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ABSTRACT. It was conjectured in [1 II] (also in [2]) that mixed foliate
CR-submanifolds in a complex hyperbolic space are either complex submanifolds or
totally real submanifolds. In this paper we give an affirmative solution to this

conjecture.
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1. INTRODUCTION.

A submanifold M of a Kaehler manifold M is called a CR-submanifold if (1) the
maximal complex subspace 08y of the tangent space ’I‘xﬁ containing in TxM, x € M,
defines a differentiable distribution &8, called the holomorphic distribution, and (2)
the orthogonal complementary distribution O of & in TM is a totally real
distribution, i.e., Jﬂ; c T;'M, where J denotes the almost complex structure of M
and T;'M the normal space of M at x. Complex submanifolds and totally real
submanifolds of M are trivial examples of CR-submanifolds. A CR-submanifold is
called proper if it is neither a complex submanifold nor a totally real submanifold.
The totally real distribution " of a CR-submanifold of a Kaehler manifold is always
integrable [1,3]). A CR-submanifold M is called mixed foliate if (a) the holomorphic
distribution 8 is integrable, and (b) the second fundamental form ¢° of M in M
satisfies ¢°(8,0%) = {0).

It is known that mixed foliste CR-submanifolds in €™ are exactly CR-products in
€M (1 I] and mixed foliate CR-submanifolds in €PM are non-proper (4]. It was
conjectured in [1 1I] (also in [2]) that mixed foliate CR-submanifolds in a comvle~

hyperbolic space HM are non-proper too.
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In this paper, we solve this conjecture completely to give the following

THEOREM 1. Let M be a mixed foliate CR-submanifold of H®., Then M is
either a complex submanifold or a totally real submanifold.
2. PRELIMINARIES.

For simplicity, we assume that Hm is the (complex) m-dimensional complex
hyperbolic space with constant holomorphic sectional curvature -4. Let M be a
mixed foliate CR-submanifold of HM™. Then, by definition, the holomorphic distribution
0 of M is integrable and the second fundamental form ¢° of M in HM satisfies
a°(0,0") = {0}. We denote by <, > the metric tensor of HM as well as the induced
one on M. Let D° and A° denote the normal connection and the Weingarten map
of M in HM®, respectively. If N is a leaf of 0, then N is a complex
submanifold of HM. Denote by ¢, D, A and Vv the second fundamental form, the
normal connection, the Weingarten map and the Levi-Civita connection of N (in HI),
respectively, and by ¢', D', A’ the corresponding quantities for N in M. Then
we have o(X,Y) = ¢'(X,Y) + ¢°(X,Y) for X,Y tangent to N. Since e°(0,0") = {0},
we also have Ajz = Ajz, on TN, for Z in O8'. Since N is a complex submanifold
of HM, the almost complex structure J satisfies o(JX,Y) = Jo(X,Y) = o(X,JY), Aj¢ =
JAg, JAE = -AgJ, for X,Y tangent to N and ¢ normal to N.

For any vector X tangent to M, we put JX = PX + FX where PX and FX
are the tangential and the normal components of JX, respectively. For a vector ¢
normal to M, we put J¢ = t¢ + f¢, where t¢ and f¢{ are the tangential and the
normal components of J¢, respectively.

Since HM is of constant holomorphic sectional curvature -4, the curvature tensor

R of Hm is given by

R(X,Y)Z = <X,Z>Y — <Y,Z>K + <JX,Z>JY (2.1)
- KJY,Z>IX - 2<X,JY>J2Z
for X, Y, Z tangent to HM,
We need the following result of [1 II] for later use.

LEMMA 1. Let M be a wmixed foliate CR-submanifold of HR, Then
(a) DJZ = D;JZ = Fv;z s (b) DyZ =DyZ = —tn;Jz , (c) Imo=0"e J0*,

(d) AZ’AJZ e 0(2h) , and (e) AzA" + A"AZ =0, for X tangent to N and
orthonormal vectors Z and W in 0.

LEMMA 2. Under the hypothesis of Lemma 1, if M is proper, then (a) each
leaf N of o lies in a complex (h+p)-dimensional totally geodesic complex
submanifold Hb*P of HM and (b) htl a p a2 and h» 2 where p = dimg J"
and h = dimg 0.

3. MORE LEMMAS.

Let M be a mixed foliate CR-submanifold of H®, If M is non-proper, there is

nothing to prove. Thus we may assume that M is proper. By Lemma 2, p » 2.

