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ABSTRACT. Efficient and unbiased estimates of the parameters of the differential sys-

tem, as well as simultaneous fiducial limits, are obtained through an (eventually

weighted) least-squares fitting to a Taylor expansion of the concentration of the

products of the reaction.
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i. INTRODUCTION.

Let us consider a reaction in which an enzyme E reacts with a substrate S;

this results in the formation of an activated complex ES* which, in the simplified

model under investigation, splits irreversibly into the enzyme and the products of

the reaction P. The corresponding chemical scheme is

kI k2
E + S ES

k_1
E+P

where the k’s are velocity constants. Let e, s and x be the concentration of free

enzyme, free substrate and activated complex respectively. Then the differential sys-

tem which describes the kinetics of the reaction is

ds/dt -kle s + k x + klSXo -1
(1.1)

dx/dt kleoS (k_l + k2)x klSx
where e denotes the initial concentration of enzyme and with the initial conditionsO

s(0) s x(0) 0 (i 2)O

This system is non-linear and no close-form solution is available. It has been
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shown in [I] that of the two classical approximations of (1.1)-(1.2), that due to

Haldane and Briggs and known as the steady-state approximation is preferable, but its

domain of validity is limited to very small values of e or s which points to the
o o

need of a more direct approach. Anyway this approximation allows one to estimate only

the two combinations of parameters k2e (the v of classical enzyme kinetics theo-
max

ry) and the Michaelis constant K
M (k_l + k2)/kl" Thus, even assuming that the

Briggs-Haldane scheme would be used in conjunction with the extrapolation technique

suggested in [i] and therefore made more reliable, it remains that it is intrinsi-

cally limited and leads to discard much of the information contained in a kinetic

curve.

In practice the interest is focused on the initial portion of this curve

because a feature not restricted to experiments carried out with enzymes parasite

reactions may occur later and mask the phenomenon under scrutiny. In the Briggs-

Haldane method (and in the Michaelis-Menten one as well) one uses exclusively the

linear segment of the graph reaction velocity versus time. However the information

sought, i.e. the numerical value of the parameters of the differential system is con
tained in part in the non-linear portion of the curve and it is there generally

speaking that is whatever may be the dependent variable selected that the anal-

ysis must be extended.

Thus the purpose of this paper is to describe a technique suitable for the

fitting of a set of experimental data to the solution of (1.1)-(1.2) and for obtain-

ing estimates, with their fiducial limits, of the parameters e and k’s. The discus-
o

sion is conducted in terms of quantities easily evaluated by a digital computer.

2. THE FUNDAMENTAL REGRESSION.

Let there be t. (i 1,2,...,n) the times at which a certain variable is mon-

itored in order to define the kinetic curve of an enzymatic reaction. As usual we

take t as the (statistically) independent variable; we select as dependent variable

the concentration of the products of the reaction p, which satisfies

(2.1)dp/dt -(ds/dt + dx/dt) k2x
Taking into account the initial conditions p(O) x(O) 0 one obtains, near

the origin, p in the form

P k2[X’ot2/2" + x"t3/3’o + + x(i)ti+i/(i+l)!o + "’’]

where the indicate derivatives with respect to time, and the problem is reduced to

the evaluation of x(i) (i 2,3,...). The graph of p versus t starts tangentially to

o

the time axis (at the origin), with an upward concavity (as at the origin dx/dt
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kleoS > O) and later exhibits an inflexion point (at the time T of [i]). Thus, at

the beginning of the reaction at least, the function p(t) is strongly non-linear and

therefore presents the features required for the analysis under consideration.

In order to facilitate the computer processing of the equations to be devel-

oped, we relabel the parameters as follows,

former notation: eo kI k_l k2

new notation K
1

K
2

K
3

K4

Then (i.i) becomes

ds/dt K3x K2(K1 x)s
(2.2)

dx/dt K2(K1 x)s (K3 + K4)x
The solution p p(t;KI,K2,K3,K4) is obtained by means of the standard Taylor

expansion method. The calculations are much simplified if, taking into account (2.1),

one rewrites (2.2) in the non-canonical form

Putting

s’ K3x K2(K1 x)s

x’ -K4x s’.

