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ABSTRACT. In the present report, we investigate the formulation, for the numerical

evaluation of the multidimensional singular integrals and integral equations, used

in the theory of linear viscoelasticity. Some simple formulas are given for the

numerical solution of the general case of the multidimensional singular integrals.

Moreover a numerical technique is also established for the numerical solution of some

special cases of the multidimensional singular integrals llke the two and three

dimensional singular integrals. An application is given to the determination of the

fracture behaviour of a thick, hollow circular cylinder of viscoelastic material

restrained by an enclosing thin elastic ring and subjected to a uniform pressure.
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I. INTRODUCTION.

In the present report we consider the multidimensional singular integrals and

integral equations, with many applications in the theory of elasticity, plasticity

and viscoelasticity. Tricomi [I], [2] has written the first important work on multi-

dimensional singular integrals and investigated double singular integrals of the

following form:

f (x0,Y0 ,8

l(x0,Y0) f w(x,y) u(x,y) ds (I.i)
s r2

i8
where __(x-xO) + i(y-y0)__ r e (1.2)

and w(x,y) is the weight function for various quadrature rules.

If the density function u(x0,Y0) in eqn. (i.I) is a bounded and Hider

continuous function in s and also if the characteristic function f(x0,Y0,8)is bounded

and for a fixed pole X(x0,Y0) is continuous with respect to 8, then according to



562 E.G. LAIX)POULOS

Tricomi, the necessary and sufficient condition for the existence of the singular

integral I in the principal value sense, is that its characteristic should satisfy

the following condition:

2
f(x,y,e) de 0 (1.3)

0

The next important work on multi-dlmenslonal singular integrals was done by

Giraud [3] [5]. He investigated integrals taken over a closed Liapounov manifold

r of any dimension m. This manifold is broken up into a finite number of mutually

overlapping parts, each one of which has a one-to-one mapping on a region of an

m-dlmenslonal Euclidean space.

He investigated singular integrals of the following form:

f K(x,y) u(y) dr
y

r
(1.4)

where the function u(y) satisfies a Lipschitz condition with positive index.

Giraud also studied the followipg singular integral equation:

u(x) v f K(x,y) u(y) dr f(x)
r Y

(1.5)

with a kernel, the singular part K1 (x,y) of which has the following special form:

-m+l

KI(x,y)--" . C (x) (Xa-Ya) Ay(x-yB) (xy-yy)
2

a=1
a B, =1

where C (x) are certain given functions.

If we operate on both sides of eqn. (1.5) with:

u(x) + V f H(x,y;) u(y) dr
r Y

where H(x,y;) is any singular kernel then we shall get the following equation:

(1.6)

[I + t2 (x,v)] u(x) + V f [H (x,y;v) K(x,y)

r

v H(x,z-v) K (z,y) dr u(y) dry
Z

r

f (x)+ v tI(x,y;v) f(y) dr
y

r
(1.8)

where @(x,v) is a function, completely determined by the kernels K and H and the

manifold r.
Further:Investlgations were done by Mikhlin [6] [9] who proved that a singular

operator of the type:

a u(x) + f(O) u(y) dy (1.9)
m

E r
m
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where: r IY xl and: 0 (l.lOab)r

(E is an Euclidean space of m dimensions)
m

is bounded in the Hilbert Euclidean space L2(Em) if the symbol of the operator is

bounded and its norm doesn’t exceed the maximum of the modulus of the symbol.

Furthermore, Mikhlin has studied the following integral equation:

a(x) u(x) + f f(x,0) u(y) dy (I.ii)
m

rE
m

If the symbol satisfies certain demands with regard to smoothness, then a multi-

dimensional singular integral equation permits regularization, if and only if, the

modulus of its symbol has a positive lower band. The theorem about the regulariza-

tion can be extended also to systems of singular equations and likewise for the case

where the singular integral entering the equation is taken over any closed Liapounov

manifold.

