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ABSTRACT. If each sequence converging to 0 in a locally convex space is also Mackey convergent

to 0, that space is said to satisfy the Mac]ey convergence condition. The problem of characterizing

those locally convex spaces with this property is still open. In this paper, spaces with compatible

webs are used to construct both a necessary and a sucient condition for a locally convex space

to satisfy the Mac]ey convergence condition.
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1. INTRODUCTION.

In a locally convex space, it sometimes happens that every convergent sequence is also con-

vergent with respect to a normed topology on some subspace. Since normed spaces have many

tangible properties, it is important to know for which locally convex spaces this condition holds.

Such spaces satisfy the so-called Mackey convergence condition.

Throughout this paper, E will denote a Hausdorff locally convex topological vector space. An

absolutely convex set in E will be called a disk. If B is a disk in E, we equip its linear hull EB
with the semi-normed topology generated by the Minkowski functional of B. If B is bounded, the

Minkowski functional of B generates a normed topology on Es. If Es is a Banach space, B is

called a Banach disk. E is fast complete if each bounded set in E is contained in a boundcd
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Banach disk. Every sequentially complete locally convex space is fast complete.

In Jarchow ([1], 10.1) it is stated that no concise description of locally convex spaces which

satisfy the Mackey convergence condition exists. This problem is still open. In this paper we will

examine this characterization problem within the context of spaces possessing webs.

DEFINITION 1: A sequence (x,) in a locally convex space E is Mackey convergent to x

if there is a bounded disk B C E such that zn --, z in the norm topology of Ev. If x 0, we say

that (xn) is a Mackey null (or locally null) sequence.

Since the norm topology TB on EB is finer than the induced topology on Ev, every Mackey null

sequence is a null sequence for the original topology on E. This prompts the following definition

of the converse, due to Jarchow [1].

DEFINITION 2: A locally convex space satisfies the Mac:key convergence condition if

each of its null sequences is a Mackey null sequence.

Mackey convergence is defined by Mackey in [2]. In DeWilde [3] (Prop. III.l.10), it is shown

that every Frgchet space satisfies the Mackey convergence condition. Several results concerning

the Mackey convergence condition are obtained in Jarchow and Swart [4]. In their paper, it is

shown that E satisfies the Mackey convergence condition if and only if T,(E’, E) is a Schwartz

topology on E’, where T(E’,E) is the topology of uniform convergence on all null sequences of

E. They also investigate the Mackey convergence condition for spaces which are fast complete and

bornological. Specifically, the following is obtained (see [4l):

THEOREM 3: Let E be fast complete. Then the following are equivalent:

(a) E is bornological and satisfies the Mackey convergence condition.

(b) E ind line E, where each Ea is a separable Banach space, and each null sequence in E is

null sequence in some

2. SEQUENTIALLY WEBBED SPACES.

We will now examine the Mackey convergence condition for spaces with webs. The reader is

referred to Robertson [5] for a description of webs in a topological vector space. Further informa-
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tion concerning webs may be found in Robertson and Robertson [6], and in DeWilde [3]. DeWilde

originally used webs to obtain several generalized versions of the Closed Graph Theorem; see [3].

In this paper we will work only with locally convex spaces and we will assume, as in [6], that each

member of a web is absolutely convex. The following aspects of webs will also be useful.

DEFINITION 4: A strand of a web is a collection of members of , one from each layer,

with the k + 1 member of the strand contained in the the k-th member. Strands will be denoted

by (W).

DEFINITION 5: A web on a locally convex space is compatible with E if for each

0-neighborhood U in E and for each strand (Wt) of , there is a k0 E N such that Wt c U.

REMARK: It is to be noted here that we will assume (in accordance with Robertson [5]) that

for each strand (Wt) and for each k E N

1
(1.1)

Suppose now that xn --, 0 in E, and suppose that for large enough n, (x,) is contained in some

finite collection of strands from . Since Definition 5 implies that the members of are in some

sense smaller than the 0-neighborhoods in E, this is actually enough to coerce (x) to be a Mackey

null sequence. We have now motivated the following definition.

DEFINITION 6: A locally convex space E is sequentially webbed if E has a compatible

web such that for each null sequence (x) in E, there is a finite collection of strands,

from such that for each k N there exists an Nt N such that for each n

_
N,

Let us find some sequentially webbed spaces.

PROPOSITION 7: Every metrizable locally convex space is sequentially webbed.
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PROOF" If (Uk k E N} is a base of absolutely convex 0-neighborhoods of the metrizable

space E, such that (Vk E N),
1

Sk+ c k,
then {Uk" k N} is easily seen to be a compatible web on E {see [5] or [6]). Certainly, every

in E such that 0 is eventually contained in the {only) strd (U).

The following definition may be found in Floret [71.

