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.ABSTRACT. Associative copulas uniformly close are studied with detail. Some

classical results of Ulam and Hyers as well as the representation theorem for

associative functions play a fundamental role.
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i. INTRODUCTION.

Associative operations on the positive real half-line which are uniformly close

have recently been characterized in [I]. In the present paper we turn to the study

of associative copulas which are uniformly close. Copulas play a fundamental role

in the theory of probabilistic metric spaces (see Menger [2] and Schweizer-Sklar [3]),

in probability theory (cf. Frchet [4], Sklar [5] and [6]) as well as in the study

of nonparametric measures of dependence for random variables (see Schweizer-Wolff

[7]). We begin with some preliminary notions. From now on I will denote the closed

unit interval [0,i].

DEFINITION 1.1. A binary operation T on I is called an Archimedean t-norm if T

is continuous, associative, commutative, nondecreasing in each place, is a unit and

T(x,x) < x whenever x is in (0,i).

The following result due to J. Aczl (8]) and C.H. Ling ([9]) gives the

general representation for Archimedean t-norms.

THEOREM i.I. A binary operation T on I is an Archimedean t-norm if and only if

there exists a continuous and strictly decreasing function f:I [0,=] such that

f(1) =0 and T(x,y) f(-l)(f(x)+f(y)), where f(-l) stands for the function

f(-l)(x): f-l(min(x,f(0))), x [0, =] (I.I)
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In the case where f(0) , we have simply f(-l) f-I and the corresponding

operation T is called strict; otherwise, T is said to be a non-strict Archimedean

t-norm.
2DEFINITION 1.2. (cf. Sklar [5]). A copula is a two-place function C:I I

such that

(i) C(l,x)=C(x,l)=x, C(0,x)=C(x,0)=0 for all x in I

(ii) C(yl,y2)-c(yl,x2)-c(xl,y2)+C(xl,x2) 0 for all pairs (x l,x2), (YI’Y2)
in 12 such that x Yl and x

2 Y2"
Any copula C is continuous and satisfies the inequalities:

W(x,y): max(x+y-l,0) C(x,y) min(x,y) :M(x,y). (I.2)

Copulas play a fundamental role in probability theory since they are functions

connecting joint distribution functions of random variables with their margins.

Precisely, we quote here the following result due to A. Sklar.

THEOREM 1.2. Let X and Y be two positive random variables defined in a common

probability space with continuous distribution functions F
X and Fy, respectively, and

with a continuous joint distribution HX, Y. Then there exists a unique copula CX, Y
such that

Hx,y(U,V) Cxy(Fx(u),Fy(V))

for all u,v 0.

Copulas which are simultaneously Archimedean t-norms are especially interesting.

In particular, we have the following

THEOREM 1.3. (see Schweizer-Sklar [2]). Let T be an Archimedean t-norm

additively generated by a function f, i.e.

T(x,y) T(f)(x,y) f(-l)(f(x)+f(y)), x,y I. (1.3)

Then the following three conditions are pairwise equivalent:

(i) T is a copula;

(ii) f is convex;

(iii) T satisfies the Lipschitz condition:

T(z,y)-T(x,y) & z-x whenever x,y,x I and x & z.

2. STRICT T-NORMS BEING UNIFORMLY CLOSE COPULAS.

Let G T(g) be a strict t-norm with a convex generator g. Thus

-IG(x,y) g (g(x)+g(y)), x,y I

and, by Theorem 1.3, G is a copula. First, we are going to show how to construct

copulas F T(f) which are uniformly close to G, i.e. such that for a given e > 0

one has

llT(f)-T(g)ll IIF-GII sup IF(x,y)-G(x,y)l E e.

(x,y) 12
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THEOREM 2.1. Given an (0,I) and a strictly decreasing convex function g

mapping the unit interval I onto [0,], let be a concave bljectlon of [0,) onto

itself satisfying the Ulam-Hyers inequality (see Hyers [I0])

[(x+y)- O(x)-(y)[-< :

for all x,y [0,=). Put

f(x):

(-1 g)(x) for x (0,1],

for x O.