a KIK2 + K2s + K
3

b=a+K
4

c K K (2K2s K
i 2 4

d b2 + 2c + 4KK2s
one obtains a Taylor approximation in the form

P KiK2K4So[t2/2! bt3/3! + b2 + c)t4/4! (bd 3KiKp2K4So)t5/5!] (2.3)
Assume now that we know a set of approximate values K (i 1 2 3 4) of the

parameters. The effect of small variations AK. around these values on p considered
as a function of the K. ’s is given by

4 4P(t;K
1 + AK1,K2 + AK2,K3 + AK3,K4 + AK4) p(t;KI,Kz,K3,K4) + iAKi + . O(AK.2)

i=l i=l

in the domain D discussed in Section 5 and with i
p

(i 1,2,3,4). We haveKi

i/K2K4So t2/2! (b + KIK2)t3/3! + (b + 2bKIK2 + 2c)t4/4!
[(b + KIK2)d + 2b(bKiK2 + c + 2KIK22So) -6KIKK4So]t5/5

2/KIK4so t2/2! (a + b K3)t3/3! + [b2 + 2b(a K3) + 2c + 2KiK22So]t5/4!
{(a + b KB)d + 2b[(a K3)B + c + 6KiKSo] 9KiKK4So}t5/5!

3/KiK2K4So =-t3/3,! + 2bt4/4! (2b 2 + d)t5/5!
t24/KiK2So /2! (b + K4)t3/3! + (b2 + 2bE4 + c KiK2K4)t4/4!
[(b + K4)d + 2bK4(b KIK2) 6KiKK4So]t5/5!
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_exp (i 1,2, n), one can applyGiven a certain set of experimental values Pi
the classical Gauss linearization technique and compute, within the domain D, correc-

tions AK. (i 1 2 3 4) to the estimates Ki by means of the quadrilinear regression
1

4
pexp p(t;Kl,K2,K3,K4) + iAKi (2.4)

i=l
This is a constrained regression as the coefficient of p is equal to unity. In

exp
order to remove this constraint we define the new variable z p p and relation

(2.4) becomes
4

z iAKi (2.5)
i=l

The preceding regression constitutes the fundamental regression of the problem.

-ill be noticed that it is mathematically constrained (as opposed to statistical-

ly) to pass through the origin. Hence there remain n 4 degrees of freedom.

3. ESTIMATES AND FIDUCIAL LIMITS: BASIC THEORY.

We first assume that pexp is normally distributed. Then a least-squares solu-

tion of (2.5) or more generally of a N-linear regression of the same type will fur-

nish estimates of AKi (i 1,2,...,N) which are both efficient and unbiased. Hence

by solving iteratively the regression until the increments are made sufficiently

small, one will obtain efficient and unbiased estimates of the Ki’s. Denoting by ik
and zk respectively the value of i and z for the k-th experimental point, the normal

equations of the problem can be written as TA q, where T is the real symmetric ma-

trix of general element
n

tij ik
k=l k (i,j 1,2, N)

the vector of general element AK. and the vector of general element
4

i

[ ikZk (i 1,2,...,N)qi
k=l

Then one formally obtains from A T-lq.

The total sum of squares is Zz2 and the sum of squares accounted for by the
k

regression is ’+q. Hence the variance S 2 is estimated from

(n N)S2 2 . (3 i)z
k

ij k=l
Let t be the general element of T-I. Then the variance of K. is S2tii and

1

as K
i

is normally distributed, fiducial limits for this quantity (and consequently

for K.) can be obtained as
1

K. + St/tii (i 1,2 N) (3.2)

where t is the value of the Student t-distribution at the selected level of confi-

dence.

One could use the fiducial limits (3.2) to test statistically the concordance

between the set of experimental data and the computed values of the parameters, but
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such a test is inefficient because these limits are not simultaneous: the probability

that they be reached simultaneously is smaller than the probability corresponding to

the selected t point[4].

The determination of simultaneous fiducial limits has already been treated in

[2] and [3] but we give here a more streamlined derivation. The sum of squares ac-

counted for by the regression &.q, used in (3.1) to estimate the variance, can be

written as

Q A’TA (3.3)

where a denotes a transposition; thus Q is a quadratic form which is distributed as

2
X with N degrees of freedom. On the other hand S2 is x2-distributed with n N de-

grees of freedom. Hence the ratio (Q/N)-’.[S2/(n N)] is distributed as F with N and

n N degrees of freedom and the relation

Q [N/(n N)]FS2 (3.4)

defines simultaneous limits for the AK0’s at the level of confidence selected for F.

