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ABSTRACT. For a separated proximity space, a decomposition of the Stone-Cech compacti-

fication is presented which produces the Smirnov compactification and its basic

properties by elementary arguments without recourse to clusters or totally bounded

uniformities.
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I. INTRODUCTION.

It has long been recognised that

(i) every T2 compactification of a T31/2 topological space can be obtained as a

quotient space of its Stone-ech extension, and

(ii) every (separated) proximity space can be densely embedded in a compact proximity

space, its Smirnov compactification;

see, for example, [I] and [2]. The purpose of this note is to present an explicit

construction whereby the Smirnov compactification can, as is implicit in the above

results, be derived from the Stone-6ech. Since it is markedly simpler than the construc-

tions usually employed, the procedure has pedagogical utility in addition to its intrinsic

interest; the author has found it to be of considerable convenience in giving a brief

introduction to proximity space theory to final year undergraduates who had completed a

course in general topology.

2. CONSTRUCTION.

Given a separated proximity space (X,6), with associated T3 topological space

(X,(6)) regarded as a (topological) subspace of its Stone-ech compactification X, let

S and int(S) denote the closure and interior in the space X of a subset S (of X or of

BX). Recall the notation A<< B to mean A X B (for subsets A, B of X). The construc-

tion proceeds by identifying points of X whenever they are indistinguishable (in a

natural sense) from" within (X,6). We begin by observing the following result, generally
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obtained as a consequence of the Smirnov compactlfication (see, for example, [2,

Theorem 7.12]), but which to avoid circularity can be obtained by an argument like

that which establishes Urysohn’s lemma.

LEMMA i. If A B then there is a continuous mapping f: X [0,i] taking the values

0 and throughout A and B, respectively.

PROPOSITION i. The binary relation % defined on 8X thus:

p % q if and only if there do not exist subsets A,B of X

such that p e A, q e B, A B is an equivalence relation.

PROOF. Reflexivity follows from Lemma since the continuous extension over 8X of

such an f will map A and B to 0 and i, implying A N B .
Symmetry is immediate. For transitivity, suppose if possible that p % q, q % r and

p r, and choose subsets A,C and B of X so that p e A, r e C, A C, A B, X B C.

Since q e B U X B this contradicts either p % q or q % r.

Now for each p e 8X denote by 8(p) the equivalence class containing p, and by aX

the set of all these equivalence classes, so that 8 becomes a mapping from 8X onto aX.

Gie X the quotient topology induced by 8, and we have immediately that

8 is continuous, X is compact, 8(X) is dense in oX. (2.1)

In the investigation of this quotient space it will be helpful to know that 8 is

closed mapping and thus the decomposition is upper semi-continuous, which is the point

of Lemma 4 below. We first establish an alternative characterization (Lemma 3) of the
relation %.

LEMMA 2. If A B in (X,6) then A c int(B) in 8X.

PROOF. This is almost immediate from Lemma i.

LEMMA 3. For p, q e 8X,

p q if and only if there are neighbourhoods Np of p, Nq of q (in 8X)

such that N X N 0 X.
P q

PROOF. If such neighbourhoods exist then p e N X and q e N X, hence p q.
P q

Conversely if p q choose A, B c X so that p e , q e and A B. Using [2, Cot.

3.5 and Lemma 2.8] we may find closed subsets C,D of X such that A C, B D and C D:

then Lemma 2 shows that C and D are neighbourhoods of p and q whose traces on X are not

6-related.
-i

LEMMA 4. Let A be a closed subset of 8X; then so is 8 (8(A)).
-1

PROOF. If not, then there is a point u in the closure of 8 (8(A)) with the property

that for each a e A, 8(u) 8(a): so that by Lemma 3 we can find open neighbourhoods

U of u and N of a with U X N 0 X. Now the open cover {N a e A} of compacta a a a a
A has a finite subcover, say {Na(1), Na(2) Na(n)}; and the neighbourhood Ua(i) Ua(2)

-I(8(A)) in at least one point v, where v % a’ for.. 0 U of u must intersect 8a(n)

some a’ e A. Then (for some j between and n) a’ Na(j), so that Ua(j) and A(j) are

neighbourhoods of v and a’, repectively, whose traces on X are not 6-related, giving

the contradiction v a’.
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Standard quotient-space results obtain from Lenna 4 the following, where cl

denotes closure in the space oX:

8 is closed, oX is T2, and for each subset A of X

we have 8(A) cl(8(A)). (2.2)

Being a compact T2 space by (2.1) and (2.2), oX possesses a unique compatible

proximity, the relation A between its subsets given by

C A D if and only if el(C) n el(D) .
It remains to examine the way in which 8 embeds (X,6) into (oX,A), beginning with the

following observation which establishes that 8 acts injectively on X:

LEMMA 5. For each x e X, 8(x) {x}.

PROOF. Consider any z in 8X distinct from x. If we choose a closed neighbourhood

Z of z not including x, then X N (SX Z) is an open neighbourhood in X of x, so

{x} X (X n (SX Z)) X N Z. Since x e {x} and z e X 0 Z this gives x z.

The final verificational step in the construction is to check that 8 is a proximity-

isomorphism between (X,6) and the proximity subspace 8(X) of (oX,A):

PROPOSITION 2. For subsets A, B of X,

A 6 B if and only if cl(8(A)) cl(8(B)) .
PROOF. If there exists y in cl(8(A)) cl(8(B)) then (2.2) shows that we can find

p e A, q e B such that y 8(p) 8(q); and since p q we get A 6 B.

Conversely, suppose that A 6 B. We observe that the family of sets {A N C C B}

possesses the finite intersection property, whence the compactness of 8X guarantees that

it contains a point p which is common to their closures. For each neighbourhood N of p

in 8X, N 0 X 6 B (since otherwise B X N, and the choice of p yields a contradiction).

It follows that the family

{B 0 M M N 0 X, N a variable neighbourhood of p}

also possesses the finite intersection property. A second appeal to compactness produces

q e 8X common to their closures. Thus

each neighbourhood of q meets every such set B M. (2.3)

Now if p,q were not %-related we would be able to find neighbourhoods P,Q (respecti-

vely) of them such that P N X Q X; however, this gives us X Q >> P 0 X from which

(2.3) produces the contradiction that Q intersects B N (X Q). Hence p % q i.e. 8(p)

8(q). Since p e A and (via (2.3)) q e B we now see using (2.2) that

ep; e(A) n O(B) cl(e(A)) n cl(O(B)).

Snmarizing, we have seen that oX is a compact (separated) proximity space possessing

a dense subspace which is isomorphic to X; that is,

TKFOREM. (oX, A) is the Smirnov compactification of (X,6).
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NOTE. The above procedure, in addition to constructing the Smirnov compactification,

provides a convenient base from which to establish its fundamental properties. For

example, let there be given a proximity mapping f from (X,6) into a compact separated

proximity space (Y,6’); and denote by f* the continuous extension of f over 8X. It is

routine to confirm that the formula

f(e(x)) f*(x)

gives a well-defined and continuous mapping fo from oX to Y, so f has a proximity

mapping extension over X. The essential uniqueness of the Smirnov compactification can

be proved merely by checking that if (Z,6") is any compact separable proximity space

containing X as a dense subspace then the extension over oX of the inclusion of X in

E is injective; and virtually the same argument shows that, given a T2 compactification

7X of a topological space X, the Smirnov compactification of X under the proximity

induced by X is indistinguishable from X itself: whence the one-to-one correspondence

between compatible proximities and T2 compactifications follows.
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