) [p]PZP,u(r’t)
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_ I'(u+n+l) n-p I (u+p+l) p-m(p] k+2m

) P-}_-:o ]zl"‘P+I)( ~4t) [p] z TlumiT) “t) [-]r

_ n n I'(utnt+l) n-m k+2m p(n} (p

A = {CO pf-(-l) )] (3.2)

Now consider the inner sum

z SKIKE ! z o))

n-m | T .
_ (_y\m n! (—1) _(-Dn! _ 1[&]
S A s = vl T s AR P
Thus the inner sum is 0 if @ # 0 and 1 if @ = 0 i.e. ifm = n. Thearefore (3.2),
reduces to rk+2n and hence
L
k+2m
,r -t)ds =
IO U(s,r t)Pzn’“(s, ) r

as desired.
The equation (3.1) gives us an inversion formula of (2.5) with m = 2n. We now

derive a generating function for P (r,t)

2n,u
LEMMA 2. ForOSx(O,-ﬂ(t(“,y(%,

2
L] n k r y
z ZT P, (r,t) = r e yt’ k=u-v+ %.
n=0 ™’ 2n,u (1—4yt)"+
PROOF. Let t > 0. Using (2.5) and (2. 3), we have
0 n L] k 2
z Lp, (r,t)= I IU(srt)s 4s
n=0 " MH n=0 °
00 o«
= I U(s,r:t)s b LE—¥2— ds
0 n=0 %
) " 2
= I U(s,r:t)s e Y ds
0
L ktv+y -8 ( y)
_1 2% /4tJ‘ "E ™ [
T’
2
k Ly
_ r eI:Iyt
= ,
(1-a)**T
[8,p.394] as required. The interchange of suunatlon and integration is valid since
1 2.1 2.1 sr
I" vty @Y (or “*"*2 R A
s e I 5T ds < I e ds ( =,
0
If t = 0, the result can easily be computed, since P (r 0) = k+2n. For t < O,
we use the fact that
- .2n—k
Pzn’u(r,—t) =i 2n “(1r ,t) (3.3)

from its representation given in (2.6). The lemma is then proved on the same lines as
for the case t > 0.

Now we give a generating function for W (r t), the Appell transform of
Pén,u(r't)'
LEMMA 3. For t 2 0, |z| <it, andk=p-u+%,
e r k
2 Eiwy, (nb) = [m] H(0,rit+42), (3.4)

n=0
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P
PROOF . Note that W (r t) =0 t] , as n » ®, and hence the series converges
absolutely when |z] < It' U51ng (2.8), we have
© p © n
z _ Levek 1 2 _
E T Wzn'”(r,t) = H"(O,r.t)t A_Y o7 (z/t%) P2n,u(r’ t)
n=0 n=0
2
u+l m
=H(0rt)t xk[ttz] ttz’
- r .
- [FZE] H(0,rit+42),
due to Lemma 2 and making use of the definition of Hu given by (2.9).
If we expand the right hand side of (3.4) by Taylor series in powers of 2z, we

have

o5 myourvan - 3 G0 0" ([ 0,ri]

n=0

On comparing this series with the series on the left hand side of (3.4), we obtain

Wag u(Frt) = 22“[%]n[[§]kﬂ”(o,r:t)]
1
VI e
22n[g_E] H_E] m . r ],

2n—u o t 2
_ 2 k—-u u+l[d ] [ —-tn ]
o o r Io J“(ru)u at) e du

’

n,2n—u v ™ el
_ e 2_ | J”(ru)u2n+”+1e tu g, (3.5)

T (u+]) 0
giving us an integral representation for W (r t).

Also we give other generating functions for the function P2n ”(r,t) and
Appell transform 2n o
proved following a similar analysis as used for the Lemmas 2 and 3 above.

LEMMA 4. For - < t < @ and all complex z,

1
@ 2n Fv 2
ZO n‘.TzZp-l-n+l$ P2n.u(r’t) =zfr e“z
n=

LEMMA 5. For —» < t < « and all complex z,
2n k
I'(u+l) E] ~ [E] .
lr(“.‘,n+]5 [4 wzn’“(r’t) = t H”(z,r.t).

Now we shall prove an important property of the sets of functions P (r t)

I"(sz).

"Zn ”(r,t) and show that they form a biorthogonal system.

THEOREM. For t > O,

0
I'(utn+l)
Jo R CR LA (x,~t)x¥dx = QA o 5_n,

where 6-n is the Dirac—delta function.
PROOF. Using (2.8),
a0
_ ey 2V
jo PZ-’"(x, t)Wzn’"(x, t)x" dx

its

(r,t). We shall simply write down the results, which can be

and
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- jo H (0,x:t)t 20 ¥ Pn. (K0 =t)Py (x,—t)xz"dx
- 1 m-n-u-1 m+n i 2n+l e X /4t u u
t 'm!' (-4
2 ey n'm! (-4) Io L [R]L [a—]dx (3.8)

due to (2.6).
The integral on the right handside of (3.6) with a change of variable can be
written as, (3,p.188].

