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ABSTRACT. In this paper, first, we study random best approximations to random sets,

using fixed point techniques, obtaining this way stochastic analogues of earlier

deterministic results by Broder-Petryshyn, KyFan and Reich. Then we prove two fixed

point theorems for random mmltifunctlons with stochastic domain that satisfy certain

tangential conditions. Finally we consider a random differential inclusion wth upper

semlcontinuous orlentor field and establish the existence of random solutions.
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I. INTRODUCTION.

Random fixed point theorems are stochastic generalizations of classical fixed

point theorems and are needed in the study of random equations. Their study was

initiated by the Prague school of probabillsts, with the works of Hans [I] and Spacek

[2]. Recently the interest in these problems was revived by the survey article of

Bharucha-Reld [3]. Since then, there has been a lot of activity in this area and

several interesting results have appeared.

In this paper, we will study random fixed points in connection with random

approximations and will derive stochastic analogues of some results by Browder-

Petryshyn [4], KyFan [5] and Reich [6]. We also extend a random fixed point theorem

proved by Engl [7] and finally we prove the existence of a solution for a random

differential inclusion with an upper semlcontlnuous orlentor field, extending this way

an earlier result of the author [8] (theorem 5.1).

For the corresponding deterministic theory, we refer to the recent books of

Goebel-Relch [9] for fixed points (in connection with the study of the geometry of the

underlying space) and of Aubln-Cellna [I0] for differential ncluslons. Another nice

wDrk, bringing together the two main mathematical branches considered in this note,

namely fixed point theory and differential equations, is the paper of Reich [II],

where an interesting approach to fixed point theory is presented, through the

existence theory of abstract differential equations.
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2. PRELIMINARIES

Let (R,E) be a measurable space and X a separable Banach space. Throughout this

work, we will be using the following notations:

and
Pf(c)(X) {Ac_X: nonempty, closed (convex)}

Pkc(X) --{At_X: nonempty, compact, convex}

Let K:R Pf(X) be _a multlfunction. We say that K(.) is measur.able, if for all

UcX open, we have that K (U) [mE:K(m) 0 U}E. It can be shown see Himmelberg

[I0] that the above definition of measurability of K(.) is equivalent to saying that

for any zEX, the map 0 d(z,K(m)) inf{Iz-xH :xK(m)} is measurable.

Furthermore, if there exists a complete o-finite measure on E, then the above two

properties are equivalent to saying that GrK {(re,x) ExX:xEK(m)}ExB(X), where

B(X) is the Borel o-field of X. Following Schal [12] and Engl [7], we will say

that K: Pf(X) is separable, if it is measurable and there exists a countable set

DcX s.t. cl(DO K(m))--K(m). It is not difficult to show that if K(.) is measurable

with nonempty, closed values and K() cl(intK(m)) for all mER, then K(.) is a

separable multifunctlon. This is the case for example, when K(.) has closed, convex,

solid values.

Let Y,Z be two Hausdorff topological spaces and let G:Y 2Z{} be a

multlfunction. We say that G(.) is upper semlcontlnuous (u.s.c.), if for all Uc._Z
+

open, G (U) {yY:G(y)c_U} is open in Y. Also by h( ,.) we will denote the

Hausdorff metric on Pf(X). Recall that (Pf(X),h) is a complete metric space.

Let K: Pf(X) and let F:GrK Pf(X). We say that F(.,.) is a random

multlfunction with stochastic domain K(.), if K(.) is measurable and for all xeX and

UcX open, we have {m:xK(m), F(,x)0U}E. Such an F(.,.) is said to be u.s.c.

(continuous, compact e.t.c.), if for all ER, F(m,.) is u.s.c. (continuous,

compact e.t.c.) on K(m). Maps with stochastic domain were introduced by Engl [7].

A random fixed point of F(.,.) is a measurable map x: X s.t. for all

mE, x(m)K(m) and x(0)EF(,x(m)).

