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ABSTRACT. If the natural number n has the canonical form Pl P2 "’’Pr then

bl b2 br
is said to be an exponential divisor of n if bilai

for i 2 r.d Pl P2 "’’Pr
The sum of the exponential divisors of n is denoted by o(e)(n), n is said to be an

e-perfect number if o(e)(n) 2n; (m;n) is said to be an e-amicable pair if
(e) (e)

n
2

is said to be an e-aliquot sequence ifo (m) m+n o (n); no,n
(e)

hi+ o (ni)-ni. Among the results established in this paper are: the density

of the e-perfect numbers is .0087; each of the first 10,000,000 e-aliquot sequences

is bounded.
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I. INTRODUCTION.

If n is a positive integer greater than one whose prime-power decomposition is

given by
a a

2
a
r

n Pl P2 Pr (I.I)

b b b
2 r

where b lathen d is said to be an "exponential divisor" of n if d Pl P2 "’’Pr i i
for i 1,2 r. The sum of all of the exponential divisors of n is denoted by

o(e)(n). This function was first studied by Subbarao [I] who also initiated the

study of exponentially perfect (or e-perfect) numbers.

The positive integer n is said to be an e-perfect number if o(e)(n) 2n. If

o(e)(n)" kn, where k is an integer which exceeds 2, n is said to be an e-multi-

perfect number. The properties of e-perfect and e-multiperfect numbers have been

investigated by Straus and Subbarao [2] and Fabrykowski and Subbarao [3]. It has

been proved, for example, that all e-perfect and e-multiperfect numbers are even.

Also, if n is an e-perfect number and 3n then 21101 n and n > 10618
While it is easy to show that there are an infinite number of e-perfect numbers,

whether or not any e-multiperfect numbers exist is still an open question. Subbarao,

Hardy and Aiello [4] have conjectured that there are no e-multiperfect numbers. They

have proved that any which exist are very large.
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In Section 2 of the present paper the density of the set of e-perfect numbers is

investigated. Section 3 is devoted to a study of e-amicable pairs, integers m and n
(e) (e)such that o (m) m+n o (n). Finally, e-aliquot sequences nO,nl,n2

where
(e)

(ni)-n. for i 0,1,2 are studied in Section 4.ni+ 1

2. THE DENSITY OF THE e-PERFECT NUMBERS.

By definition, o(e)(1) and it is easy to see that o(e)(n)" is multiplicative.

o(e (e)
Therefore, since )(p) p if p is a prime, we see that o (m) m if m is square-

free.

Now suppose that n, as given by (I.I), is a powerful e-perfect number (so that

ao 2 for i 1,2 r and o (e)(n) 2n). Then if (m,n) and m is squarefree
1

then o (e)(mn) 2mn so that mn is an e-perfect number. Therefore, if x is a (fixed)

positive number and n < n
2

< < ns are the powerful e-perfect numbers which do

not exceed x then E(x), the set of (all) e-perfect numbers less than or equal to x,
s

is given by E(x) U A. where
1

i=l

A
i {mni:(m,ni) I, m =< x/n.l and m is squarefree} (2.1)

Let N be a positive integer and let X be a positive real number. If Q(N,X) is

the number of positive, squarefree integers which do not exceed X and which are

relatively prime to N, then E. Cohen (Lemma 5.2 in [5]) has shown that

Q(N,X) 8(N)’X + 0(e(N)’XI/2) (2.2)

where 8(N) ((2) (l+I/p)) -I and 8(N) is the number of squarefree divisors of
pl m

N. It is easy to see that 8(N) 2. (k) is the Riemann Zeta function, so that
pl

(2) 2/6, and the constant implied by the O-term is independent of N and X.

If Q(e,x) is the number of e-perfect numbers which do not exceed x (so that

Q(e,x) is the cardinality of E(x)) it follows from (2.1) and (2.2) that

s 1/2Q(e x) x B(ni)/ni + 0(xl/2
s
[ 8 (ni/ni ).

i=l i=l

Therefore,

s -I/2 s I/2Q(e,x)/x [. 8(ni)/ni + 0(x [ 8(ni)/ni ). (2.3)
i=l i=l

The following results concerning powerful numbers will be needed in what follows.

Proofs may be found in Golomb [6].

