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ABSTRACT. If the natural number n has the canonical form pjlpz ...p:r then

b1 b b
d = Py Py ---P, is said to be an exponential divisor of n if b, |a for i=1,2,...,r.
The sum of the exponential divisors of n is denoted by c(e)(n) n is said to be an
e-perfect number if c(e)(n) = 2n; (m;n) is said to be an e-amicable pair if

o(e)(m) = mtn = c(e)(n), ng
ni+1 = (e)(n )—n Among the results established in this paper are: the density

of the e—perfect numbers is .0087; each of the first 10,000,000 e-aliquot sequences

,nl,nz,... is said to be an e-aliquot sequence if

is bounded.
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1. INTRODUCTION.
If n is a positive integer greater than one whose prime-power decomposition is

given by
a, a a
1 72 r
n=pp, ... b, (1.1)
bl b br
then d is said to be an "exponential divisor" of n if d = P, Py ---P, where bi|a

for i = 1,2,...,r. The sum of all of the exponential divisors of n is denoted by
G(e)(n). This function was first studied by Subbarao [1] who also initiated the
study of exponentially perfect (or e-perfect) numbers.

The positive integer n is said to be an e-perfect number if O(Q)(n) = 2n. If
a(e)(n) = kn, where k is an integer which exceeds 2, n is said to be an e-multi-
perfect number. The properties of e-perfect and e-multiperfect numbers have been
investigated by Straus and Subbarao [2] and Fabrykowski and Subbarao [3]. It has
been proved, for example, that all e-perfect and e-multiperfect numbers are even.
Also, if n is an e-perfect number and 3In then 21 OI n and n > 10618

While it is easy to show that there are an infinite number of e-perfect numbers,
whether or not any e-multiperfect numbers exist is still an open question. Subbarao,
Hardy and Aiello [4] have conjectured that there are no e-multiperfect numbers. They
have proved that any which exist are very large.
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In Section 2 of the present paper the density of the set of e-perfect numbers is
investigated. Section 3 is devoted to a study of e-amicable pairs, integers m and n
such that o(e)(m) = mtn = o(e)(n). Finally, e-aliquot sequences LA EL SRR where
nos o(e)(ni)—ni for i = 0,1,2,... are studied in Section 4.

2. THE DENSITY OF THE e-PERFECT NUMBERS.

By definition, 0'®) (1) = 1 and it is easy to see that o{®) (n) is multiplicative.
Therefore, since o(e)(p) = p if p is a prime, we see that o(e)(m) =m if m is square-
free.

Now suppose that n, as given by (l.1), is a powerful e-perfect number (so that
a, 22 fori=1,2,...,r and o(e)(n) = 2n). Then if (m,n) = 1 and m is squarefree
then o(e)(mn) = 2mn so that mn is an e-perfect number. Therefore, if x is a (fixed)

positive number and n, < n, < ... < n  are the powerful e-perfect numbers which do

1 2
not exceed x then E(x), the set of (all) e~perfect numbers less than or equal to x,

s
is given by E(x) = U Ai where
i=1

= . = S .
Ay {mni.(m,ni) 1, m x/ni and m is squarefree} (2.1)

Let N be a positive integer and let X be a positive real number. If Q(N,X) is
the number of positive, squarefree integers which do not exceed X and which are

relatively prime to N, then E. Cohen (Lemma 5.2 in [5]) has shown that

/2

QN,X) = BN X + 0(8(N) -x'/?) (2.2)

where B(N) = (2(2) T_T (1+1/p))_1 and 8(N) is the number of squarefree divisors of
PIN
N. It is easy to see that 6(N) = TIT 2. (k) is the Riemann Zeta function, so that
PIN
£(2) = 12/6, and the constant implied by the O-term is independent of N and X.
If Q(e,x) is the number of e-perfect numbers which do not exceed x (so that

Q(e,x) is the cardinality of E(x)) it follows from (2.1) and (2.2) that

3 1/2 % 1/2
Qe,x) =x ] B(n,)/n, + 0(x Y 8(n,/n;’%).
i=1 i i i=1 A §
Therefore,
S S
Qe /x = | B/, + 06 M2 T emp/mld. 2.3)
i=1 i=1

The following results concerning powerful numbers will be needed in what follows.

Proofs may be found in Golomb [6].

