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ABSTRACT. The study of waves at the interface of two superposed fluids due to the

presence of a vertical body of revolution requires the consideration of potentials

due to horizontal ring sources submerged in one of the fluids. In this paper, the

velocity potentials in the two fluids are computed due to a horizontal ring of sources

of time-dependent strength submerged in either of the fluids of a two-fluid medium

that are separated by an inertial surface.

KEVS WORDS AND PHRASES. Two-fluid medium, disconnected mat, inertial surface,
vocity potential, time-dependent strength, ring source.
1980 AMS SUBJECT CLASSIFICATION CODE. 76B.

I. INTRODUCTION.

The velocity potential due to a two-dlmensional wave source of time-dependent

strength submerged in a fluid of infinite depth with an inertial surface was obtained

by Rhodes-Robinson [i]. Mandal and Kundu [2] extended this to the case of finite

depth of the fluid and also obtained potentials due to other types of singularities

present in the fluid.

Problems dealing with the generation of internal waves at the surface separating

the two fluids due to the presence of a vertical body of revolution in either of the

fluids can be formulated in terms of a suitable distribution of ring wave sources

around the body as is done for a single fluid [3].

The potential due to a ring of wave sources of constant unit strength in an

unbounded fluid has the form

#o(r,y) 2a I exp {-kly-n J (kr) Jo(ka) dk
o

o

where a is the radius of the ring, r is the distance from its axis, y-axis is

taken as the axis of the ring [cf. [3]]. We note that o is singular at points on

the ring. Instead of an infinite fluid we now consider a fluid with a free surface

or an inertial surface, or two superposed fluids separated by a horizontal plane

which may or may not be an inertial surface where the ring source is submerged in

either of the fluids. Then the resulting potential at any point will consist of o
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together with an image potential due to the FS for a single fluid medium or due to

the SS for a two fluid medium which is regular everywhere. This idea will be used

here in obtaining the potentials due to a ring of sources.

In the present paper we obtain the velocity potentials due to a horizontal ring

of wave sources of time-dependent strength submerged in one of the fluids of a two-

fluid medium separated by an inertial surface composed of a thin uniform distribution

of disconnected materials. The upper fluid extends infinitely upwards while the lower

fluid is of finite constant depth.

2. MATHEMATICAL FORMULATION OF THE PROBLEM.

We consider the irrotational motion of two inviscid incompressible fluids with

01 and 02 (<01 as the densities of the lower and upper fluids respectively. The

two fluids are separated by an inertial surface composed of a thin uniformly distri-

buted disconnected material of area density (01 02) nder the action of gravity.

The special case of an ordinary surface of separation corresponds to E 0. The

motion is due to a horizontal ring of wave sources of time-dependent strength

submerged in either of the fluids.

We use a cylindrical co-ordinate system (r,0,y) in which y-axis is taken

vertically downwards and passes through the centre of a ring of wave sources each of

strength m(t) submerged in either of the fluids and the plane y 0 is the posi-

tion of the inertial surface at rest. The lower fluid is of infinite horizontal

extent and bounded by a horizontal bottom at some finite constant depth h while the

upper fluid is otherwise unbounded. We assume the motion starts from rest from the

instant when the sources on the ring simultaneously start operating. Thus the motion

is irrotational and can be described in each fluid by a corresponding potential

function. The linearized description thus involves a pair of velocity potentials

l(r,0,y,t), 2(r,8,y,t) which satisfy Laplace’s equation in lower and upper fluid

regions respectively except at points on the ring in the appropriate situation. The

linearized kinematic equations are-- on y--O

where (r, 0, t) denotes the inertial surface depression below the mean position.

Since the surface of separation of the two fluids is covered with disconnected

particles of surface density (01 02 Newton’s equation of motion for one of

these particles is then

(01-02) E 02(-t2 + g) 01(-t + g) + (01-02)g on y 0 (2.2)

By eliminating l in (2.1) and (2.2) we obtain

2 i I 2 2 2
t2 (I Ey gy s t2 (2 gy g on y 0

Also the bottom and top conditions satisfied by i and 2 resepctively are

(2.3)
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3y
0 on y h

and (2.4)

+0 as y+V2

It may be noted that for a ring source with the time harmonic strengths of the same

angular frequency the inertial SS condition (2.3) becomes

KI + (I Ke) -y s K2
+ (I Ke) on y 0 (2.5)

02
where K For 0 Ke < the form of (2.5) is

g

K*I +-y s(K*2 + on y 0 (2.6)

where K* K(I eK) -I. This is merely a modification of the usual SS condition

[4] corresponding to e 0. However as noted in [I], for Ke -> the condition

(2.5) does not allow propagation of time-harmonlc progressive waves.