Finally, if (.) is a o-finite measure on l and G:R Pf(X) is measurable,

the set of integrable selectors of G(.) i.e.we will denote by SG
{gLI(X):g()G()-a.e.}. It is easy to check that this set is nonempty if

and only if + inf{llx :xEG() belongs in L+

3. RANDOM APPROXIMATIONS AND RANDOM FIXED POINTS.

We will start with a random version of proposition 2.3 of Reich [6], which in

turn was an extension of an earlier very interesting result of KyFan [5] (theorem 2).

In this section (R,E,) is a complete o-finite measure space. Also recall

that a map f:X X is nonexpansive, if llf(x)-f(y)l llx-yH for all x, yEX. It is

well known (see for example Goebel-Reich [9]) that the metric projection on a closed,

convex set in a Hilbert space, is nonexpanslve. That’s why in theorems 3.1, 3.2, 3.3
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and 3.4, that follow and involve the metric projection (either in their statement or

in their proof), we assume that the ambient space is a Hilbert space.

THEOREM 3.1. If X is a separable Hilbert space, K: Pfc(X) is a separable

multlfunction and f:GrK X is a random, nonexpanslve map, with stochastic domain

K(.) s.t. for all s, f(,K()) is bounded. Then there exists x: X measurable

s.t. for all , x()K() and llx()-f()ll- d(f(0,x()),K()).
PROOF. From theorem 3.4 of [13], we know that there exists :xX X a

Caratheodory extension of f(.,.) (i.e. (,x) is measurable, x (,x) is

continuous and IGrK f)" Let p():X K(t) de the metric projection on K().

We have already mentioned that p()(.) is nonexpanslve and it is also easy to show

(see [14]), that for every zsX, p(t0)(z) is measurable. Let

C() conv(pof)(,K(t)). Note that C(t0) =conv D (pof)(,y), where D is the
yeD

countable set postulated from the separability of K(.). Hence C() is a

measurable multlfunction. For every , (pof)(,.):C() C(t0) and is

nonexpanslve. So from Broler [15], we know that it has a fixed point. Consider the

multlfunctlon L: Pf(X) defined by:

L(0) [xC(m):(pof) (,x)--x}

{xc() (po) (,x)--x}

GtL {(m,x)exX: (po) (,x) x} N GrC

But (,x) (pof) (,x) is measurable in 0 and continuous in x. Hence it is

jointly measurable. Also since C(.) is measurable, GrCEExB(X). Thus GrLEExB(X).

Applying theorem 3 of Salnt-Beuve [16], we get x: X measurable s.t. x()eL(m)

for all e. Therefore we have: x()eK(m) and llx()-f(,x(m))l] --d(f(,x()),K(m))

REMARK I. If K(.) is bounded values, the assumption of the range of f(,.) can

be dropped.

REMARK 2. Another result in the direction of theorem 3.1 above with a different

set of hypotheses, can be found in [17] (theorem 4).

We have a similar result for condensing maps. Recall that f:X X is said to be

Y-condenslng, if it is continuous and for all BcX nonempty, bounded s.t.

(B)>O, ((f(B))<Y(B), where "((.) is the Kuratowskl measure of noncompactness.

THEOREM 3.2. If X is separable Hilbert space, K:l Pfc(X) is separable and

f:GrK + X is a random condensing map with stochastic domain K(.) s.t. for all, f(,K()) is bounded. Then there exists x: X measurable s.t. for all

el x()sK() and Ix()-f(,x()) d(f(.x()),K()).

PROOF. Is the same as in theorem 3.1, using this time the fixed point of Furl-

Vignoli [18].

Using theorem 3.1, we can have the following random version of a fixed point due

to Broder-Petryshyn [4].

THEOREM 3.3. If X is a separable Hilbert space, K:R / Pfc(X) is separable with

bounded values and f:GrK X is a random, nonexpansive map with stochastic domain

K(.) s.t. for every xebdK() for which p(,f(,x)) x, we have f(,x) x.
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Then f(..) admits a random fixed point.