LEMMA I. If r < r
2

< is thesequenceofpowerful numbers then I/r
i

i=l
is convergent.

LEMMA 2. If P(X) is the number of powerful numbers not exceeding x then
1/2P(x) < 2.2x for large x.

Now let e be a given positive number and let Pi denote the ith prime. There

exists a positive integer k such that

-I2/P
k

e (2.2K) /3 (2.4)

where K is the constant implied by the 0-term in (2.3).
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Since there are only a finite number of powerful e-perfect numbers which are

divisible by fewer that k distinct primes (see Theorem 2.3 in [2]) there exists a

positive integer J such that if n < n
2

< is the sequence of powerful e-perfect

numbers then for all i > J n. has at least k distinct prime factors and n
i

has a
l I/2

prime factor, say Qi’ such that Qi Pk" Since ni is powerful, n
i

Hp where the

product is taken over the distinct prime factors of ni, and it follows from (2.4)

that if i J then

8(ni)/ni pn 2/p < 2/Qi-<- 2/Pk
< e’(2.2K)-I/3. (2.5)

i

Splitting the sum in the O-term in (2.3) at i J (with J held fixed) we can

-I/2
J I/2 < e/3 At the same time, sincetake x large enough so that x -K- . 8(ni)/ni

i=l
every n

i
is powerful, we see from (2.5) and Lemma 2 that we can also take x large

enough so that

-1/2 s 112 s
x K" " 8(ni)/nI/21" < x- K- (2.2K)-I/3

i=J+l i=J+l

-I
-I/2 P(x)" e" (2.2) /3 < /3.

x

Finally, since 8(ni) < and every n
i

is powerful we see from Lemma that

8(ni)/ni is convergent. (This series m_ be finite since whether or not the set
i=l

of powerful e-perfect numbers is finite or infinite is an open question). It follows

that we can take x (and consequently s) large enough so that the tall of this series

is less that e/3. Therefore, from (2.3wehave for all large values of x,

IQ(e,x)/x 8(ni)/nil < e (2.6)
i=l

We have proved

THEOREM I. Let Q(e,x) denote the number of e-perfect numbers which do not

exceed x and let n n2
< n

3
< be the sequence of powerful numbers. Then

lira Q(e,x)/x [ 8(ni)/ni C
x+ i=l

where 8(n) 6w
-2

__
(l+I/p) -I Correct to ten decimal places C 0086941940

(There are eight powerful e-perfect numbers less than I010: 36; 1800; 2700;

17,424; 1,306,800; 4,769,856; 238,492,800; 357,739,200. The approximate value of C

given above was calculated using these eight numbers).

The "theoretical" density of the e-perfect numbers as given in Theorem agrees

very nicely with the following exact computational results: Q(e,105)/105 .00871;

Q(e,106)/106 .008690; Q(e,107)/lO7 .0086940; Q(e,108)108 .00869417.

3. EXPONENTIALLY AMICABLE NUMBERS.

We shall say that m and n are exponentially amicable (or e-amlcable) numbers if

(e) (3 I)o (e)(m) m + n o (n).
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LEMMA 3. If (m;n) is an e-amicable pair and p is a prime, then plm if and

only if

PROOF. Suppose that pa Im where a I. Then plo (e)(m) since plo (e)(pa) and
(e)

o zs a multiplicative function. It is now obvious from (3.1) that pln. By the

same argument, if pln then

COROLLARY 3.1. If (m;n) is an e-amicable pair then mn(mod 2).

If (m;n) is an e-amicable pair and there is no prime p such that pllm and

we shall say that m and n are primitive e-amicable numbers. It is easy to see that

if (m;n) is a primitive e-amicable pair and r is a squarefree positive integer such

that (m,r) i, then (rm;rn) is an amicable pair.

A search was made for all primitive e-amicable pairs (m;n) such that m < n and

m 107. The search required about 1.5 hours on the CDC CYBER 750 and three pairs

were found. They are as follows: (22327 192", 22337219); (22327 612; 22347261);
(2332527 19 2333527219).

This list suggests the following questions. Are there any odd e-amicable

numbers? Are there any powerful e-amicable numbers? Is every e-amicable number

divisible by at least four distinct primes? (It is easy to show that every e-amicable

number has at least three different prime factors).