2u+l u+d [ -y 4 u 2u+l I'(u+n+l
2 t ' = ok utn+l) u+1
'[0 e Ln(Y) L.(Y)dy 2 m t .

Hence the right hand side of (3.8) gives,

I'(u+n+l) n gy
(: ; m!(-4)
_r u+n+1) 2n
TG '4% 8,

as required.

Next we shall establish a generating function for the biorthogonal set

Pz.,”(x,t)wzn’”(x,t).
LEMMA 6. For x, vy, sandt)Oand Izztl < s,
L]
l'(u+l)
nf o' (u+n+l) [1] u(x’t)w2n.u(y’s)’= oz t] H (xz,y:8+z t)

PROOF. Note that the series converges for |z t| < s, using the asymptotic

estimates of the functions P and W, therefore,
2n,u 2n u

S Il

_o n! U‘Z;ﬁmi)[l] u(x't)HZn.u(y’s)

© n f‘u 2

: LD Y p oty f 202 e Ty (yuyau,

=0 2®n!r (u+n+l)
due to (3.5),

v @ utl -su2 “ 1 uzi 2n
[ wte T 2 e [T] Pon,u®rt)
n:

1
v ® 2 2
= 2l T [ uew(s*=0) 3, (xuz)3 (yu)du

0
) y24_’(222

- _2_ G H MY 2], s
s+z 2(s+z"t)

= [ ] H (xz,y:s+z2t),
s+z t u

due to the definition in (2.7).
Now two results on finite sums involving the functions P2n,u and Wzn,“.

LEMMA 7. For t > 0, u > 0, and a complex z,

n m
(_1) n+u . M
I’fo m! {n-—- z (r t) =r (1 4tz)"L [ ]

n
PROOF. By (2.5), Z (1) [“*“ 2, (r,t)

-0 n-m 2n,u

- ; <1) [n+u] I U(s,r: £)s** 2R

= I: U(s,r: t)s ds- .; ¢ .l.z [n—n](
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L
= f U(s,r:t)sk L"(zsz)ds,
0 n

2
-r

1
v . 2
?% rf_ ezt I; sy+l &S /4t I”[sr] L:(zsz)ds

K

(1-4tz)" L”[ zrzt] , (1, p.43],

as required.

A similar result can also be proved involving w2n o
’

LEMMA 8. For t > 0, u > 0 and a complex z,

n k 2
( 1) n+u)] m - r . t—(n+y+1) -r/4t t+4z)"LH
(A ERPNERD 7L o/ " ey ]

4. SERIES REPRESENTATION
In this section we shall establish a series representation of the heat transform

F(r,t) in terms of Laguerre polynomials and confluent hypergeometric functions.

As mentioned earlier, for a suitable f, its heat transform F is given by

*F(r, t) = | us,ri)s*e(sras, t > 0,
0

where F(r,0) = f(r) and rkF(r,t) is a solution of the generalized heat equation

]
THEAOREM: If f(x) = X a ", has a growth [1%] o > 0, then
n=0
0

IIU(s,ir:—t)(s/i)kf(is)ds, <<t
0
rkF(r,t) = l

I U(s,r:t)skf(s)ds, 0<t<o
0
where k = u — v + % .

PROOF. If 0 < t < &, we have
00 L]
rkF(s,t) = I U(s,r:t)sk z ansn ds
0 n=0
] a0 k+n
z a f U(s,r:t)s ds
n=0 0
L]

nfo a Pn’”(r,t),

due to (2.5). The interchange of summation and integration is valid since
L

1 2
* —gg(s+r)
J lU(s,r:t)sk+n|ds < J e ¥t sk+u+n+1/2 ds < =,
0 0

Also, if -6 < t < O,

«©
00

00 . n
| us,iri-t)(s/i)¥ecs)as = [ us,iri-ty(g/)k 2 oplis) ds
0 0 ©0 om0
= 2 a in—k I U(s,ir:—t)sk+nds
0

) fo 8yt Pn’"(1r,*t) = nzo 2, Pn “(r.t),

due to (3.3). Hence the result
Furthermore, for 0 < |t]| < &,
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™
rMF(r,t) = 2 e, P, ().
Or,
KE(e ) = T oa, P, (rt)+ I oa, . P (r,t)
’ =0 2n  2n,u ° n=0 2n+l " 2n+l,u 0
Now making use of the definitions given in (2.5) and (2.6), we obtain
® b f(u+n+§) n+y

_ . n u, 2 2 1, .. rt
F(r,t) = I ay nt(at)” t(-r?/at) + 2 a1 TGET (4t) 'IFI[—n~2-.r+l.—R],

n=0

giving us a representation involving Laguerre polynomial and confluent hypergeometric

function.

If we set a = 0 i.e. u = v - % and k = 0, throughout, most of the results derived

here, reduce to known results given in (4] and [5]. Further, if we set v =0, i.e.

n = 1, the results coincide with those derived in [7].
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