PROOF. From theorem 3.1 (see remark I), we know that there exists x:R X

measurable s.t. lx()-f(,x())U d(f(,x()), K()))= Uf(,x())-p(,f(,x))ll.

Since the best approximation is unique, x() p(,f(,x())). If x(w)ebdK(),

then by hypothesis x() f(,x()). Otherwise we must have that

f(,x())eK() f(,x()) p(,f(,x())) x(), wen.
REMARK. In the previous theorem, we can instead assume that for all eR f(,.)

is condensing on K(). Then in the proof we have to use theorem 3.2.

Now we pass to multlfunctlons and prove the following random fixed point theorem.

THEOREM 3.4. If X is a separable Hilbert space, K:R Pfc(X) is separable and

F:GrK Pfc(X) is an h-contlnuous, Y-condenslng, random multlfunctlon with
-I

stochastic domain K(.) s.t. for all ei% and for xebdK(), F(,x) 0 p (,x)

c__{x} and F(,K()) is bounded. Then F(.,.) admits a random fixed point.

PROOF. Let G:RxX Pfc(X) be the multlfunctlon defined by

G(,x) F(,p(,x)). From our hypotheses on F(.,.), we see that G(,x) is

measurable, while x G(,x) is h-contlnuous. Also we claim that G(,.) is

.Y-condenslng. So let BcX be nonempty, bounded, with y(B)>O. We have

Y(GC,B)) YCFC,p(,B))) < yCPC,B)) YCB)

the last inequality being a consequence of the fact that p(,.) is nonexpanslve.

Let C(00) convF(,K()). Then clearly G(,.):C(0) C(). Note that if

{x is the countable set postulated from the separability of K(.) and exploiting
n n.>l

the h-continuity of F(.,), we have that C() cOnvnU F(,xn) C() is

measurable. Then consider the multifunction defined by L(m) {xeC() xeG(,x)}.
From theorem of Himmelberg-Porter-Van Vle ck 19 ], we know that for al 1

men, L(m)0. Also note that GrL {(m,x)exX:d(x,G(,x)) 0}0 GrCeZxB(X). Again

theorem 3 of Saint-Beuve [16], produces a measurable map x: + X s.t. x(m)eL(),
for all R. Let ()=p(,x()). Clearly (.) is measurable and ()bdK().

-IThen x() p (,(m)) and x()eG(,x()) F(m,()) -x(m)ep-l(,x(m)) N

F(,()) (m) x(m) x(m)eK(m) and x()eF(m,x(m)) i.e. x(.) is the desired

random fixed point.

REMARK. If there is no m dependence of the data in the previous theorem

(deterministic case), then we can relax the hypotheses on F(.) and simply assume that

F(.) is closed, Y-condensing and with bounded range. Also in the deterministic case,

the theorem can be proved for general Banach spaces, if we assume that K is

approximatively w-compact and F(.) is w-u.s.c., with w-compact range. The proof is

analogous to the random case and in the general Banach space, we have to use

proposition 2.1 of Pelch [6], which tells us that the metric projection on K is a w-

u.s.c, mult ifunction and eventually apply the Kakutani-KyFa n fixed point

theorem. Both those deterministic versions of theorem 3.4, extend theorem 3.3 of

Reich [6]. Note that the second deterministic result that was stated in general

Banach spaces, can not be extended to the random case, since as it was illustrated

with a counter example in [20], a multifunction G(m,x) which is measurable in , w-

u.s.c, in x, is not in general jointly measurable.
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The next result extends theorem 8 of Engl [7]. Recall that a ,altifunction

F:K 2Xx {} is compact, if F(K) is compact. Also if KcX is convex xK, we define

l(x,K)={zX:z=x+(y-x) for some yX and >0}. So l(x,K) is nothing else, but the

translation to the point x of the well known from nonsmooth analysis, "Bouligand

tangent cone" to K at x (see Aubin-Ekeland [21]). Since we do not need any more the

nonexpansiveness of the metric projection, the result can be stated for general

separable Banach spaces.