From Lemma 1, we have

AzA"+A"Az=0 (3.1)

for orthonormal vectors Z,W in . Let ZayeensZp be an orthonormal frame of 0.

We put
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A=A Ag=A

. o - 1Zq «=1,...,p . (3.2)

From property (d) of Lemma 1, each Ag* has eigenvalues 1 and -1 with the same
multiplicity h. Let X,,.,.X} be h orthonormal eigenvectors of Aaqx with
eigenvalue 1. Then JX,,...,JXp are eigenvectors of Agx with eigenvalue -1. With
respect to the basis {X,,...,.Xph, JX;,,JXnh}, we have

Ih 0 0 -Ih
Aax = , J = ) (3.3)
0 -Ip In 0
where I}, denotes the h x h identity matrix. Thus, by (2.1), we have
0 -Ipn
Ag = . (3.4)
-Ip 0
In particular, if we choose « = 1, we obtain
0 ~-Ih In 0
Ay = , Ayx = . (3.5)
-Ih 0 0 ~-Ih
From (2.1) and (3.1) we have
Ax Agx ~ ApgahAa = 0, atp, a,f =1,...,p. (3.6)

Using (3.1), (3.5) and (3.6) we may get

A.=[" °], A..=|° "‘. @1

0 -B
Since A; € 0(2h) (Lesma 1), we also have

B ¢ 0(h), tp = B, (3.8)

where tB denotes the transpose of B.

LEMMA 3. If M is a proper mixed foliate CR-submanifold of HM, then p » 3.

PROOF. Under the hypothesis, Lemma 2 shows that if p < 3, then p = 2. If
P = 2, we may choose an orthonormal frame X;,...,Xn, JXiseesdXh, 21, Z3, JZ,, JZ,
such that, with respect to this frame, A,, A;, A;x and A,z take the forms of
(3.5), (3.7) and (3.8). '

We put

V = Span{X,..,Xp}. (3.9)

Then TN = V ® JV. Since B e 0(h) with !B = B, we may further choose
{X;5..sXh} such that with respect to it, B has the form:

Ir O
B = (3.10)
0 -Inr

for some r, O &€r é h.
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CASE 1: r = h. 1In this case we have
0 In Ih 0
—Ay = Axx = » Ayx = Ay = . (3.11)
In 0 0 ~Ip
So, if we put
w=-L1 (z, +12,), (3.12)

which contradicts statement (c) of Lemma 1.

then Ay = Agy = O,
Thias case is impossible by applying an argument similar to Case

CASE 2: r = 0.
1.
CASE 3: r >0 and h > r. In this case we can decompose V and JV into
orthogonal decompositions:
v=V e v, JV =Jv' @& Jv* , (3.13)
where V' and V" are eigenspaces of B (defined by (3.10)) with eigenvalues 1
and -1, respectively. By (3.5), (3.7), (3.10) and Lemma 1 we have
o(X,T) = <JX,T>(JZ,-Z,) + <X,T>(JZ,+ Z,),
(3.149)
o(Y,T) = -<JY,T>(JZ,+4Z,) + <Y,T>(JZ,-Z,)
for X e V', YeV" and T e TN.
By Lemma 1 we have
DZ, = A\Z,, DZ, = -AZ,, DJZ, = \JZ,, DJZ, = -\JZ,, (3.15)
for some l-form A on N. Since N is a complex submanifold of HM®, the equation
(3.16)

of Codazzi gives

(Vxe) (Y,2) = (Vyo)(X,2)

where (.v-xo)(Y,Z) = Dxe(Y,2) - o(vxY,2) - o(Y,vx2Z) for X,Y,Z tangent to N.
and W e JV', then by applying (3.14), (3.15)