The basic problem studied by Calderon and Zygmund [I0] [13] are singular

integrals of the form:

u(y) dy (1.12)
m

rE
m

They investigated integral (1.12) in the Lebesgue-Euclidean spaces Lp(Em) where

< p < , p # 2. They proved that the integral (1.12) is bounded in L (Em) if f()
P

satisfies the Dini condition:

re(t) at < (I.13)
t

0

where (t) is the modulus of continuity of the characteristic f(0). Moreover

Calderon and Zygmund investigated the compounding of singular operators of the type:

K u a u(x) + f() u(y) dy (1.14)
m

rE
m

Over the past years some papers have been published by using singular integral

equation methods in elasticity, plasticity and fracture mechanics theory for

isotropic and anisotropic solids [14] [33].

On the other hand, some scientists have studied problems of the classical theory

of viscoelasticity, followed classical lines [34] [39], while Rizzo and Shippy [40]

have used the Boundary Integral Equation Method (B.I.E.M.). In this report the

Singular Integral Operators Method (S.I.O.M.) which has been used by the present

author to the solution of elasticity and plasticity problems [21], [22] shall be

extended to the solution of viscoelasticity problems.

2. INTRODUCTORY FORMULAE OF THE MULTIDIMENSIONAL SINGULAR INTEGRALS.

Let us consider the following multidimensional singular integral: [6]-[9]
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I(x) f u(y) dy
m

E
m

where x,y are points in the space E and:
m

r ,IY xl. and e y x (2.2ab)
r

Furthermore, the point x is the pole, the function f(x,e) the characteristic,

and the function u(y) the density of the singular integral (2.1).

Thus, let us consider the following assumptions:

(a) In any bounded part of the space E the density u(x) Lip a, a > 0
m

(b) at infinity u(x) 0 (Ixl-k), k > 0

(c) The characteristic is bounded and for a fixed pole x is continuous with

respect to e.
If these three assumptions are valid, then according to Mikhlin [6], [7] for

the existence of the singular integral (2.1) it is necessary and sufficient that:

f(x,8) ds 0

s
where S is the unit sphere over which 8 moves.

Thus, from (2.1) we have the following formula:

I f(x,O)rm u(y) dy f f(x,O)rm
E r>l
m

u(y) dy

(2.3)

+ f f(x,e)m [u(y) u(x)] dy + u(x) f f(x,O)m dy
r r

r<l r<l

(2.4)

The first two integrals on the right-hand side converge absolutely, but for the

third integral if we introduce spherical coordinates with a centre at x, then we’ll

get:

f(x,8) dy lim f f(x,e) dy
m m

r<l r +0
e<r<l r

lim in J f(x,e) ds (2.5)
-0 S

if condition (2.3) is satisfied.

But if condition (2.3) is not satisfied, then the singular integral (2.1) can be

expressed in terms of absolutely convergent integrals by the formula:

f f(x,O)
u (y) dy f f(x,e)

u (y) dy + f f(x,e) [u(y) u(x)]dy
m m m

E r r>l
r

r<l r
m

(2.6)
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3. BASIC FORMULAE OF THE MULTIDIMENSIONAL SINGULAR INTEGRAL EQUATIONS.

Let us consider the following multidimensional integral equation:

A(x) u(x) + f f(x,8) u(y) dy + B u 0 (3.1)
E r
m

The integral equation (3.1) is singular if the following assumptions are valid:

(a) The coefficient A(x) satisfies the inequality:

iA(y A(x) C1 r
E [(l+x2 (l+y2) 2 (3.2)

(b) The characteristic f(x,e) satisfies the conditions of section 2 and also

the inequality:

If(y,e) f(x,e)J s C
2 r [(l+x2) (l+y=)] 2 (3.3)

(c) The operator B is completely continuous in L (Em) for a certain p in the
P

interval 1 < p .
In the assumptions (3.2) and (3.3) CI, C2,

, , denote positive constants.

.Moreover, let us consider the following singular integral equation in simplest form:

I(x,y,8) A(x) u(x) + f f(x,e) u(y) dy (3.4)

Thus, by using some series of m-dimensional spherical functions, of order n,

one obtains:

f(x,e) r. A (x,e) I; A (x e e
2 era_

n=
n,m n= n,m

By using (3.5), equation (3.4) takes the following form:

where:

I(x,y,e) A(x) + z B A (x,e)
n=l n,m n,m

B
n,m

m

i
n 2 r()

(3.6)

(3.7)

By using Stirling’s formula we obtain the following assumption:
m
2IB =< Cnn,m

(3.8)

where C is a constant.