DEFINITION 8" Let E ind lim En be the inductive limit of the locally convex spaces

where E1 c E2 C and the injection id En --, En+I is continuous for each n. Then E is called

sequentially retractive if each sequence converging in E is convergent to the same point in some

En.

PROPOSITION 9: A sequentially retractive inductive limit of sequentially webbed spaces

is sequentially webbed.

PROOF: Let E ind lin En, and let ("} denote the web on E, for each n. In E, we define

a compatible web as follows: Let the first layer be the collection of all the first layers of the

webs ("). Define the second layer of to be the collection of all the second layers of the webs

1(n), and so forth. Certainly, is a countable collection of absolutely convex sets, and since we

have used all webs (") simultaneously, the other properties of webs (as in [6]) are easily verified

for .
As for compatibility, let U be a 0-neighborhood in E, and let (W) be a strand from . Note

that W1 is in the first layer of Eo, for some n0 N. Since W+I c W for each k, then W
for each k. Hence, since E c E c it follows that for each/ E N, Wk is a member of some

(i), where 1

_
j

_
no. If any W E (f}, where j’ < no, then all succeeding members of

are in E0.0), since we must have Wt+l c Wk for all k. In fact, for large enough k, all succeeding

members of (W) must be in (’0) for some j0; i.e., there is a k0 E N such that

for all ]

_
k0. Without loss of generality, assume J0 1. Then since U 1 E is a 0- neighborhood

in E1 and (1) is compatible with E, there is a/ N such that

W c UNE c U.
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This makes 1/ a compatible web on E.

Finally, given some n E N, a member of the kth layer of 14/(n) is also a member of the kth layer

of , and this holds for each k E N. Hence, each strand from the web (n) is also a strand of .
Now assume all the spaces E are sequentially webbed, and that E is seqlentially retractive.

If z, 0 in E, then z, --* 0 in some En. Thus, (z,n) is contained in a finite union of strands of

the web (n). Since these are also strands of , it follows that E is sequentially webbed. []

COROLLARY 10" Every strict inductive limit of sequentially webbed spaces is sequentially

webbed.

PROOF: Every strict inductive limit of sequentially webbed spaces is sequentially retractive

since the topology of the inductive limit induces the original topology on each of the constituent

spaces. []

COROLLARY 11: Every (LF)-space is sequentially webbed.

3. A NECESSARY CONDITION.

We are now ready to describe a collection of locally convex spaces which satisfy the Mackey

convergence condition.

THEOREM 12: Every sequentially webbed locally convex space satisfies the Mackey conver-

gence condition.

PROOF: Assume E is sequentially webbed. Let z, 0 in E. By KSthe [8], 28.3, (z) is

a Mackey null sequence if and only if there is a sequence (rn) in (0, oo) such that r cx as

n oo, and r,z, 0 in E. We seek to find such a sequence (rn). Assume that we have found

strands (W(1)),..., (W(’)) from the web such that for each k N there is an N N such that

(v _> N),

i--!
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Notice that by (1.1), for each i and for each k 6 N

Hence, (’v’l e N)

wz{0 1W{0 tz{0 1W{0 1 W{0
"k+2 k"’k+l C k C k+l C

W(0 c 1W(0
k+ 2 k

For k 6 N, we may find l, 6 N such that

Then, by defining

we have

W(*)
k, +k,’

1W(t)Wl(I) C 1-’--W(’) C kk, 21k,

Similarly, there is an lk, 6 N such that

and so forth.

Let

1 W(2) 1 W(2)WC)c-,_ ck, 2 k,

lk maz{lk{ i 1,..., m}.

Then there is Nk
6 1N such that for each n _> k

" U w, c ,U, 1 w,,) 1w{,, 1

,=,
. .

i=1 i=1

Thus, (Vn >_ Nk)

Futhermore, there is an Nk+1
e N such that Nk+1

> Nk, and (Vn >_ Nk.l)

k+l
i=1

and this continues for all k 6 N.
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Now define (r.) by letting

r.=k, forNk _n<Nk+1.

lim r,, lim k oo.

It remains to be shown that r.z. 0 in E. To prove this, let U be a 0-neighborhood in E. By

the compatibility of W, there are positive integers K1,..., K, such that

Choosing

we have

"’"Kin C U.

K rnax{K 1,...,

c

Moreover, we may find 2’VIK N such that for n _> Nbc

by (3.1). Hence, r.. 0 in E, and (z.) is a Mackey null sequence.

REMARK: Notice that by Proposition 9, each sequentially retractive inductive limit of sequen-

tially webbed spaces satisfies the Mackey convergence condition. In particular, each (LF)-space

satisfies the Mackey convergence condition.