In particular, if X ¢ V', Y e V"
and (3.16), we see that the Z,-components of both sides of (3.16) yield
0 = A(Y)<IX,W> — <W,oyX> + <X,wyW>. (3.17)
Because <X,W> = 0, (3.17) implies
2<vyX,W> = A(Y)<IX,W>. (3.18)
Similarly, if X e V', Ye V' and W e JV', the JZ,-components yield
2¢0yX,W> — A(Y)<IX,W> = 2CuyY,W>. (3.19)
Combining (3.18) and (3.19) we find
<VxY,W> = 0 (3.20)
which also implies <vxW,Y> = 0. Therefore
wy'vt oL Jv’o wyrJv' o vU, (3.21)
Since J is parallel, this also gives
wy'voa gVt o, (3.22)

oyeav A v,
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Similarly, we may obtain

vV oL Ve, wyrdVYou gV, (3.23)

wy'V" 4 V', vy IV . Jve. (3.24)
Let U' =V'®JV' and U" = V' @ JV*. Then (3.21) - (3.24) show that

wy'U’ 1 U", vy'u" 4 U, (3.25)
In a similar way we may also obtain vyy'U’ + U and vyy'U" 1 U’'. Therefore, we
see that U’ and U" are both integrable and parallel distributions. Thus N is
locally the Riemannian product of two Kaehler manifolds. This is a contradiction
since Hm admits no complex submanifold which is a product of two Kaehler
manifolds (cf. [1 I]). (Q.E.D.)

LEMMA 4. Let M be a proper mixed foliate CR-submanifold of HM. If

p=dimg " a3, then h = dimg & = 2r is even and with respect to a suitable
orthonormal frame X,j..;Xhy JX1jee0pdXpy ZaseesZpy, JZiyeeeydZp, we have

0 -Ih Ih 0

A = s Ax = s
-In 0 0 -In
B ()} 0 B Ir 0

Az = N Azx = . B = , (3.27)
0 -B B 0 0 -1y
c 0 0 (o} 0 Iy

Ay = ’ Asx = ’ C = .
0 - c ()} Ir 0

If pad, then, for a » 4, we also have

D 0 0 Da 0 Ea

Aa = s Aax = s Da = (3.28)
0 ~De Da 0 tg, 0

for some Eg € O(r) such that tEy = -Eq.

PROOF. Under the hypothesis, there is a suitable orthonormal frame X,,...,Xn,
JX1see0sdXhy  ZijeensZpy  JXyjeeeyJXp such that Ay, Az Asx and A,x take the desired
forms (cf. (3.5), (3.7) and (3.10)). Since AgA, + A;Aq = 0 for « a 3, we also have

Da 0 0 Da
Aa = s Aax = N (3.29)
0 Dy De 0
where Dg € O(h) with tDy = Dq. From Lemma 1 we also have
A2Aq + AgA,; = 0, AzAax - AaxA, = 0. (3.30)
From this we see that each Dy takes the following form:
0 Ea
Dy = , a » 3, (3.31)
tE, 0

where each E4 is a (rx(h-r))-matrix. Since Dg € O(h), this implies
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BolBy = I and  YEuBy = Ip—y. (3.32)

It is clear that this is impossible unless Eg is a square matrix. Therefore, we have
r=0 h=r, or h = 2r. However, the first two cases cannot occur since, for
instance, if r = 0, then A, = -A;x which impliee Ay = 0 by virture of (3.30).
This contradicts to (c) of Lemma 1. Similar argument works for the second case.
Consequently, h = 2r which is even. Now, let X,,..,Xn be chosen in such a way
that

Xp41 = AszXyy oo JXh = AaXp.
Then A; and A,;x are expressed in the forms given in (3.31). Finally, for each
« 2 4, by using the properties A3;Ayq + AgA; = 0 and Dy ¢ O(h), we may conclude
that Dg is in the desired form. (Q.E.D.)

LEMMA 5. Let M be a proper mixed foliate CR-submanifold of H®., If p a4,
then h a 2p-4. Furthermore, we may choose the orthonormal frame such that, in
addition to (3.27) and (3.28), we also have

AgAs3X, = Xaq—2, AoXy = Xrta-2, PRadi, (3.33)
Yi = Xpr+i = AsXj, i=1,...,r. (3.34)

PROOF. As given in the proof of Lemma 3, we decompose the tangent bundle of N

into orthogonal decomposition:
™ =V & JV, v=V e V", JVv = Jv' @ Jv-. (3.35)

Such a decomposition is given with respect to A,x and A;. Now, let X, be a unit
vector in V'. We put Y, = Xp4; = AsX, as before. Then (e) of Lemma 1 implies
that AsY,,..,ApY, are orthonormal vectors in V' (cf. p. 500 of [4 II]). From this
we conclude that r a p-2 which is equivalent to h a 2p-4. Now, we put

Xi = Aj+2AsX, = Aj4aY,, 2 6i &2, (3.36)

"