Then T(f)(x,y):=f-l(f(x)+f(y)), is a copula and

tiT(f) T(g)[[ =<

PROOF. The convexity of g Jointly with Theorem 1.3 imply that T(g) is a copula.

Consequently, on account of (1.2),

-I
g (g(x)+g(y)) -> x+y-I

for all x,y I Take arbitrary u, v [0,)

v=g(y) for some x,y I whence

-I -I
g (u+v) g (u)+g’l(v)

g(I); then ufg(x) and

and therefore

-Iig-1 (u)-g-1 (v) g- (min(u,v))-g

-I -I
g (mln(u,v))-g

-1 -1-< g (min(u,v))-g

(max (u,v))

rain (u, v 4- u-v

-I
(rain (u,v))-g (lu-vl)+l

Now, for any x,y (0,I], one has

ITCf)(x,y)-T(g)(x,y)l f-l(f(x)+fCy))-g- (g(x)+g(y))l

-1I(g-o)(f(x)+f(y))-g (g(x)+g(y))

< l-g-l(](f(x)+f(Y))-g(x)-g(Y)I)

l’g-l(l(fCx)+fCY))-(f(x))-(f(Y))I)

_-< 1-g l(rl)

which proves the desired inequality because the expression just estimated vanishes

whenever x=0 or y=O.
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Observe that our biJection has to be increasing. In fact, being concave is

continuous and therefore strictly monotonic; if were decreasing we would get

0 < b(y) _-< (x) + b(y) (x+y) --< lb(x)+b(y)-b(x+y)l r

for all x, y [0,), whence we would deduce the boundedness of which is a contra-
diction. Therefore, @-i is increasing, too, and the concavity of @ implies the

-1
convexity of @ and henceforth f. Thus T(f) is a copula and the proof is completed.

REMARK 2.1. Bijections spoken of in Theorem 1.3 actually exist. Indeed, take

any positive real number c and any strictly increasing and concave mapping

Y:[0,) [0,) with Y(0) 0. Then the mapping :[0,) [0,) given by the formula

(x) cx + (x), x [0,(R)),

satisfies all the conditions desired.

Another result in that spirit is the following

THEOREM 2.2. Given an (0,I) let f and g be two convex and strictly

decreasing functions from I onto [0,] such that

If- (x)-g- (x)

for all x # [0,). Then the operations T(f)(x,y): f-l(f(x)+f(y)) and
-IT(g) (x,y) g (g(x)+g(y)) are two associative copulas such that

(2.1)

liT(f) T(g)[[ e.

PROOF. In order to show the last inequality fix arbitrarily a pair (x,y) 12
We shall distinguish two cases.

I) max (x,y) I-. Since T(f) and T(g) are copulas we get from (1.2) that

they are both minorized by W and maJorized by M. Consequently,

IT(f)(x,y)-T(g)(x,y)l< M(x,y)-W(x,y)=min(x,y)-max(x+y-l,0) l-max(x,y) g.

2) max(x,y) < I-. Then x+ as well as y+e belongs to (0,i). Relation (2.1)

implies that

-I
g (f(t)) --< t+ for all t I

Thus

g(x+--) < f(x) and g(y+-) -<_ f(y)

and, subsequently, on account of (2.1), the monotonicity of g- (2.2) and

Theorem 1.3 (iii), we get

(2.2)
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-I -I
T(f)(x,y) f (f(x)+f(y)) -< g (f(x)+f(y)) + E

-I=< g (g(x+)+g(y+))+ T(g)(x+,y+e)+

T(g)(x,y))+T(g)(x,y)+ 5e -< (x+se-x)+(y+se-y)

+ T(g)(x,y)+e= T(g)(x,y)+ e.