THEOREM 3.5. If X is separable Banach space, K: Pfc(X) is separable and

F:GrK Pfc(X) is a compact, u.s.c., random multifunction with stochastic domain

K(.) s.t. F(,x) c l(x,K()) . Then F(.,.) a random fixed point.

PROOF. From proposition 5 of Engl [7], we know that there exists a multifunctlon

H:GrK Pfc(X) s.t.

(i) for each (m,x)gGrK, H(,x)cF(,x)

(il) for every m, H(m.,) is u.s.c, on K(m)

(iii) H(.,.) is jointly measurable

Then let L: 2
X

be defined by

L(m) {xeK(m):xeH(,x)}

From theorem 3.1 of Reich [6], we know that for all me, L()0. Observe that:

CrL {(m,x)eRxX:xeK(m), xeH(,x)}

proJ ((RxD) N GrH)
xX

where D=-{(x,y)eXxX:x=y}. But note that GrHer.xB(X)xB(X). So

(xD) N GrHelxB(D). Then using the theorem in section 39.1V of Kuratowski [22], we

get that prOJRxx(RXD) GrFeExB(X). Hence GrLeZxB(X). Once again, through theorem

3 Saint-Beuve [16], we get x:R X measurable s.t.

x(to)eL(o), osn x(o)sH(to,x(o))cF(o,x(o)).

4. RANDOM DIFFERENTIAL INCLUSIONS.

Let (,-,) be a complete probability space, T=[0,b] a nonempty, closed, bounded

interval in R+, X a finite dimensional Banach space and x : X measurable. We
o

consider the following random differential inclusion:

x(m,t)eF(,t,x(,t)) a.e. for all wen

x(,0) x ()
o

By random solution of (*), we understand a stochastic process x:xT X, with

absolutely continuous realizations, satisfying (*) a.e. in t, for all e.

In this section we present a theorem on the existence of random solutions of (*),
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that generalizes theorem 5.1 of [8].

THEOREM 4. I. If F :xTxX Pf (X)

(2)

(3)

and

(*)

is a multifunction s.t.

(m,t,x) F(m,t,x) is measurable

for all (,t)eRxT, x F(,t,x) is u.s.c.

IF(,t,x) l a(m,t)+b(m,t) xUa.e. for all JER, with a( ,.) ,b( ,.) measurable

.)L Then (*) admits a random solution.a(,.) ,b(

PROOF. We will by determining an a priori bound for the random solutions of

So let x(.,.) be a random solution. Fixing meR, we have:

Applying Gronwall’s inequality, we get that:

IIx(,tll (11 x ()11 +ila(,.)II l) exp lib(w,.)II M()
o

Set (m,t,x)
F(m,t,x)

M()x)F(m,t,- if

if Ilxll M()

IIxII > M()

It is easy to check that (.,.,.) has the same measurability and semicontinuity

properties as F(.,.,.) and furthermore we have that l(,t,x) la(m,t)+b(m,t)M(m)
--(,t), with (.,.) measurable and (,.)L+I. We will consider (*) with the

random orientor field ( ).

Let W(m)cC(T,X) be defined by:

t

W(m) {xC(T,X):x(t) x () + g(s)ds, tT, llg(t)ll (m,t) a.e.}
o 0

Define :xC(T,X)xLI(x) C(T,X) by:

t
(,x,g)(t) x ()+ g(s)ds-x(t)

o
0

Clearly (.,.,.) is measurable in and continuous in (x,g). So is jointly

measurable. Also if (m)=B(O, (,.)III) is the closed ball in LI(X), centered at

the origin with radius ll(m,.)lll, then (.) is measurable and

GrW ((,x)exC(T,X): ll(m,x,g)ll 0, d(g,())=0}

GRWgr-xB(C(T,X)), (since g=x, see Kuratowski [22], 39.1V).
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Furthermore, a simple application of the Arzela-Ascoli theorem, tells us that for

every me, W(m) is a compact subset of C(T,X).

