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ABSTRACT. In a Hausdorff topological linear space we examine relations between

r-convexity and a condition on matrix transformations between null sequences. In

particular, for metrizable spaces the condition implies r-convexity. For locally

bounded spaces the condition implies sequential completeness.

,KEY WORDS AND PHRASES. Mati taformations, r-convex topological inear spaces.
1980 AMS SUBJECT CLASSIFICATION CODES. 4OCO5, 4OJO5,

1. INTRODUCTION.

If O r -< i, a non-empty subset U of a complex linear space is called

absolutely r-convex if x, y e U and I%1 r + lul r together imply that

x + y e U. Equivalently, Xl, Xn e U and

n n
Z ku-I r < I imply Z xk

U.
k=l k=l

By X we denote a Hausdorff topological linear space with origin 0, and by the

term neighbourhood we shall mean neighbourhood of the origin in X.

Following Landsberg [I] we say that a space X is r-convex if every

neighbourhood contains an absolutely r-convex neighbourhood. Thus a 1-convex

space is, in the usual sense, a locally convex space see for example, Robertson

and Robertson [2].

Our aim in this note is to examine relations between the r-convexity of a

space and the following condition on matrix transformations:

A e (Co(X), Co(X)) whenever (lankl r) e (Co, Co )"

In (i.i) we denote by A (ank) an infinite matrix of complex numbers ank. By

(lank Ir) (co, Co we mean that (lank Ir) maps the space Co of null sequences of

complex numbers into itself. Well-known necessary and sufficient conditions

for this are:

Z_ and ank O (n , each k).sup
n lank r

k i

(1.1)

(1.2)

By Co(X) we denote the set of null sequences in X. Thus (xk) e Co(X) means that

x
k

0 (k =o). By the statement A (c (X), c (X)) we mean that for each
o o
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x c (X) and each natural number n we have
o

An(X) Z ankXkk=l

convergent in X, amd also A (x) 0 (n ).
n

2. THE NAIN RESULTS.

THEOREM i. If X is r-convex and sequentially complete then (I.i) holds

PROOF. Since X is r-convex its topology is determined by the collection {p}
of aiI continuous r-seminorms on Xo RecalI that a reaI-vaIued function p on X is

an r-seminorm if it satisfies the conditions:

p(x+y) _< p(x) + p(y) and p(%x) [[rp(x)

for all x, y X and all complex numbers .
Take any continuous r-seminorm p on X and let (xk) e Co(X). Then p(xk) O

as k =, and for natural numbers a,b with a < b we have

b b
p( Z ankxk Z [ank[rp(xk).

k=a k=a
(2.1)

Hence, if (lank jr) (Co, Co) then (1.2) holds, and so kE=l ankxk is a Cauchy

series in X, whence convergent. Taking a and letting b in (2.1) a further

application of (1.2) shows that A (x) 0 (n-> =). This completes the proof of
n

Theorem I.

In Theorem we may observe that neither r-convexity alone, nor sequential

completeness alone, implies (I.I). For example, consider the r-convex space of all

-lekfinite sequences, regarded as a subspace of r" Let us define x
k

k where

e
k

denotes the k-th unit vector. Then x
k

@ (k ). Now define A (ank) by

alk 2-k and ank O for n > Then (lankl r) (co, c
o
), but

r. alkXkk=l

does not converge to any finite sequence.

Next, consider the sequentially complete space where s r/(r+l). Define

-lekk and let

-I/r
ank n for 1 -< k < n,

=0 fork >n.

Then (lank Ir) (c
o

c and @ in but the norm of
o Xk s s

n
Z ankXkk=l

is equal to

n
-s / r _-s

n E k
k=l

which does not tend to O as n =.