Interchanging the roles of f and g we obtain also that T(g)(x,y) -< T(f)(x,y) + E,

which finishes the proof.

Theorem 2. and 2.2 can easily be applied to the study of nonparametric measures

of dependence for random variables. Given two random variables X, Y in a common

probability space and with a unique copula CX, Y we recall from [7] the forms of two

well-known measures of independence:

T(X,Y) 4 sup {{Cx,y(U,V)-UV u,v I}

o(X,Y) 12 f f [Cxy(U,V)-uvldu dv.
00

Then we have

COROLLARY 2.1. Given an e (0,I) let be a concave bijection of [0,) onto

itself satisfying the Ulam-Hyers inequality

(x+y)-b (x)-b (y) <- -in(l-E)

for all x,y [0,). Assume that X and Y are two random variables with

-I -I
Cxy(U,V): exp[-( (-in u) + b (-in v))],

u,v I. Then

(X,Y) 4e and o(X,Y) < 12e

COROLLARY 2.2. Given an e (0,I) let f be a strictly decreasing convex func-

tion mapping the unit interval I onto [0,]. Assume that X and Y are two random

variables with CXy T(f). If If-l(x)-e-X e for all x [0,), then z(X,Y) 4

and o(X,Y) 12

3. NON-STRICT T-NORMS BEING UNIFORMLY CLOSE COPULAS.

Let F a > 0, be the family of all strictly decreasing functions mapping the
a

unit interval I onto the interval [0,a]. Obviously, F is a subfamily of the collec-
a

tion C(1) of all continuous real functions defined on I because the ranges of members

from F are connected. In what follows, C(E) will always stand for the Banach space
a

of all continuous real functions on a compact metric space E; C(E) is assumed to be

endowed with the usual uniform convergence norm.

THEOREM 3.1. The transformation T: F C(I2) given by the formula
a

T(f)(x,y): f(-l)(f(x)+f(y)) x,y I f Fa’
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is continuous.

PROOF. Take any sequence (f) of elements from F uniformly convergent to an
n n(N a

-I
f F and fix arbitrarily an > O. Since f is uniformly continuous one may find

a
a > 0 such that for all s,t [0,a]

]f-I (s)_f-I (t) < 1/2 provided that l-tl < (3.1)

As f is the uniform limit of __(fn there exists an n N such that for all n >- n
nN o o

and x I one has fn (X) -f (x) < 6. Consequently taking s: f(x) and t: f (x) in
n

(3.1) we get Ix-f-l(fn(X))l *< 1/2E for all n n and x I; hence
o

Ifn-l(z)-f-l(z)l < 1/2 for all n no and z [O,a]. (3.2)

On the other hand, putting

m (g)(x,y): min(g(x)+g(y),a), x,y I, g Q F
a a

one may easily check that the sequence (ma(fn)) tends uniformly to m (f) on the
heN a

unit square. Therefore, there exists an n N such that

n >- n implies llma(fn)-ma(f) II < 6

Finally, for any pair (x,y) ( 12 one has (see (I.I))

(3.3)

IT(fn) (x,y)-T(f) (x,y) fn
(-I)

(fn (x)+fn (y))-f
(-I) (f (x)+f (y))

fn-I -I(ma(fn (x,y))-f (ma(f) (x,y))l

.< fn-I -I(ma(fn (x,y))-f (ma(fn (x,y))l

+ f-I -I(m
a (fn) (x,y)-f (m

a
(f) (x,y))I

< 1/2c + 1/2c c

whenever n N, n .> max(n0,nl), by means of the subsequent use of (3.2), (3.3) and

(3. I). This shows that

llT(f )-T(f)l[ 0 as n+

and finishes the proof.

