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ABSTRACT. Let C[C,D], -I<D<C<I denote the class of functions g,g(O) 0

g’ (O)=I, analytic in the unit disk E such that -(zg’ (z))
is subordinate

I+CZ g (z)
to I+DZ’ zgE. We investigate some classes of Alpha-Quasi-Convex Func-

tions f, with f(O)=f (O)-I=0 for which there exists a gEC[C,D] such that
f’ (z) (zf’ (z)) I+AZ _I<B<A<I Integral rep-(l-a)g- + g(z is subordinate to I+BZ’

resentation, coefficient bounds are obtained. It is shown that some of

these classes are preserved under certain integral operators.
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1. INTRODUCTION

Let S,K,S and C denote the classes of analytic functions f:
n

f(z)=z a z which are respectively univalent, close-to-convex, starlike
n

2(wit=respect to the origin) and convex in the unit disc E. In [i], a

new subclass C of univalent functions was introduced and studied. A

function f belongs to C if there exists a convex function g such that,

for zgE,
(zf’ (z))

Re >0.g’(z)

The functions in C are called quasi-convex functions and C_C ._KCS.

It is also sknown that fgC if, and only if, zf’EK. For complete study

of C see Noor [2].

A new class Q of a-quasi-convex functions has been defined and dis-

cussed in some details in [3]. A function f belongs to the class Qe,a
real, if and only if there exists a convex function g such that, for zeE

Re (l-a)
f’ (z)

+ a
(zf’ (z)) > 0 (i.I)g’ (z) g’ (z)

CWe note that Q0 K and Q1
In [4] Janowski introduced the calss P[A,B]. For A and B, I<E<A<I,

a function p, analytic in E with p(0)=l belongs to the class P[A,B],if p(z)
I+AZ

is subordinate to
I+BZ Also, given C and D, -I<D<C<I,_ C[C,D] and S [C,D]
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denote the classes of functions f analytic in E with f(z)=z + a z
n

n
n=2

such that
(zf’ (z)) ePIC,D] and

zf’ (z) P[C,D respectively. For C=I
f’(z) f(z)

and D=-I we note that C[I,-I]= C and S [i,-i] S Silvia [5] defines

the classes K[A,B;C,D] as follows:
n

Definition 1.1. A function f:f (z) z + a z analytic in E, is said
nn;to be in the class K[A,B; C,D], -I<B<A<I; <D<C<I if there exists a

f (z)
ggC[C,D] such that g-g P[A,B.

It is clear that K[I,-I;I,-I] K and

K[A,B;C,D]_K._S.
We now define the following:

n
Definition 1.2. Let >0 be real and f: f (z) z + a z be analytic

n
n=2

in E. Then fgQ[A,B; C,D], -I<B<A<I; -I<D<C<I if and only if there

exists a function gC[C,D] such that, for zeE,

(i-)
f’ (z)

+ (zf’ (z)) P[A B].g’ (z) g’ (z)

It is clear that Q[I,-I; i,-i]= Q.
2. MAIN RESULTS

We shall now study some of the basic properties of the class

Qe[A,B;C,D]. From the definition 1.2, we immediately have:

THEOREM 2.1. Let F(z) (l-)f(z)+zf’(z),where 0<e<l is real and zeE.

Then fEQ[A,B;C,D], -I<B<A<I; -I<D<C<I if and only if FEE [A,B;C,D].

We now give the integral representation for the functions in the

class ,B;C,D].
THEOREM 2.2. A function fEQ[A,B;C,D],_ for >0, -I<B<A<I; -I<D<C<I, if

and only if there exists a function FgK[A,B;C,D] such that, for zEE,

f(z)= z F()d (2.1)

PROOF. From (2.1), it follows that

1 1 1
2 1 -2

1
z( i) f (z)+z f’ (z) z F (z)

so

(l-)f(z)+zf’ (z) F(z)

and the result follows immediately from theorem 2.1.

THEOREM 2.3. Let fEQ[A,B;C,D] 0< < 1 and -I<B<A<I; -I<D<C<I.

fK[A,B;C,D] and hence is univalent.

Then

PROOF. Silvia [5] has proved that if fleK[A,B;C,D], then so is
z

i_il+l
t fl (t) dt Re l>0 (2 2)Fl(Z) l

z
1

bsing this result and the integral representation (2 2) with i a

for f. [A,B;C,D, we obtain the required result.
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For our next theorem, we need the following result due to Silvia [5].
nLEMMA 2.1. Let FeK[A,B;C,D] and P(z) z + 7, b z Then

n
n=2

ib21 < (C-D) + (A-B)
2

and

(A-B) (C-D+1)--- +
3

(C-D) (C-2D)
+

(A-B) (C-D+l) C-2DI >I
6 3

nTHEOREM 2.4. Let FQ[A,B;C,D], 0<<i and f(z) z + 7, a z
n

n=2
Then

and

i (C-D) + (A-B)la21<-- 2

D___Z) +
(A-B) (C-D+1)

l
3

a3 1<(1+2,
(C-D) (C-2D)