©

LEMMA 1. If I <, < ... is thesequence of powerful numbers then Z 1/t

2 =1 i

is convergent.
LEMMA 2. If P(X) is the number of powerful numbers not exceeding x then
P(x) < 2.2x'/2
Now let € be a given positive number and let Pi denote the ith prime. There

for large x.

exists a positive integer k such that
2/B, <& - (2207173 (2.4)

where K is the constant implied by the O-term in (2.3).



SOME RESULTS CONCERNING EXPONENTIAL DIVISORS 345

Since there are only a finite number of powerful e-perfect numbers which are
divisible by fewer that k distinct primes (see Theorem 2.3 in {2]) there exists a
positive integer J such that if n, <n, < ... is the sequence of powerful e-perfect
numbers then for all i > J n, has at least k distinct prime factors and n, has a

i
prime factor, say Qi’ such that Qi Z Pk' Since n1 is powerful, nil/2 z llp where the
product is taken over the distinct prime factors of n., and it follows from (2.4)

that if i > J then

6(n)/n,} T|'T 2/p <2/Q, 5 2/7, < €+ (2.207/3, 2.5)
pln
i

Splitting the sum in the O-term in (2.3) at i = J (with J held fixed) we can

J
take x large enough so that x-llz'K' Z e(ni)/nil/2 < g¢f/3. At the same time, since
i=1

every n, is powerful, we see from (2.5) and Lemma 2 that we can also take x large

i
enough so that

s s -
X /2, K- E e(ni)/n}./2 < x’llz' K- z € * (2.2K) 1/3
i=J+1 i=J+1

SVEI O REE 2.2)7Y/3 < e/3.

Finally, since B(ni) < 1 and every ng is powerful we see from Lemma 1 that

z B(n,)/n
i=1 i

of powerful e-perfect numbers is finite or infinite is an open question). It follows

i is convergent. (This series may be finite since whether or not the set

that we can take x (and consequently s) large enough so that the tail of this series

is less that €/3. Therefore, from (2.3)wehave for all large values of x,
lQCe,x)/x -} B(ni)/nil <e . (2.6)
i=1

We have proved
THEOREM 1. Let Q(e,x) denote the number of e-perfect numbers which do not

exceed x and let n, < n, < n, < ... be the sequence of powerful numbers. Then

©

lim Q(e,x)/x = [ Bm)/n; =¢C

X+ i=1

where B(n) = 6w—2 TT (l+1/p)-1. Correct to ten decimal places, C = .0086941940.
pin

(There are eight powerful e-perfect numbers less than 1010: 36; 1800; 2700;
17,424; 1,306,800; 4,769,856; 238,492,800; 357,739,200. The approximate value of C
given above was calculated using these eight numbers).

The "theoretical" density of the e-perfect numbers as given in Theorem 1 agrees
very nicely with the following exact computational results: Q(e,105)/105 = .00871;
Q(e,10%)/10% = .008690; Q(e,107)/107 = .0086940; Q(e,10%)108 = .00869417.
3. EXPONENTIALLY AMICABLE NUMBERS.

We shall say that m and n are exponentially amicable (or e-amicable) numbers if

o) =m+n=0@. (3.1)
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LEMMA 3. If (m;n) is an e-amicable pair and p is a prime, then plm if and

only if pln.
PROOF. Suppose that pallm where a 2 1. Then plo(e)(m) since plo(e)(pa) and
e .
o( ) is a multiplicative function. It is now obvious from (3.1) that p|n. By the

same argument, if pln then plm.

COROLLARY 3.1. If (m;n) is an e-amicable pair then mZn(mod 2).

If (m;n) is an e-amicable pair and there is no prime p such that p|jm and pl|n
we shall say that m and n are primitive e-amicable numbers. It is easy to see that
if (mjn) is a primitive e-amicable pair and r is a squarefree positive integer such
that (m,r) = 1, then (¥rm;rn) is an amicable pair.

A search was made for all primitive e-amicable pairs (m;n) such that m < n and

7

m < 10°. The search required about 1.5 hours on the CDC CYBER 750 and three pairs

were found. They are as follows: (22327 « 1925 22337219); (22327 « 612; 2%3%7%61);
3,22 2 .3,3.2.2

(2737577 - 195 273°5%7°19).

This list suggests the following questions. Are there any odd e-amicable
numbers? Are there any powerful e-amicable numbers? Is every e-amicable number
divisible by at least four distinct primes? (It is easy to show that every e-amicable
number has at least three different prime factors).