For metrizable spaces the next result is a partial converse to Theorem i.
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THEOREM 2. If X is metrizable and (I,I) holds then X is r-convex

PROOF. Since X is metrizable we may determine a countable base {UI, U
2

2-1U for n I, 2,of balanced neighbourhoods such that Un+ I n
Now for any balanced neighbourhood U we define the Minkowski gauge PU by

Pu(X) inf{l > O x e V}

for each x e X. Also, for each natural number i we shall write Pi PU." Then,
i

since {U1, U2 is a base, it follows that if (xj) is a sequence such that

Pi(Xj) O (j ) for each i, then x.j O (j ).

Let us suppose, if possible, that X is not r-convex. Then there exists

a neighbourhood V such that for each natural number n the absolutely r-convex hull

of U is not contained in V. Hence, for each n, there exist x(n,l), x(n,2)
n

x(n,m(n)) in U and there exist complex numbers (n,l), (n,2),..., (n,m(n))) with
n

m(n)
E I),(n,k) r

<
k--1

(2.2)

such that

m(n)
E k(n,k) x(n,k) # V.

k=l
(2.3)

Now define an infinite matrix A (ank) as follows:

alk %(l,k) for I -< k < m(1) and alk 0 otherwise;

a2k %(2,k) for m(1) < k < m(2) and a2k 0 otherwise;

a3k %(3,k) for m(2) k _< m(3) and a3k 0 otherwise

Then it follows from (2 2) that (lank [r e (Co, Co) whence Ae (Co(X) Co(X))
by (i.I).

Next, we define a sequence, x (xj) by

x (x(l,l), x(l,2) x(l,m(1)), x(2,1) x(2,m(2)) ).

Thus, it is clear that

re(n)
A (x) E (n,k)x(n,k).
n

k=l

Let us choose any natural number i. Since Un+I 2-1Un for n 1,2,... it follows

that

i-n
Pi(x(n’k)) -< 2 (24)

for each n > i and for I < k < re(n). But (2.4) implies that Pi(Xj) 0 (j ),
whence x. @ (j ), and since A e (c (X) Co(X)) it follows that

o
A (x) @ (n- ) which is contrary to (2 3). Hence X must be r-convex whichn
completes the proof.

In our final theorem below we shall show that, for the special class of

metrizable spaces known as locally bounded spaces, condition (i.i) implies

sequential completeness of the space. We recall that a Hausdorff topological

linear space X is called locally bounded if X contains a bounded neighbourhood B,
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that is a neighbourhood B such that for every neighbourhood V there exists % > O

with B %V.

THEOREM 3. Let X be locally bounded and suppose that (I.i) holds. Then

X is sequentially complete.

PROOF. Since local boundedness implies metrizability, it follows from

Theorem 2 above that X is r-convex, whence, being locally bounded and r-convex,
X must be r-normable (see for example Kthe [3], page 160). Let II-II be a

suitable r-norm and suppose that (yk) is any sequence in X such that

IlYkll <
k=l

By the general convergence principle for series we may construct a positive real

sequence (qk) with qk (k ) such that

qkllyk[l < (2.5)
k=l

Now define a sequence (xk) by

i Yk
Xk qk llyklll/r

if llykl > O,

-r/2and x
k

O otherwise. Then lXkl _< qk for all k _> I, whence x
k

@ (k ).

Also, we have

Yk Xk /qk lykll/r
and by (2.5) we see that

(qk)rl lykl < . (2.6)
k=l

Let us define a matrix A (ank) by

alk ’/qk lykll I/r
O for n > 2ank

that (lankjr).. (Co, Co) and so (I.I) implies thatThen (2.6) implies

ZlalkXk kZlYkk

converges.

To summarize whenever (yk) is such that [[yl]l + l]y2[l + < it

follows that Yl + Y2 + converges. It is readily seen that this implies the

sequential completeness of X, which proves the theorem.

REFERENCES

I. LANDSBERG, M. Lineare topologische Rume, die nicht lokalkonvex sind.
Math. Z. 65 (1956) 104-112.

2. ROBERTSON, A.P. and ROBERTSON, W.J. Toplqgical Vector Spaces, Cambridge
University Press, 1973.

3. KTHE, G. ToP0)0gical Vector Spaces I, Springer-Verlag, 1969.