+ (A-B) (C-D+1)
(C-2D) I> 1

2 3

PROOF. Since fEQs[A,B; C,D] by theorem 2.1, the function

F (z) (l-s) f (z) + szf’ (z)

nbelongs to KEA,B;C,D]. Let F(z) z + 7. b z
n

n=2
Thus

or

n
z
n n b z(l-)[z + 7. a 3+ sz [i + na z z + Zn n n=2

n
n=2 n=2

n n n
(l-s) Z a z + s 7, na z 7, b z

n n n
n=2 n=2 n=2

n
Equating coefficients of z on both sides, we have

[(l-s) + sn]a b (2.3)n n

Now, using Lemma 2.1 and the relation (2.3), we obtain the required result.
nREMARK 2.1. Let FeK [A,B;1,-1] and be given by F(z) z + 7, b z

n
n=2

Then
1I1 -+).

This result is sharp for the function F0eK[A,B,I,-I] and defined by

I z
F
0
(z)

(l+Aw) dw.

0 (l-w)
2
(I+Bw)

3. THE CLASS Q[I-26,-I; i-2,-13
In definition 1.2, if we put A=I-28 B= -i; C=l-2y, D -i, then we

have the following:

Definition 3.1. A function f, analytic in E, is said to be alpha-quasi-

convex of order 6 type y, if, and only if, there exists a function
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geC[l-2y,-l] such that

REMARK 3. i.

f’ (z) (zf’ (z)) P[I 28 i]H(,f) (1-)g-? + g’(z)

Let g be analytic in E. Then geC[l-2y,-l] if and only if

(zg’ (z))
Re

g’ (z)

Thus H(,f) eP[l-28,-l] implies that

>y, zeE.

(zf (z))f’ (z)
+ a >8, zEE.Re[(l-) g’ (z) g (z)

REMARK 3.2. It follows from the definition 3 i, that feQa
if, and only if (l-a) f+azf’} e K[I-28,-I; l-2y,-l].

We now have the following:
n

THEOREM 3.1. Let feQ [1-28, -l;l-2y,-l] and be given by f(z)=z + Y. a z
n

n=2
Then we have, for n>2

lanl<2__(3-2y) (4-2T)..L...+/--(n-2x)[n(l-8)+8-y_].
n! [l+a(n-l)

This result is sharp and the equality holds for the function f0 defined as

(3.1)

1

f0 (z) z

z

PROOF. Since feQ[l-28,-l;l-2y,-l] the function

F(z)=(l-) f(z)+zf’ (z)
n

belong to K[l-28,-l;l-2y,-l. Let F(z)= z + 7. b z
n

n=2
Libera [6] has proved that for n>2

2(3-2y) (4-2y) (n-2y) [n(l-8)+8-y]
n n!

Now, from relation (2. 3) we have
b
n

a
n i+ (n-l)

Using this and (3.1), we obtain the required result

THEOREM 3.2. Let 0<I<i and 0<8<i. Let f be defined as
1 Iz 1

1
1 - --2 1

f(z) z F()d -->l.

and FeQ[l-28,-1;l-2y,-l] where 0<<i, >0. Then feQ[l-28,-l;l-2T,-l]
PROOF. Let

F (z) (l-e)F(z)+ezF’ (z) (3.2)
1

and le l- 1

fl(z) z F1 (c)d" (3.?)
0

Since Fea[-2g,-1,1-2-l] t ollos groin remark 3.2 that

FleK l-2g,-1; l-2y,-i] e ant to sho that fea[l-2g,-1; 1-2,-1
here (z) (I-a) f(z)+azf’ (z) Now (3.2) can be written as
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F (z) (l-e)F(z)+ezF’ (z)
1

1 1
2 1

ez (z F (z))

and using this, we obtain from (3.3)

1 [z 1 1 1
-i

1
i - 2 2 -fl (z) -z I (

(

0

1 z 1 1 1I- -I
z ) ( F ()) ’d

0
So, integrating by parts,

F() ’d

1 1 1 1 z
i- T T- E E -i I i i

fl(z) -z [z (z F(Z))- (-- )
0-- F(z)+

i 1- (-- )z

1
2
F() d

1 1
T-

F()) d]

1 Izi 1 1 I 1
i-

=[-i-F(Z) ]+ -(i- --)* -(-- -1)] z
c,

0

1
I -i 1 i -=az[T z F(z)+ T(I- )z

0

1

F()d]

iIzl+ (i-o) [i z
i- - - -2

0

F()d].

zf’ (z)+(l-e)f(z)

F()d

(3.4)

Now in (3.3) FIEK[I-28,-I;I-2y,-I and so fleK[l-28,-l;l-2,-l], where we
1have used (2.2) with Y1 l,A=l-28,B=-l,C=l-2yand D=-I. Thus it

follows from remark 3.2 and the relation (3.4) that feQ [i-28,-i;I-2y,-i],
and this completes the proof.
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