Let i(r,0,y,p) denote the Laplace transfo of i(r,0,y,t) (i 1,2) defined

as

I exp(-pt) i dr (p > 0)
O

then i’s (i 1,2) satisfy the BVP described by

V2l =0

V2 2 0 y < 0

except at points on the ring in the appropriate situation,

on y 0

2 2 3#I #2
(g + ep y s {p2 2 (g + ep2) uy-ETT-- on y 0 (2.9)P

(2.8)

3
3y 0 on y h

IV 21 0 as y

(2.10)

i(i 1,2) can be obtained in a manner analogous to the corresponding tlme-harmonic

problems in a two-fluid medium. Laplace inversion will then give i (i 1,2).

3. RING SOURCE SUBMERGED IN LOWER FLUID.

(i) Ring Source. Let the centre of the ring source be at a distance f from

the mean inertial SS and the radius of the ring be a. In this case i’ 2 are

solutions of the BVP stated above with

2 2} 1/2/ 0.i (p) o as (r-a) + (y-f)
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where (p) is the Laplace transform of the tlme-dependent strength m(t). We can

write

i o 2a f exp {-k(y+n) Jo(kr) Jo(ka) dk
o

+ f A(k) cosh k(h-y)+ B(k) sinh ky J (kr) Jo(ka) dk
o

o

2 f C(k) exp (ky) Jo(kr) dk,
o

where A(k), B(k), C(k) are to be obtained by using the two SS conditions (2.8)

and (2.9) and the bottom condition (2.10).

The final results after rearrangement take the forms

2

I [U(r 8,y)+4a f cosh k(h-y)cosh k(h-n)
j (kr)Jo(ka) dk]

D(k) slnh kh o
o 2+p2

2

2 [V(r,8 y)-4va f e.xpy)-"--- cosh k(h-)
j (kr)Jo(ka) dk]

D(k) o
o l2+p2

where

U(r,e,y) 2a [{exp (-k IY-I) -exp (-k ly+l)
o

2 {s(l-ke) + ke}
D(k) cosh kh

cosh k(h-y) cosh k(h-n)

+ 2 exp(-kh) slnh k sinh k
cosh kh

J (kr) Jo(ka) dk]
o

(3.1)

V(r e y) 4a f exp(ky) cosh k(h-n)
D(k)

o
J (kr) Jo(ka) dk
o

(3.2)

D(k) cosh kh + {s(l-ke) + ke} sinh kh (3.3)

2
g k(l-s) sinh kh/D(k). (3.4)

Laplace inversion then gives

I m(t)U+ 4a f cosh k(h-y) cosh k(h-n)
D(k) sinh kh Jo(kr) Jo(ka)f re(z) sin (t-z) d dk,

o o

t

2 m(t)V-4wa f exp(ky) cosh k(h-n)
j (kr) Jo(ka) f m(z) sin (t-) dz dk (3.5)

D(k) o
o o

Now we consider three particular forms of the ring source strength, viz. it is

i) impulsive in nature at the initial instant but otherwise zero,

ii) constant in nature and

iii) time-harmonic in nature.



RING SOURCE POTENTIALS IN TWO SUPERPOSED FLUIDS 539

For the impulsive case m(t) (t), and the corresponding potentials are

l(0)=(t)U + 4a f
p cosh k(h-n)D(k)sinhCShkhk(h-Y) Jo(kr) Jo(ka) sin pt dk,

o

2(0)=6(t)V_4a f exp(ky) cosh k(h-n)
j (kr) Jo(ka) sin t dk.

D(k) o
o

(3.6)

The potentials for the classical ring source of constant strength m(t) are

i (I)= U+ 4a f
o

2 (1)= V-4ra /.
o

cosh k(h-n) cosh k(h-) (1-cos t) J (kr) Jo(ka) dk,
D(k) sinh kh o

(ky)exp cosh k(h-) J (kr) Jo(ka) (I- cos dk
D(k) o

(3.7)

For time-harmonic case m(t) sin ot, and the velocity potentials are then given by

sin ot U+4a I p cosh k(h- n) cosh k(h-y) j (kr) Jo(ka)
sin ot -o sin tdk (3.8)

D(k) sinh kh o
o p2 02

2)= sin ot V-4wa /. exp(kx) cosh k(h-n) J (kr) Jo(ka) v sin ot o sin t dk.
D(k) o 2 2

O O

Now to obtain the forms of these latter potentials for large time, following [I]

we introduce in the integrals involving sin pt a Cauchy principal value k k

which is the positive zero of A(k) where A(k) {k(l-s)(l-K)-Ks}sinh kh- K cosh kh

when 0 K < I.