The following result can sometimes be used to generate new e-amicable pairs from

known pairs.

THEOREM 2. Suppose that (aM;aN) is an e-amicable pair such that (a,M)--(a,N)= I.

If (b,M) (b,N) and o (e) (a)/a o(e)(b)/b then (bM,bN) is an e-amicable pair.
(e)PROOF. o(e) (bM) o (e) (b) o (e) (M) a-lb( (e) (a) o (e) (M) a- bo (aM) o

-1
ba (aM + aN) bM + bN Similarly, o (e)(bN) bM + bN

The results of a computer search for powerful numbers a and b such that

4 -<- a < b < I0000 and o(e)(a)/a o(e)(b)/b are given in Table I.

(e)(a)/a

3/2

413

39/32

5/3

12/7

65/48

40/21

TABLE I

22

32

2232

26

2332

2272

2732

233272

2352 or 2411

3352

233552 or 223352

2752

2233 or 233352

235272

2633

22337,2
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EXAMPLE. Since (2
2

3
2

7 19
2

2
2

3
3 27 19) is an e-amicable pair and

since (e)(22)/22 (e)
2
4 2

2
4 12o )/ it follows from Theorem 2 that

(2 4 II 2 3
2

7 19-2; 2
4 112 3

3 7
2 19) is an e-amicable pair.

4. EXPONENTIAL ALIQUOT SEQUENCES.

The function s(e) is defined by s
(e) (n) o

(e) (n) n, the sum of the exponential

a.liquo.t divisors of n. s(e)(1) s(e)(r) 0 for every squarefree number r and we
(e)

define s (0) 0. A t-tuple of distinct natural numbers (no;n nt_ I) with

ni s(e) (e)
(ni_ I) for i 1,2 t-I and s (nt_ I) no is called an exponential

t-cycle. An exponential l-cycle is an e-perfect number and an exponential 2-cycle

is an e-amicable pair. A search was made for all exponential t-cycles with smallest

member not exceeding 10
7 None with t > 2 was found

The exponential aliquot sequence (or e-aliquot sequence){ n
i

with leader n is

(e)
(no) ni s(e)defined by nO n,n s (hi_ I) Such a sequence is said to

be terminating if n
k

is squarefree for some index k (so that n
i

0 for i > k). An

exponential aliquot sequence is said to be periodic if there is an index k such that

(nk;nk+l;... nk+t_ I) is an exponential t-cycle. An e-aliquot sequence which is

neither terminating nor periodic is unbounded.

An investigation was made of all aliquot sequences with leader n -< 107. About

2.3 hours of computer time was required. 9,896,235 were found to be terminating and

103,765 were periodic (103,694 ended in l-cycles and 71 ended in 2-cycles).

The fact that the first ten million exponential aliquot sequences are bounded

might tempt one to conjecture that the set of unbounded e-aliquot sequences is empty.

However, the following theorem shows that e-aliquot sequences exist which contain

arbitrarily long strings of monotonically increasing terms. Therefore, whether or

not unbounded e-aliquot sequences exist would seem to be a very open and difficult

question.

THEOREM 3. Let N be a positive integer which exceeds 2. Then there exist

infinitely many exponential aliquot sequences such that no < n < n
2

< < nN_2.
PROOF. Let ql,q2,..., qN be a sequence of N primes such that ql 2, q2 3 and

2qil (qi+l + I) for i 2,3 N-I. (Infinitely many such sequences exist since, by
2

Dirichlet’s theorem, the arithmetic progression aqi contains an infinite number
2

of primes.) We shall write qi+l + K
i qi"

Now let n0,nl,n2,.., be the exponential aliquot sequence with leader no given by
2 2 2no ql q2 qN" Then

N N

(e)(n0) (qi + q2i) 3 qlq2 qN (I + qi
i=l i--2

N-I
2

3 qlq2 qN Kiql
i=l

and
N-I

nl o(e) 2
(no -no (3 qlq2 qN K1 -I- qN2) qi

i=l
N-I

Therefore, n M ql where (Ml,qi) for i 1,2 N-I.
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Since n0/36 is not squarefree, n o (e)(no no o