In many situations however, the interest is focused on the relative variations

AKi/K’z rather than on the magnitude of the K.’s.z Therefore we define

i AKi/Ki (i 1,2 ,N)

and Q becomes
N N

Q t....K.K. (3.5)
i=l j=l z] z 3 z 3

In the space of the i’s the solutions of (3.4)-(3.5), that is feasible simul-

taneous limits, are hyperellipsoids and this makes in most cases for unnecessarily

complicated calculations. Now amongst all these ellipsoids there is, at a given level

of confidence, one hypersphere whose radius x satisfies

(K’TK) [N/(n N)]FS 2 (3 6)

where K is the vector of general element Ki. Let us define

QK K’TK

it will be noticed that QK is computed from quantities present in memory at the end

of the iteration. Then (3.6) takes the form

X2QK [N/(n N)]FS2

Let xI be the value of x for the critical value F i. Thus

xQK [N/(n N)]S2

and simultaneous relative departures of the parameters from the computed values Ki

by an amount no greater than xI are meaningless, whatever may be the level of confi-

dence. This is to say that xI is a statistic which measures the degree of concord-

ance between say the solution (2.3) of the differential system and the (normally dis-
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tributed) set of experimenal data.

Now (3.6) can be rewritton as x2 xF. Hence once xI
is known, one can com-

pute simultaneous fiducial limits at a specified level of confidence.

When the variance of pexp is not homogeneous, it is sufficient to divide both

sides of (2.5) by the weight factor w Var(pexp). The introduction of w is quite es-

sential: for example when the course of the reaction is followed spectrophotometri-

cally, as in that case the variance of pexp exhibits dramatic variations on the do-

main of absorbancies most used[5]. For the calculation of w in situations of practl-

cal interest, see [3].

Finally it must be emphasized that even when one exclusively analyzes sets of

normally distributed pexp, it is advisable to introduce formally the weight factors

w (all equal to i when the variance is homogeneous) because the scanning technique

described in [3] and used to detect inhomogeneitles in a set of data analyzed with

respect to a steady-state approximation formula is directly applicable to the case at

hand. Assume that the k-th point is aberrant: if one depresses in turn the influence

of each point by increasing its associated w factor, the xI values calculated will be

more or less of the same magnitude, except for the k-th one which will be markedly

smaller. One can then test the hypothesis that the k-th point is the only aberrant

one of the set in the following way: the influence of that point is depressed or

quasi-eliminated by increasing its w factor and the remaining points are scanned as

previously. If the sole k-th point stands apart from the others, the xI values re-

corded now will have more or less the same magnitude; etc.

4. THE ILL-CONDITIONED CASE.

By construction the matrix T is positive definite, but barely so in fact, and

it is nearly singular (as can be verified e.g., on the system s i00, KI K2 =.01,
o

K
3

.005, K
4

.008). On the other hand it must be emphasized that to some extent

the condition of a linear system is relative, in the sense that, as in any linear al-

gebra computation, the machine word size and the presence or the absence of a double-

length accumulator are of paramount importance. Furthermore, even if the matrix of

the complete system, that is to say with N 4 variables, cannot be inverted, it may

happen that through the exclusion of one variable, the matrix of order 3 so obtained

will prove readily invertible on the particular computer used. For instance the con-

dition of the matrix T associated with the system mentioned improves when one ex-

cludes either K
I

or K2. Such a feature could obviously be used in special circum-

stances to bracket by successive approximations satisfactory estimates of the 4 para-
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meters but in general it is advisable to handle directly the 4-parameters problem and

because from a practical standpoint the most useful discussion refers to a worst case

situation, we shall examine the analysis of the solution (2.3) of the same example

within the domain D (see Section 5), with a machine using mantissae corresponding to

13-14D (a value typical of many a microprocessor-based system); all the operations

were performed in single length mode.