The following result can sometimes be used to generate new e-amicable pairs from
known pairs.

THEOREM 2. Suppose that (aM;aN) is an e-amicable pair such that (a,M) = (a,N) =1.
If (b,M) = (b,N) = 1 and o(e)(a)/a = o(e)(b)/b then (bM,bN) is an e-amicable pair.

proOF. o (& bM) = o) + ¢y = a7 (@) + ) = a7 (@am) =0
alb(aM + aN) = bM + bN. Similarly, o'®) (bN) = bM + bN.

The results of a computer search for powerful numbers a and b such that
4 2 a<b 10000 and o(e)(a)/a = o(e)(b)/b are given in Table I.

TABLE I

(¢ (a)/a a b

3/2 2 2352 or 2*112

4/3 3 335

2 2232 233552 o 223352
39/32 28 2’5

5/3 2332 2233 or 2%3%°2
207 272 235272

65/48 273 25

40/21 2%3%7° 223372
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EXAMPLE. Since (22 . 32 o 7 - 192; 22 . 33 . 72 *« 19) is an e-amicable pair and

since 6(® (22722 = @ 2% « nH* - 1?
AR LA I BT TP LI P LI LI
4, EXPONENTIAL ALIQUOT SEQUENCES.

The function s(e) is defined by s(e)(n) = O(e)(n) - n, the sum of the exponential
aliquot divisors of n. s(e)(l) = s(e)(r) = 0 for every squarefree number r and we

define s(e)(O) = 0. A t-tuple of distinct natural numbers (no;nl;...; nt—l) with

it follows from Theorem 2 that

* 19) is an e-amicable pair.

n, = s(e)(ni_l) for i = 1,2,..., t-1 and s(e)(nt_l) = n, is called an exponential

tfcycle. An exponential l-cycle is an e-perfect number and an exponential 2-cycle
is an e-amicable pair. A search was made for all exponential t-cycles with smallest
member not exceeding 107. None with t > 2 was found.

The exponential aliquot sequence (or e-aliquot sequence) { ni} with leader n is
defined by ng = n,n, = s(e)(no), n, = s(e)(ni_l),... . Such a sequence is said to
be terminating if L is squarefree for some index k (so that n, = 0 for 1 > k). An
exponential aliquot sequence is said to be periodic if there is an index k such that
(“k;nk+l;"'; “k+t-l) is an exponential t-cycle. An e-aliquot sequence which is
neither terminating nor periodic is unbounded.

An investigation was made of all aliquot sequences with leader n = 107. About
2.3 hours of computer time was required. 9,896,235 were found to be terminating and
103,765 were periodic (103,694 ended in l-cycles and 71 ended in 2-cycles).

The fact that the first ten million expomential aliquot sequences are bounded
might tempt one to conjecture that the set of unbounded e-aliquot sequences is empty.
However, the following theorem shows that e-aliquot sequences exist which contain
arbitrarily long strings of monotonically increasing terms. Therefore, whether or
not unbounded e-aliquot sequences exist would seem to be a very open and difficult
question.

THEOREM 3. Let N be a positive integer which exceeds 2. Then there exist
infinitely many exponential aliquot sequences such that n, < ny < n, < e <nN_2.

PROOF. Let q):95s--+5 Ay be a sequence of N primes such that q = 2, q, = 3 and
qi](qi+1 + 1) for 1 = 2,3,..., N-1. (Infinitely many such sequences exist since, by
Dirichlet's theorem, the arithmetic progression aqi - 1 contains an infinite number
of primes.) We shall write 941 + 1= Ki q;-
Now let LT ILPERRY be the exponential aliquot sequence with leader ng given by

2
Ry =9y 9, .- Gy Then

N N
2
o) = [T (ay +a)) =3+ qq, ... g0 = ] ] (1 +qp)
0 i=1 i i 172 N i
= 1=2
N-1 2
= 3 - 914y --- Gy ° I | Kiqi N

i=1

and
N-1
c ey mn = (3 : 2 T g2
n =0 (no) ng (3 9,9, -+ 9y Kl cee KN_1 - qN) R 9 -
N-1