Moreover, let us consider the more simplest form of multidimensional singular

integral equation:

I A u(x) + f u(y) dym m
r

(2)2 E
m

(3.9)
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A simplest method for the numerical evaluation of eqn (3.9) is by using the

Fourier transform:

-II=F @Fu (3.10)

where F is a Fourier transform, of the singular operator with symbol (0).

In (3.10), (x,0) is given by the following formula:

(x,e) r. a
(k) (x)A m(k)

m=] n n, (e)

where A
(k) (e) are linearly Independent spherlcal functions of order n.

4. SOME SPECIAL CASES FOR THE MULTI-DIMENSIONAL SINGULAR INTEGRALS.

4.1. The 2 Dimensional Singular Integral

Let us consider the following two-dimensional singular integral: [22], [31],

[32], [33]

(3.11)

(R)(x0’Y0)
w(x,y) g(x0,Y0,B)

u (x,y) dS, (x0,Y0) e S (4.1)

S
iB

in which: (x-x0) + i (y-y0) r e (4.2)

If we assume that the boundary of S is described by the following equation:

R R(e), 0 < e < 2’ (4.3)

then eqn (4.1) may also be written as follows:

in which:

# f g(e)
u (r,e) ds (4.4)

S r2

g(e) go (Xo’Yo’e) (4.5)

u(r,O) u
0 (x0,Y0) (4.6)

where:

By using the trapezoidal rule with m abscissae, then it can be concluded that:

m-1

* "J G(o) de z-! Z G -’2__ (4.7)
m Ill

0
i=O

R(e)

G(e) g(e) f u(r,O) dr

0
n

g(e) ): A
k
u (R (e) Pk,e) + u (p,e) in IR(e)I]

k=l
(4.8)

where Pk and Ak are the abscissae and weights.

Furthermore let us use the following numerlcal integration rules:

i. The Gauss-Legendre rule.

By using the Gauss-Legendre numerical integration rule then the weight function

has the following form:

w (x,y) 1 (4.9)
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In this case the singular integral (4.1) may be numerically evaluated as follows:

m lea (x0’Y0’Xm)- CB (x0’Y0’xm)]
Z Am

k=l x
m XO

where:

2 (A(x0,Y0) -B(x0,Y0))Hn (x0)

n g(Xo,Yo,x,Yk)
0A X A

k
u (x,yk)

k=l Yk-Y0

(4.10)

2g (Xo,Yo,X) u (x,yO) H
n (yo)

(Yo # Yk’ k I, 2, n) (4.11)

u g(x0,Y0,x,yk)
CB z A

kk=l Yk-Y0
k6"m

u (x,yk)

+A
m dy

d[g(xo,Yo,X,y) u(x,y)

Y=Yo 2g(xo,Yo,X) u(x,Yo)Xn (Yo)

(Y0 Ym’ k 1, 2 n)

ii. The Gauss-Radau rule.

By using the Gauss-Radau numerical integration rule the singular integral

(4.2) can be numerically evaluated as follows:

m-i n w. x .+i
,2i, __I_ _I__ 2i 2i

__
2_. z g--fi-- z [u --) u(O, )]

x .+I 2 m mm
i=0 j=l 3

(4.12)

2i 2i+ u (0, in [R (4.13)

where x. are the zeros of the Legendre polynomials of order n and w. the weights

of the classical Gauss-Legendre quadrature equation.

iii. The Gauss-Lobatto rule.

In the case of the Gauss-Lobatto numerical integration rule, the integral (4. i)

can be evaluated as follows:

2r m-I
2i

n wj Xj-l 2i
x.+l

2iY" g
m

Z
2

u m-(O’)- --’I=-- u (I’--)zm
i=O j=l 1-x.

x .+I
+ u (--2 2W__im )] + u (i, 2__im + u (0, 2___im [n R 2W__im )-i] (4.14)

are the weights and zeros corresponding to the set of orthogonal poly-where wj, xj (i 0(x)jnomials (p ).
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4.2. The 3 Dimensional Singular Integral.