Hence as t using the Riemann Lebesgue Lena as in [1] we obtain after

simplification

2) 2a sin ot [/. {exp(-kly-n I) -exp (-kly+nl)} Jo(ka) Jo(kr) dk
o

J (ka)
o+ 2 f exp(-kh) sinh kn sinh ky cosh kh Jo(kr) dk +

o

k(l-s)(l-K)-Ks cosh k(h-n) cosh k(h-y) Jo(ka) Jo(kr) dk
+2/"

o A(k) cosh kh

cos ot
82a ko cosh ko(h-n) cosh ko(h-y) Jo(koa) Jo(kor)

sinh 2k h + s cosh 2k*h + 2k h 2s
o o o

r > a,

2) 4a K sin ot I exP(kY) cosh k(h rl) J (ka) Jo(kr) dk
o (k) o

82a ko exp(koY) cosh ko(h-n) Jo(koa) Jo(kor)
+ cos ot , , , r > a,

stnh 2k h + s cosh 2k h + 2k h 2 s
o o o

(3.9)

These have the usual outgoing behavoiurs as r

When KE I, there is no zero of A(k) for k > 0. Then by Riemann-Lebesgue

lemma the integrals involving sin t in (3.8) are wholly transient and after
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simplification we obtain

2) 2a sin at f {exp(-klY-nl)- exp(-klY+l)} Jo(ka) Jo(kr) dk
o

J (ka)
o+ 2 f exp(-kh) sinh k sinh ky
cosh kh Jo(kr) dk

o

{k(l-s)(K-l)+Ks} cosh k(h-) cosh k(h-y) Jo(ka) Jo(kr) dk
-2 I

o A(k) cosh kh

exp(ky) cosh k(h-n) J (ka) Jo(kr)o2) 4a K sin ot f A(k)
o

dk. (3.10)

(ii) Ring Source Submerged in Upper Fluid. In this case the centre of the ring

is situated at the point (0,0,-f) in the upper fluid. Thus the boundary value

problem for I and 2 in this case is given be equations (2.7) to (2.10)

supplemented by the condition

$2 o as {(r_a)2 + (y+f)2} 0.

For solution we try as

I-- f {A(k) cosh k(h-y)+ B(k) sinh ky J (kr) Jo(ka) dk
o

o

$2-- o- 2a f exp {-k(y+n)} Jo(kr) Jo(ka) dk + f C(k) exp(ky) Jo(kr) dk.
o o

Then as in case (i) we obtain

I m(t)W(r 0,y) + 4as f exp(-kn) cosh k(h-y..).
D(k)

o

t

Jo(kr) Jo(ka) f m(T) sin (t-T) dT dk,
o

2 --m(t)Z 4as I " exp {k(y-n)} sin.h kh
D(k)

o

t

Jo(kr) Jo(ka) f re(T) sin (t-T) dT dk,
o

(3. II)

(3.12)

where

W(r e,y) =-4as I exp(-..kn) cosh k(h-y) J (kr) Jo(ka) dkD(k) o
o

(3.13)

Z(r,0,y) 2a f {exp(-klY-nl) -exp(-klY+nl)} Jo(kr) Jo(ka) dk
o

-2 f exp{k(y-n)} {cosh kh+ke(l-s)sinh kh} J (kr) Ko(ka) dk]. (3 14)D(k) o
o
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For different source strengths the potentials for the ring source can be calculated

as in the prevoius case (i).

4. DISCUSSION.

Ring source potentials present in one of the fluids of a two-fluid medium

separated by an inertial surface are obtained for time-dependent source strengths.

The effect of interfacial tension at the surface of separation is neglected. Known

results for the one-fluid medium can be made evident by substituting s 0. Putting

s 0 and e 0 simultaneously in (3.9) the result can be identified with that

obtained in [5]. The results however can be extended to include the effect of surface

tension at the surface of separation.
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