Therefore, n, = M T—T q2 where (M,,q,) =1 for 1 = 1,2,..., N-1.
1" 1% 1’9
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Since n0/36 is not squarefree, n, = o(e)(no) -0y = a(e)(36) . o(e)(n0/36) - 1,
=72 - o(® - . -
=72 -0 (n0/36) n, > 72 n0/36 n, 0 -
Similarly, we find that for k = 2,3,..., N-2
N~k 2
n = Mk T—I 9y where (Mk’qi) =1 fori=1,2,..., N-k
i=

=n

and

(e) (e) . (e) _
n =0 (nknl) -m_ ;=0 (36) o (nk_l/36) ol

> 72 - nk_1/36 -n_=m

Therefore, ng < n, < ... < LIS
REMARK 1. e o = 36MN_2 where (6,MN_2) =1. If MN-Z is not squarefree, then

=72« o® - = -
Ny T 720 0T (My ) - 36y, > T2My o - 36My p = 36My, = Ano-
REMARK 2. The proof of Theorem 3 is modeled on that of Theorem 2.1 in [7].
Our next objective is to determine M(o(e) (n)/n), the mean value of o(e)(n)/n.
-1
The mean value of an arithmetic function f is defined by M(f) = lim N n£1 f(n).
N+
We shall need the following lemma due to van der Corput (See Theorem A in [8].)
LEMMA 4. If f and h are arithmetic functions such that f(n) = % h(d) and
® o d|n
z h(n)/n is absolutely convergent then M(f) = Z h(n) /n.
n=1 n=1
We wish to apply this lemma to the function f(n) = o(e)(n)/n. By the Moebius

inversion formula, h(n) = % u(n/d)o(e)(d)/d. h is multiplicative and h(l) = 1.
d|n

If p is a prime and a is a positive integer then h(pa) =o(e)(pa)/pa-c(e)(pa_l)/pa-l.

If a < 6 it is easy to verify that Ih(pa)l < p_a/A. (For example,

Ineh| =7t - p2 < p7t < p74
|h(pa)l _ o(e)(pa)/pa _ 0(e)(pa—l)/pa—l or Ih(pa)l _ 0(e)(pa-l)/pa—l_ o(e)(pa)/pa.
Since O(e)(pm)/pm <1+ p/(p-l)pm/2 (see [2] or [4])and a(e)(pb)/pb 21,

G| < p/p-1)p /2,

Since h is multiplicative, lh(n)l S n

o

) Suppose that a 2 6. Then

Since a 2 6 it follows easily that |h(pa)| < p-a/4.

-1/4 for every positive integer n. It follows

that z h(n)/n is absolutely convergent so that Lemma &4 applies if f(n) = o(e)(n)/n.

n=1
From Theorem 286 in [9] we have

I nm/n =TT (1+hp/p+hepH/p+...}
n=1 P

=TT 0+ 0 @y /p-1) +p720® 02 1p2 - 0 (B /p) + ...}
P

=TT 0] @bt -pt 1 o edh 2
P j=0 3=0

=TTta-phH 7 o®@hpH).
p j=0

Now the last infinite series can be "split up" by first taking all the terms

oo L
with numerator pJ to form the series z pJ/p2j = z I/pj; then taking the remaining
3=0 3=0
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terms with numerators p to form the series 'ZZ p/p2J = p_3 '20 (p-z)J; then taking
3= o =

the terms with numerators p2 to form the series '22 1:v2/p4j = P-6 'z (P_A)J; then
B - H

~ 3 . - @ —6 .
taking the terms with numerators p3 to form the series .22p3/p6J =p ? '20 CIORE
J= J=

etc. It follows that

I hy/m =TT - p b - p h ™+ p3a - o™t
P

n=1

6,-1

4y-1 a-p91ts.n

-9
) +p

+p7 0 - p”

TTta-shHa-pHl+ -+ 68 -9
P

-1

+ (p9 - p3) + ...}

TTa+a-ph
P

From Lemma 4 we have
THEOREM 4. M(o'®my/m) =TT+ a-ph - T ¥ -ph™h-c

-8

Correct to 6 decimal places, C = 2.136571. =

(This approximate value of C was calculated using all primes less than 106 in
the infinite product.)

Since s(e)(n) = o(e)(n) - n we have

COROLLARY 4.1. M(s(®)(n)/n) = .136571.

Finally, since n /n, = s(e)(ni)/ni we see that, in some sense, the average

i+1° 74
value of the ratio of two consecutive non-zero terms of an e-aliquot sequence is

about .136571.
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