Next let :GrW 2
C(T’X)xLI(X) [.} be the multlfunctlon defined by:

t
(m,x) {(y,f)eC(T,X)xLl(X):y(t)--x (m)+ f(s)ds, teT, feSI^o

0 F(, ,x(Define :xC(r,X)xLl(X) //R+ by:

(,x, f) d(f,S
(m,. ,x(.)

Note that:

d(f,s^
F(,. ,x(.))

inf{ [If-h heS
F(,.,x(.))

b
inf{ llf(t)-h(t)ll dt:heS

0 (,. ,x(.))
b

inf{ llf(t)-z :ze(0,t,x(t))}dt
0
b

d(f(t),(m,t,x(t))dt
0

But by hypothesis (I), (m,t,y) d(z,(m,t,y)) a measurable and

z d(z,(,t,y)) is continuous. Hence (w,t,y,z) d(z,(m,t,y)) is measurable.

A/so the evaluation map (t,x(.)) et(x(.))=x(t), is continuous from TxC(T,X) into

X. Hence we deduce that (m,t,x(.)) d(f(t),F(m,t,x(t))) is measurable from

xTxC(T,X) into IR+ Rewrite (.,.) as follows:

(,x) {(y,f)eC(T,X)xLI(x) [(,y,f) ll O, (,x,f) O}

Let P_cC(T,X)xLI(x) be defined by P={(y,f):=f}. Then the projection to the

first variable is one-to-one, continuous. Thus by Kuratowskl [22] (39.1V):

prOJxC(T,X)xC(T,rR=proJxC(T,X)xC(T,X)( (GrW P) N

{(m,x,y,f):y(0)--x (), 6(,x,f) 0} EZxB(C(T,X))xB(C(T,X)).o

So if

for fixed

W(m)c__C( T, X) is compact, it suffices to show that

C(T,X)xC(T,X). So let (x ,yn)GrR(m .) n)l s.t. (Xn,Yn) (x,y)n

t

Yn(t)--Xo()+ of f (s)ds tT f eS
F(w,. ,Xn(.)

From the Dunford-Pettis compactness criterion, we deduce that

(m,x), then GrRer-xB(C(T,X))xB(C(T,X)). Note thatR(,x) proj C(T,X), R(m,.):W() W(m). We claim that it is u.s.c. To show this, since

GrR(m, .) is closed

By definition:

{f w
is

n n)l

So by passing to a subsequence if necessary, wesequentially w-compact in LI(x).

in
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Lmay assne that f f in (X). Using theorem 3.1 of [23], we have that:
n

f(t)econv llmffn(t)} c cony llm F(m,t,Xn(m)) a.e. _c F(m,t,x(t)) a.e.
n) I=

The last inclusion being a consequence of the upper semlcontinuity and the

convexity of the values of (.,.,.). So feS Also
F(m,. ,x(.))

t
y(t) x (m)+ f f(s)ds, teT

0

(x,y)eGrR(,.)

R(m .) is u.s.c, from W(m) into W(m).

Let L:R 2
C(T’x)

be defined by:

L(m) {xeC(T,X):xeR(m,x), xeW(m)}

Since for fixed wen, R(m,.):W(m)/ W(m) is u.s.c., from the Kakutani-KyFan

fixed point theorem, we have that L(m)@, for every wen. Then as in the proof of

theorem 3.5, we have:

GrL prOJnxC(T,X)((nxD) 0GrR)eExB(C(T,X))

where D {(x,y)eC(T,X)xC(T,X):xffiy}. Apply theorem 3 of Salnt-Beuve [16], to get

r:n / C(T,X) measurable, s.t. for all wen, r(m)eL(m). Set x(m,t)fr(m) (t).

Clearly this is a random solution of (*) with orlentor field F. But from the

definition of F, we see that IF(m,t,x) l, a(m,t)+b(m,t) Ax|a.e., for all wen and as

in the beginning of the proof, through Gronwall’s inequality, we get that

|x(m,t)A ,M(m) (m,t,x(m,t)) F(m,t,x(m,t)) - x(.,.) is the desired random

solution of (*).
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