Yi = Xp+i = AsXj, for i=2,...,p2,...,r. (3.37)
Then, (3.27) holds. Since
AaXy = AgAsY, = -AshaY; = —AgXa—2 = —Ya-2, (3.38)

we also have (3.33). Formulas (3.34) are nothing but (3.37). (Q.E.D.)
From properties (a) and (b) of Lemma 1, we have

P
DZg = I OapZp, 6ap = —8ga, «,f =1,...,p. (3.39)
=1

for some 1-forms 648 on N. (3.39) gives
DJZg = I 8apJip. (3.40)
I}

LEMMA 6. Under the hypothesis and the notations of Lemma 5, we have

2¢vpXj,IXk> = 6jk0.12(T), (3.41)
2¢VrY 5, IYK> = 8jk021(T), (3.42)
2<vij’JYk> = "jkols(T) + I <Aan,Yk>9.¢(T), (3.43)

ard
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Z(VTXJ,Yk> = GJRO,,(T) + 24 (Aan,Yk)O,a(T), (3.44)
ak

<VpYi,Yi> — <vpXi,Xk> = I <AaXi,Yk>0aa(T) (3.45)
3 Y

for T tangent to N.

PROOF. The proof of this lemma is based mainly on the equation of Codazzi. Let
XyyeesXpy Yy3,..Yr be an orthonormal frame of V' @ V" = V with Yj = Xp4j = AsXj

as before, then for any vector T tangent to N, Lemma 4 gives

U(Xi,T) = (JXI,T)(JZ"‘Zg) + <Xi,T>(Z,+JZ,)
(3.46)

+<Y§,T0Zs + JY§,DIZs + T (AeXisTZa + AaaXisT>IZa),
and

o(Yi,T) = —<IY4,T>(IZ,+Z,) - <Yi,T>(Z,-IZ,)

+X§,TOZs + IXi,TOIZs + T (Aa¥irTZa + Aax¥i,TIZa).
add

.From (3.46), (3.47), (2.3) and Lemmas 4 and 5, we obtain
(Vx;) (35, 3¥k) = Dx; (8jkZa=8kIZs) — Vi, 9k, V> (IZ+2Z,)
- <Yk,inYj>(Z,-JZ,) + <Xk,vxiYJ'>Z, + <Jxk,vxin>JZ,

+ I (<A¢Yk,vxin>Za + (Aa‘Yk,inY‘j)JZa) (3.48)
and

T, 9%, V> (JZat2y) = <Y, 9%, Yie> (22-I2,)

+

K3, VX, YiOZs + <IXj, VR, YiOIZs
+ ¥ (<A¢Yj,inYk>Z¢ + <A¢gYJ,inYk)JZ¢).
aad
Moreover, from (3.46), (3.47) and Lemmas 4 and 5, we also obtain

(V3y,9) (Xi,3¥k) = Dyy, (8ikdZs + I <AaXi,Yk>IZa)
J J and
+ <Yk,VJYJXi>(JZ.+Z.) + <YanJYJin>(Za'JZx)
- (Xk,VJYjJXi)Zg - <xk,v3iji>.1z,

- I (<A¢Yk,v_nj.lxi>z¢ + (Aa*Yk,VJYJJXpJZa) (3.49)
and

- <xi'VJYij>(JZz“Zx) - <xi:VJYJJYk>(Zz+JZ:)
- <Yi,VJijYk)Z, - (Yi,VJYij>JZ,

- I (<AaXi,VJYjJYk>Za + <Aa,Xi.VJYjJYk>JZa).
and

Since the equation of Codazzi gives

(Vx;0) (3¥3,3%k) = (Vy;0) (X3, TVic), (3.50)
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the Z,-components of both sides of (3.50) yield
2(JYk,vxin> = 8jk8ar(Xi), (3.51)
where we used (3.39), (3.40) and the fact that X; and Yk are orthogonal.