As an immediate consequence of this result we obtain the following

THEOREM 3.2. Given an > 0 let g be a strictly decreasing and convex function

mapping I onto [O,a]. Then there exists a 6 > 0 such that for all strictly

decreasing and convex surjections f: I [0,a] fulfilling the condition

the associative copulas

T(f)(x,y)=f (-l)(f(x)+f(y)), T(g)(x,y)--g (-I) (g(x)+g(y)), x,y
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are E-uniformly close, i.e.

lIT(f)-T(g)[l < e.

Observe, however, that Theorem 3.2 has an existence character ("there exists a

> 0"). The following result shows how to produce associative copulas T(f) E-close

to T(g) but requires stronger assumptions on the given generator g and refers only to

some specific generators f.

THEOREM 3.3. Given an e > 0 let g be a strictly decreasing and convex function

from I onto [0,a] such that

m: inf {Ig(x)-g(Y)l x,y I x#y > 0. (3.4)
IIx-y

Assume to be any concave bijection of [O,a] onto itself such that

-I
and put f: # g. Then the operations

T(g)(x,y): g(-1)(g(x)+g(y)) and T(f)(x,y): f(-1)(f(x)+f(y)),

represent E-uniformly close associative copulas, i.e.

l[T(f)-T(g)ll _< e (3.6)

PROOF. Obviously, relation (3.4) implies that

_g-1Ig- (x) (Y) <= Ix-Y[ x,y [0,a]. (3.7)

On the other hand, assumption (3.5) leads immediately to the Ulam-Hyers inequality

[(x+y)-(x)-@(y)[ <= m.e (3.8)

for all x,y [0,a] such that x+y is in [O,a], which, in particular, forces @ to be

strictly increasing (cf. the proof of Theorem 2.1) and hence T(f) to be a copula.

To prove (3.6), fix a pair (x,y) 12 and consider the following four cases:

(a) T(f) (x,y)=T(g) (x,y)-O;

(b) both T(f)(x,y) and T(g)(x,y) are positive;

(c) T(g)(x,y) 0 < T(f) (x,y);

(d) T(f)(x,y) 0 < T(g)(x,y).

We have to show that

y(x,y): IT(f)(x,y)-T(g)(x,y)[ < e

which becomes trivial in case (a). Assuming (b) one gets

y(x,y) [f-l(f(x)+f(y))_g- (g(x)+g(y))[

-1g-I (b (f (x)+f (y)) )-g g (x)+g(y))

_<_ I [(f(x)+f(y))-(f(x))-(f(y))[ e
m
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by means of the definition of f, (3.7) and (3.8).

In case (c) one has g(x)+g(y) -> a > f(x)+f(y) whence

--I7(x,y) f-l (f (x)+f (y) )’g l((f(x)+f(y)))-g (a)

.< Im (a-(f(x)+f(y))) -< (g(x)+g(y)-#(f(x)+f(y)))
_I ((f(x))+#(f(y))-#(f(x)+f(y))) e
m

on account of (3.7) and (3.8), again.

Finally, if (d) occurs then g(x)+g(y) < a =< f(x)+f(y) whence

y(x,y) g-1 (g(x)+g(y))-g-1 (a) < (a-g (x) -g (y)

2.-m 2
((f(x)-g(x))+(f(y)-g(y))) -< . e < e,

because of (3.7) and the relation

resulting directly from (3.5) and the definition of f. This completes the proof.

REMARK 3. I. Any continuously dlfferentlable and convex surjectlon

g: I [O,a] such that g’(1) < 0 satisfies all the requirements concerning the

function g occurlng in Theorem 3.3. In fact, convexity implies that g’ is increasing

whence g’(x) -< g’(1) < 0, x I, i.e. g is strictly decreasing. On the other hand,

for any x,ye I, x#y, one has

lg(x)-g(Y)l Ig’()l"-g’() g’(l) m > 0x-y o

for some X between x and y; therefore inf Jg(x)-S(y)i a m > 0, as desired.
x,yI x-y o