The following integral is a three-dimensional singular integral defined on a

three-dimensional finite region V, containing the third-order pole (xl,yI 1
Z )

whose boundary is a closed Lyapounov surface S: [33]

1 f (xl yl z
I

0, *)I(xI, y z )=
r3

V

u(x, y, z)dv

x
1 1 1I g( y z 0, )

u (x,y,z) dvI)2 3/2[(x-x) + (y-y + (z-zI)
(4.15)

Furthermore let us introduce the following system of spherical coordinates:

1
x x + r sin 0 cos

1
y y + r sin 0 sin (0 S =< )

1
z z + r cos 0 (0 S =< ) (4.16)

2 1) 2r2 (x-xI) + (y-yl) 2 + (z-z

Then, from eqn (4.16) we obtain:
2 R(O,)

I--iim f f f sinO f(O,,)u(r,O,) dO d, dr
0 0 0

(4.17)

Thus, if we integrate eqn (4.17) with respect to O and by using the trapezoidal

rule with abscissae G, D, then we’ll get the following formula:
G D

I-- G--- sin 0
i

(0i, i (4.18)

i=l j=l

in which:

i
(i I)

2 (j- I)
Cj= D

(4.19)

R(O,)
and (0 ) g(O ) J dr (4.20)

,0

For the numerical evaluation of the integral in (4.20) let us use the following

numerical integration rule:
R(O,) L
f u(r,O,)

dr Z A
k
u [R(O,) pk,O,] + u(0,O,) In[R(O,)]

0 r
k=l

(4.21)

where Pk are the abscissas and Ak the weights for the integration interval [0,I].
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5. ASIC FORMIYAE FOR THE THEORY OF LINEAR VISCOELASTICITY.

Let us consider a linear isotropic viscoelastic solid with the following stress

field:

Oij 2 f VI(F,t-T) ST
(F,T) dT + Vl(F,t) ej (F,O+) (5.1)

0

Oil 3 V2(F,t-T) ---- (F,z) dT + V2(F,t eli (F,O+)
0

(5.2)

with: J (F’0+) t/01im ij (F,t), ii (F’0+) t/01im eli (F,t) (5.3ab)

where oj and Eij are, respectively, deviatoric components of the stress and strain

field, V and V
2 are relaxation functions in shear and isotropic compression,

respectively, t is the time and F denotes a point in the infinite elastic space where

the viscoelastic solid belongs.

By taking the Laplace transform of eqs (5.1) and (5.2), one obtains:

%j 2s V (s) eli (5.4)

* 3s (s) * (5.5)ii V2* ii

Furthermore, the Laplace transformed equation of equilibrium is as following:

,
oij,j 0 (5.6)

Let us use Hooke’s law for a linear isotropic, viscoelastic solid:

, , , ,
o
ij

(F) X Un,n (F) 61j + U [ul, j
(F) + uj,i (F)] (5.7)

,
where u

i
denotes the boundary displacements, A* and ,* the additional Lame elastic

constants and 6ij is the delta function of Kronecker.

By applying the Betti-Rayleigh theorem the boundary displacement yields:

* * (H,F) dH + f tj*(H) Uij(H,F) dHu
i

(F) uj (H)Tij
L L

where t.* are the boundary tractions on the contour L and H,F are points on the
3

union of the contour L.

In (5.8) the fundamental solutions for the displacements and tractions are

given by the following relations:

(5.8)

* * I * *+ 3 I +, 6ij+(’ , ,) r
i r,jUij 8*(X*+2) X +3

(5.9)

, ,
Tij

4(2*+X*) n +

*
r r njr i+nir | (5. I0)
,i ,j ,J
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By combining eqs (5.4), (5.5) and (5.7) one obtains:

}, -2/3 s V (s) + s V
2

(s)

s v (s)

(5.11)

Finally, for small strain, the transformed components of strain and displacement

are related by the formula:

2
ij ulj, i

+ uji, i
(5.12)

where u
i

is given by (5.8).