Similarly, by comparing the JZ,-, JZ,-, and JZy-components of (3.50), we may also
obtain

2<nkthYJ'xi> = 6ik9',(JYj) + i4 (A,,Xi,Yk>0,a(JYj), (3.52)
aR

2<Yk,VJYJ.Xi> = 6ik023(JYj) + I <AaXi,Yi>02a(JIYj), (3.53)
and

~6Jk0,,(xi) + <Jxk,inYj) + (JXj,inY]p (3.54)

= I <AaXi,Yk¥0as(JYj) — <Xk,VJy.Xi> — <Y¥i,vyy.Yi>,
and J J

where we used (3.51) to derive (3.53).
Since AgA; + A3Aq = 0 for « a2 4, Lemma 5 implies

CAaXi,Yi> = —<AxXk,Yid>. (3.55)

Therefore, (3.52) and (3.53) yield

8ikB,:3(JIYj) = (JijVJy Xi> + <JYiJVJy XK, (3.56)

"

5ikB823(JY ) (Yk,VJYJXi) + (Yi,VJY‘jXI(). (3.57)

Furthermore, from (3.55), we see that the left-hand side of (3.54) is symmetric with
respect to the indices j and k and the right-hand side is skew-symmetric with
respect to j and k, thus we obtain

8 jk81s(Xj) = <JYj,vxiXk> + (JYk,inXy, (3.58)
<VJYjYi,Yk> - <VJiji,xk> = E4 <AaXi, YK>03a(JYj). (3.59)
[

From (3.51) (respectively, (3.52), (3.53) and (3.59)), we obtain (3.42) for T in V'
(respectively, (3.43), (3.44), and (3.45) for T in JV"). By using the same method,
we may obtain (3.41) - (3.45) for all T in TN. (The computation is long, but
straight-forward). (Q.E.D.)

In the following, we denote by R and R" the Riemann curvature tensor and
the normal curvature tensor of the leaf N.

LEMMA 7. Under the hypothesis and the notations of Lemma 5, we have

2R(Xy,Ya;Ya,X1) + 2¢9y Y,V Xi> = 2¢9y Y, Vy XiD

(3.60)
= R"(X1,Y1325,22) + <Dy Zs,Dx Zy> - <Dx,Zs,Dy,Z2>.

PROOF. From Lemma 5, we have CAgX;,Y:> = <AaX1,AsX,;> = <X,;,AqAsA;> = 0 for
a » 4, Thus Lemma 6 implies 2<v7Y,,X,> = 8,3,(T) = <D71Zs,Z,;>, from which we obtain
(3.60). (Q.E.D.)
4. PROOF OF THEOREM 1.

Under the hypothesis of Theorem 1, if M is non-proper, Lemma 3 implies p =
dimg 0" a 3.

If p a4, then Lemmas 5 and 6 imply that, for i 2 2, we have



CR-SUBMANIFOLDS IN A COMPLEX HYPERBOLIC SPACE 515

2¢v7Y,,X3> = I <AaXi, Y1 >042(T)

aRre
= I (A¢A3X,,Xi)0¢,(T) = I <xa—zaxi>9az(T)-
and ad
Thus, we have 2<vTY ,X> = 0i422(T), i = 2,..,r. Similarly, we have

2<vTX,,Yi> = 8i422(T), i = 2,..,r. Thus, by applying Lemma 6, we may obtain

2<VY‘Y, ,Vx,X, > = 2(\7le, ,Vle,>

P2
= I 8i422(Y2) [<Vx Xy, XD — <oy Ya, Y]
i=2
p-2
+ T 05422(Xa) <Oy, Yy, Y5> — <Vy Xy, X))
i=2

+ 20.,(X,)<Vylxl,JY,> + 203,(Y,)<VxlX,,JY,>.

Therefore, by applying Lemma 6 again, we may find
2¢Vy Y,,x X,> ~ 2¢9x Y,,9y Xi> = <Dx Za,Dy, Zs> — <Dy, Za,Dx Zs>. (4.1)
Combining (4.1) with (3.60) of Lemma 7, we get
2R(X,,Y:1;Y1, K1) = R°(Xy,Y43525,2Z0). (4.2)
From (2.7), (3.46), (3.47), Lemma 5 and the equation of Gauss, we may find
R(X,,Y:;Y,,X,) = -2, (4.3)

On the other hand, (2.7), the equation of Ricci, Lemma 1 and Lemma 5 give
R“(Xy,Y1323,Z2) = 2<A2K;,X,> = 2. (4.4)

Equations (4.2), (4.3) and (4.4) give a contradiction. If p = 3, then, by (3.27) and
the equation of Codazzi, we may obtain (3.41) - (3.45) in such forms that the
summation terms in (3.43) - (3.45) were disappeared. By applying these equations, we
may obtain a contradiction in a similar way. (Q.E.D.)
REMARK. For a CR-submanifold M of a Kaehler manifold, the condition that M
is mixed-foliate is equivalent to AP = -PA.
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