The most striking feature of the matrix T is that it loses easily its positive

definiteness, for example in the course of a Cholevsky triangularization. In fact the

inversion by all the classical techniques involving a triangularization fails. Thus

one must abandon any idea of inverting en bloc the matrix T; as a matter of fact this

is of little consequence because the only computation in which the t ij strictly

speaking the tii (i 1,2,3,4) are involved in an essential way, is that of the

variance of the parameters. But these variances are not much used as xI is a more

convenient and realistic statistic. Thus one can dispense with the inversion of T and

we consider now the lesser problem of solvimg once the normal equations by an itera-

tive technique which does not require a preliminary deep transformation of the matrix

of the coefficients. The standard techniques for solving a linear system with a pos-

itive and non-singular matrix, such as the conjugate gradient method or the steepest

descent method, all failed.

An obvious way to deal with the evanescence of the positive definiteness of T

is to multiply on the left the normal equations by T but the multiplication (here the

squaring) of ill-conditioned matrices is usually deemed undesirable. This formal cal-

culation of T2 is avoided in a variant described by Hestenes and Stiefel [6]. This

procedure proved unsuitable for our needs because huge oscillations of the terms bi

of formulae (10:2) of [6] were recorded, although the stability of the coefficients

a. was acceptable. This suggests to modify the method and to recalculate at each step
1

the residual vector r from its definition.

This is to say that we use the following algorithm:

r=q-TA

u=T
(4.1)

a TI 2/I TI 2

=A +auAnew old

with the initial value A 0. No stability problem was encountered.

This procedure bears little resemblance to a conjugate gradient technique,

which is essentially an orthogonalization method. On the other hand the first step of
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the conjugate gradient method and that of the steepest descent method are identical

[7]; thus the algorithm (4.1) is best classified as that of an iterated steepest des-

cent and the general theory of the steepest descent method [7] is applicable to each

step individually.

The iterated steepest descent method shares with all iterative techniques one

feature, viz. there comes a time when the limiting accuracy is reached, which implies

in turn the existence of a limiting accuracy for the estimates of the parameters. The

limiting accuracy of the normal equations routine is easily observable in the case at

hand; hence an efficient strategy (worst case situation) is to subordinate the whole

computation, including the exit from the fundamental regression iteration, primarily

to the limiting accuracy exhibited by the normal equations routine rather than set

beforehand strict escape clauses of the type IAKil and/or lKil/Ki
< 10-3-10-6

(i 1,2,3,4).

Needless to say the exclusion of one variable may result in an appreciable

improvement of the limiting accuracy.

5. DISCUSSION.

There remains to characterize the domain D. It will be noticed that KI,K2 or

K
4
must not vanish as then the matrix T becomes singular. Furthermore negative values

of the K’s are meaningless and therefore we take as first conditions for defining D:

Kl,K2,K4 > 0 K
3
> 0 (5.1)

The conditions of validity of the expansion (2.3) are the same as those of

x(t) and s(t). In order to study the latter we consider system (2.2) in the rectangle

Is s < B Ixl < B (5.2)
O

where B max(s KI). Let f (s,x) and f2(s,x) denote the right-hand sides of (2.2);
o’

then we have [in (5.2)] the following estimates:

Ifl(s,x) < K3B + K2(KI + B)(s + B)

..If2(s,x) =< K2(KI_ + B)(So + B) + (K
3
+ K4)B

Putting

M K2(KI + B)(s + B) + (K
3
+ K4)BO

we have in (5.2)

(s,)l < MIfl(s,x) < M If 2
Therefore the problem (1.2)-(2.2) has a unique solution defined on the inter-

val

It[ < B/M (5.3)

Since fl(s,x) and f2(s,x) are analytic (and even entire) functions, the solution
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{s(t),x(t)} is analytic on (5.3). Hence an upper bound of the maximum sampling time

allowed t B/M is obtained as
max

tmax B/[K2(KI + B)(So + B) + (K3 + K4)B]
Whatever may be the largest of the two quantities s

O

-it [2K (s
o
+ KI) + K + K

max 2 3 4

In other words t satisfies
max

(a + b K3)t i
max

and the domain D is characterized by (5.1)-(5.4).

and KI, one obtains

(5.4)

The practical implementation of the techniques discussed in this paper and

their implications regarding the experimental design of enzyme kinetics measurements

will be described elsewhere. Suffice it to point out here that an immediate conse-

quence and a major advantage of this numerical procedure is that it furnishes an es-

timate of e (= KI) in the same units as those used for So. In other words, through

the analysis of a kinetic curve one can obtain directly the value of the initial con-

centration of an enzyme in well-defined physical units.
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