If E ind lim E, as in Definition 8, then E is regular if each set bounded in E is contained

in and bounded in some E,. Floret [9] proved that a regular inductive limit E of Frgchet spaces is

sequentially retractive if and only if E satisfies the Mackey convergence condition. This provides

us with the following:

COROLLARY 13" Let E be a regular inductive limit of Frdchet spaces. Then E is sequen-

tially retractive if and only if E is sequentially webbed. []

In order to present an example, we need the following fact.
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LEMMA 14: (E, 7") is fast complete if and only if (E, 7") is fast complete, where 7" is any

topology which is compatible with the duality

PROOF: If B is a bounded Banach disk in E with respect to the topology T, then B is

bounded in E with respect to any compatible topology T’. Hence, B is a bounded Banach disk in

E with respect to T’. []

The following simple example shows that, in addition to the bornological spaces in Theorem

3, there are fast complete, non-bornological spaces which satisfy the Mackey convergence condition.

EXAMPLE 15: Consider 11 with its weak topology a a(ll ,loo). Evidently, 11 under its

norm topology T is bornologicai; hence, (11,7") is a Mackey space, a T, since otherwise

would have finite dimension (see [10], page 10). Thus, (11 ,a) is not a Mackey space; hence,

is not bornological. However, (11 ,a) is fast complete by Lemma 14, and the following shows that

(l, a) is sequentially webbed.

Since (/1, T) is a Frdchet space, it has a neighborhood web consisting of the strand (Uk), as

in Proposition 7. Furthermore, a c T, so every weak 0-neighborhood V contains a strong 0-

neighborhood U. Thus, for the neighborhood strand (Uk), of the web , there is a k0 E N such

that

o c c V,

so ]# is also compatible with a. Now, if x -- 0 in (11 ,a), then xn 0 in (/1, T) by Shur’s

Theorem ([10], Chapter VII, page 85). That is, for each k E N there is an Nt N such that for

every n >_ N,

hence, (/1, a) is sequentially webbed.

4. A SUFFICIENT CONDITION.

With some slight restrictions on E, we may obtain a converse to Theorem 12. We start with a

definition.

DEFINITION 16: A topological vector space E has a strict web if E has a compatible web

such that for each strand (W) of and each series o= xk with x W for each k N,
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z is convergent in E, and further,

zE -1,
r=+l

for each k _> 2. A space with a strict web is also called a strictly webbed space.

If the last condition, that

is dropped, then E is said to have a completing web. Basically, strictly webbed spaces and spaces

with completing webs are those which have compatible webs and have an additional mild form of

completeness. The reader is referred to [1], I3], or [5] for more details concerning strict webs. It

should be noted that in [5] strict webs are called tight webs.

There are plenty of strictly webbed spaces. In particular, Frdchet spaces, (LF)- spaces, and

strong duals of such spaces are strictly webbed; see sections 10 and 11 of [5] for proofs.

The definition of strictly webbed spaces is suggestive of that for sequentially webbed spaces.

A connection between these two will be revealed in Theorem 18 below. First, some preliminary

remarks are in order. Strictly webbed spaces also originated in attempts to generalize the Closed

Graph Theorem. The most well known of such results is usually called the Localization Theorem;

see 5.6.3 of [1] or section 11 of [5]. We will utilize the following special case of this theorem, which

is listed as Corollary 2 of Theorem 19, section 11 of [5]:

LEMMA 17: Let E and F be Hausdorff topological vector spaces such that F is strictly

webbed. Let E -- F be linear with a closed graph. Then for each bounded sequentially closed

disk B in E, there is a strand (W) in F such that for each k G N there exists a number a such

that

t(B) c ,w.

THEOREM 18" Let E be fast complete and strictly webbed. If E satisfies the Mackey con-

vergence condition, then E is sequentially webbed.

PROOF" Let be a strict web on E. Let z, -, 0 in E. By assumption, (zn) is a Mackey

null sequence; therefore, by KSthe [8], 28.3, there is a sequence (r,) c (0, x), with r, c as
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n x and r,,x,, 0 in E. Let

A {r.z. :n N}.

Then A is bounded, so it is contained in a bounded Banach disk B. Furthermore, A is bounded

in the Banach space Ez and by letting C denote the Ez-elosure of the convex, balanced hull of

A, then clearly C is a bounded, sequentially dosed disk in En. Notice also that the injection

id En E is continuous, therefore it has a dosed graph. It follows now by Lemma 17 that there

exists a strand (Wt) of such that for every k E N there is a number at such that

ia(c) c c ,w;

therefore, for every n E N,

r.x. E atWk.

Since rn oo as n o, for a fixed k N there is an Nk N such that for every n _> N,

Thus, for every n > N

Iw cw,
since we assume that each W is balanced. []

As was mentioned before Lemma 17, the strong dual of a Frdchet space is strictly webbed.

Moreover, by Corollary 2 of Proposition 1, Chapter VI of [6], the strong dual of a Frdchet space is

complete, hence fast complete. This allows us to make the following statement.

COROLLARY 19: The strong dual of a Frdehet space satisfies the Mackey convergence

condition if and only if it is sequentially webbed. []
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