Thus, the components of the stress field for a linear, isotropic, viscoelastic

solid can be evaluated by using the numerical technique of Section 4.1.

6. AN APPLICATION OF LINEAR VISCOELASTICITY.

As an application of the previous theory, let us consider a thick, hollow

circular cylinder of viscoelastic material restrained by an enclosing thin elastic

ring and subjected to a uniform pressure p, applied as a step in time at t 0

(see:Figure I).

The same problem has been previously solved by Ting [39] by using an exact

analytical solution and by Rizzo and Shippy [40] by using the Boundary Integral

Equation Method (B.I.E.M.). A comparison will be made between the new Singular

Integral Operators Method (S.I.O.M.) introduced in the present report, the theoreti-

cal solution [39] and the B.I.E.M. [40].

Figure I:

Vt ;c, octc;t Lc,

A thick, hollow circular cylinder of viscoelastic solid,
restrained by an enclosing thin elastic ring and subjected
to a uniform pressure p.
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The geometrical sizes of the cylinder are as follows: Ratio of inner to outer

radii of the cylinder is R2/R --0.3 (see:Figure I).

Moreover we consider that the viscoelastic solid behaves elastically in bulk

and as a standard linear solid in shear, so that the relaxation functions V and V
2

are given by the formulas:

V1(t) V [g + (l-g) e-x’]

V2(t) N (6.2)

where g, l, V and N are constants and we assume that g 0.5 and V 0.6 N.
*Thus, the transformed relaxation functions V and V

2
are given by the follow-

ing relations:

,
V (V/s) (s + gl) / (s + X) (6.3)

V
2

N / s (6.4)

Furthermore the thin, elastic ring is characterized by the relation:

C E d / (I 9) R
2 (6.5)

where E is the Young’s modulus, v is the Polsson’s ratio, and d its thickness

(Fig. I). Also we assume the value of C/N to be unity: C/N I.

Figures 2 and 3 show the radial gr/p and transverse stress gs/p, respectively,

as functions of time.

TL’m k+/-

0 2 3
0

0.2 ,-,,_., ,..=.., ,_._

4

mm,mmmmmmm

mXmmmm(

5 6 7

//,= .o
,ia =0:825

’R/R, =0.650

R/P, =10:4 75
x S.I.O.M.

0 B.I.E.M.O]

R/R, =0.3’

Figure 2: Radial stresses r/p as functions of time for the cylinder of
Figure I.
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x S.I.O.M.

0.6

0.4 ’=-’,=,-.>,===)_=,,=.=).,=_,).====) 75

0.2 - ).=,)_=, -=.,,=I()--=.--() R/R=0.650
=’="()=..)==== )==,===_ )--===,..()--==-,,.=( R/R,=O.B25

0
0 2 3 4 5 6 7

Ti.’m M:

Figure 3: Transverse stresses o0/p as functions of time for the cylinder
of Figure 1.

Finally, as it is easily seen from Figures:2 and 3, the numerical results of the

S.I.O.M. coincide very well with the theoretical results [39] and the additional

numerical results of the B.I.E.M. [40].

7. CONCLUSIONS.

A new numerical technique has been investigated for the numerical evaluation of

the multidimensional singular integrals and integral equations used in many fields

of mathematical physics.

Especially for the surface singular integrals, some formulas are derived by

using the Gauss-Legendre, Lobatto and Radau numerical integration rules. For the

construction of such a cubature formula, the two-dlmensional singular integral was

considered as an iterated one, and the second-order pole involved in this integral

was analyzed into a pair of complex poles. Thus, the methods of numerical integra-

tion, valid for one-dlmenslonal singular integrals, were extended to the case of the

two-dlmenslonal singular integrals. Also, a complete analysis for the numerical

evaluation of the three-dlmenslonal singular integrals was also presented.

The technique for the numerical evaluation of the surface singular integrals

described in section 4.1 has been used for the determination of the fracture

behavior of a linear, viscoelastic, isotroplc solid. An application was given to the

determination of the radial and transverse stresses in a thick, hollow circular

cylinder of viscoelastic solid restrained by an enclosing thin elastic ring and

subjected to a uniform pressure.
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