72 o(e) (n0/36) no > 72 n0/36 no no

and

(e)(e)(36) o (n0/36) no

Similarly, we find tha for k-- 2,3 N-2

N-k
2

nk = qi where (,qi) for i 1,2 N-k

(e) (e) (e) /36)n
k

o (nk--1) nk-1 (36) (nk-1 nk-1

> 72 n. /36 nk_ nk_K-I

Therefore, n < n < <
o nN-2

REMARK I. nN_2 36_2
where (6,_2) I. If -2 is not squarefree, then

(e)
nN_ 72 o (_2) 36%_2

> 72_2 36%_2 36_2 --nN_2.
REMARK 2. The proof of Theorem 3 is modeled on that of Theorem 2.1 in [7].

Our next objective is to determine M(o (e) (n)/n), the mean value of o
[e)""(n)/n.

-I N
The mean value of an arithmetic function f is defined by M(f) lim N g f(n)

n--
N+

We shall need the following lemma due to van der Corput (See Theorem A in [8] .)

LEMMA 4. If f and h are arithmetic functions such that f(n) h(d) and
d|n

h(n)/n is absolutely convergent then M(f) [. h(n)/n.
n=l n--i

(e)We wish to apply this lemma to the function f(n) o (n)/n. By the Moebius

inversion formula, h(n) (n/d)o (e)(d)/d. h is multiplicative and h(1) I.
dn|

If p is a prime and a is a positive integer then h(pa) =o(e)(pa)/pa-o(e)(pa-l)/pa-l.
-a/4If a < 6 it is easy to verify that lh(pa) < p (For example,

-I -2 p-3/4lh(p3) p p < p- < .) Suppose that a -> 6. Then

lh(Pa) o(e) (pa)/pa o(e) (pa-1)/pa-1 (e) (e)
or Ih(pa) (pa-)/pa- (pa)/pa.

Since o(e)(pm)/pm < + p/(p-1)pm/2 (see [21 or [41)and o(e)(pb)/pb l,
-el4"’hpa)[ < p/(p-l)p (a-l)/2. Since a -> 6 it follows easily that -lh(pa) < p

Since h is multiplicative, lh(n) n
-I/4

for every positive integer n. It follows

that [. h(n)/n is absolutely convergent so that Lemma 4 applies if f(n) o(e)(n)/n.
n--I
From Theorem 286 in [9] we have. h(n)/n - {I + h(p)/p + h(p /p2 + ...}

n=l p

T-[ {l+p-l(o
P

[ o(e)(pj)ip2j p-I [ o
p =0 j =0

{(I p-l) o(e)(pj)/p2j}.
p j=O

(e) (p) ip_l) +p-2(o(e)(p2)Ip2-o(e)(p)Ip) +...}

(e) (pj)/p2j

Now the last infinite series can be "split up" by first taking all the terms

with numerator pJ to form the series I pj/p2j I i/pJ; then taking the remaining
j --0 =0



SOME RESULTS CONCERNING EXPONENTIAL DIVISORS 349

2j p-3 (p-2terms with numerators p to form the series [ p/p . )J; then taking
j=2 j=0

2 p-6the terms with numerators p to form the series p2/p4j (p-4) then
0=2 =0

3 3 p6j -9 p-6taking the terms with numerators p to form the series . p p .
=2 --0

etc. It follows that. h(n)/n {(I p-I
n=l p

)((1 p-1)-1 + p-3(1 p-2)

-6 p-4 -I p-9 -I
+ p (I + (I p-6) + ...)}

-1

-I -I -i -I 6 p2 -I= {(i p )((I p + (p3 p) + (p

P

+ (p9_ p3)-I + ...)}

-I 3j pj -I=]--[" {1 + (1- p >’. (p
p j=l

From Lemma 4 we have
-I 3j pj -I

THEOREM 4. M(o(e)(n)/n) {I + (I p (p C.
p j=l

Correct to 6 decimal places, C 1.136571.

(This approximate value of C was calculated using all primes less than 106 in

the infinite product.)

Since s(e)(n)" o[e)(n)" n we have

COROLLARY 4.1. M(s(e)(n)/n)" .136571.

Finally, since ni+i/ni s(e)(ni)/ni we see that, in some sense, the average

value of the ratio of two consecutive non-zero terms of an e-aliquot sequence is

about .136571.
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