4. REVERSE IMPLICATIONS.

Having two uniformly close Archimedean t-norms F and G, a natural question

arises whether they admit uniformly close generators. In other words, if F-T(f),

G-T (g) and

Ig (-1) (g(x)+g(y) )-f (-1) (f (x)+f (y) & e, x,y I (4.1)

we ask whether these exist two positive constants a and 8 such that

laf(x)-Bg(x)l e x e I (4.2)

The answer, in affirmative, is trivial in the case where both T(f) and T(g) are

non-strlct, say, f maps I onto [O,a] and g(I) [O,b] for some a,b (0,’). Then,

taking =8: ’-6 we get

[[af-agl[ -< a.sup f(t) + a sup g(t) a(a+b) e
tel tel

and obviously, T(f)ffiT(f) as well as T(g)ffiT(g).
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If one of the generators f and g is bounded whereas the other is not, then auto-

matically relation (4.2) fails to hold for any positive a and B Therefore, it

remains to consider the case where both f and g are unbounded. Observe that <

are the only interesting constants in (4.1) since, plainly, for any two strictly

decreasing functions f and g mapping the unit interval I onto [0,] one has

Ig- (t)-f-l(s)l (4.3)

for all s, t [0,]. Nevertheless even very regular g-uniformly close strict t-norms

(copulas), < I, may fail to have close generators. To visualize this, take

-I for x(O,l] -in x for x (0,I]

f(x): and g(x):

for x=0 for x=O;

then

-IT(f)(x,y) f (f(x)+f(y))

xy for (x,y) [0,1] 2 \{(0,0)}x+y-xy

0 for (x,y) (0,0)

and
-IT(g)(x,y) g (g(x)+g(y)) xy.

The continuous function

Y(x,y): T(f)(x,y) T(g)(x,y),

vanishes on the boundary of the unit square; therefore, the value IlYll-- max lY(x,y)
(x,y) 12

is attained at an interior point of the unit square. Since

z: (.3.-=5
2

is the only critical point of F in (0,1) 2
and X(z)ffi 1/2(5r-11)> 0

3-/
z

we have

xy0 --< Y(x,y) x+y-xy -xy <= Eo :ffi(5/-ll) < 0.0903. (4.4)

Thus, the copulas T(f) and T(g) are -uniformly close, but for any positive
o

numbers and B the difference

of(x) ISg(x) _a + Bin x
x

tends to infinity as x approaches zero from the right.

What about the distance between f-I and g-l? In the light of (4.3) we always have

d(x): ’-if-l(x)-g (x) --< for x [0,]. (4.5)

g-I -IOn the other hand, since f-l(0) (0) and lim f-l(x) lim g (x) =0, the

-I -I x x
continuity of f and g forces d to be upper-bounded by an a priori given positive

constant except for a compact subinterval of (0,). One may expect however, that
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having (4.1) we get d(x) e for x >- 0. This is not true: taking f and g as above

(see (4.4))

-IIf-l(f(x)+f(y))-g (g(x)+g(y)) -< 0.0903, x,y I

and a standard calculation proves that

d(x) If-l(x)-g-l(x) -xx-e > for an x (2.6, 2.7).

Nevertheless, one may show that

d(x) < 0.20364 for all x [0,],

which is definitely more interesting than (4.5).

In the general case we were able to state only the following

PROPOSITION 4.1. For any two strictly decreasing convex and unbounded generators

f,g: I [0,] such that llr(f)-T(g)ll e < there exists a positive 6 < such

that If-l(x)-g-l(x) 6 for all x [0,].

PROOF. As we have remarked before, the distance function d: If-l-g-ll does

’not exceed e outside a compact interval [,B] = (0,). Since f and g and hence
-I -I

also f and g are necessarily continuous so is the distance function d and it

suffices to take

max(E, max d(x))

which, plainly, is strictly less than one.

This, however, is by no means satisfactory because the important question

whether the (not necessarily linear) function e 6(e) tends to zero as e 0,

remains unanswered.
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