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ABSTRACT. A generalization of Redei functions to polynomial vectors in n

indeterminates over finite fields or residue class rings of integers is given by

considering special types of polynomial vectors. Properties such as polynomial

composition, change of basis, group structure and fixed points are studied together

with applications in cryptography.
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INTRODUCTION.

L. Redei [I] introduced an interesting class of rational functions which give

rise to permutations of a finite field on substitution of the elements of the finite

field. More recently these functions were studied in detail for cryptographlc

applications, see Lidl and Muller [2], Nobauer [3-5]. Fried and Lidl [6] presented

a generalized version of Redei functions by considering the ordered pair formed from

the numerator and denominator of a Redei function and extending this approach to

polynomial vectors in n indeterminates over a finite field. In the following we shall

use a different approach to obtaining such polynomial vectors, which makes it possible

to study the vectors over finite fields as well as residue class rings of integers.

In section 5 we shall give a connection between the matrix definition used by Fried

and Lidl [6] and the definition which relies on bases used in this paper.

Let L be an extension field of a field K and {01,...,0n be a basis of L over

K. Carlitz [7] and Lidl and Niederrelter [8, P. 375], showed how to obtain a

polynomial vector in n variables over K, given a polynomial over L. We define a

polynomial vector

f (fl .... f
n

based on the polynomial f e K[x],

where fl K[Xl’’’’’Xn] are defined by

n n
f( Vi01) . fiOi, and v

i
K, i I, ....n.

i i
(1.1)
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Here f depends on the polynomial f and the choice of basis of L over K. The

polynomial vector f reflects various properties of f which will be presented in the

following sections.

2. COMPOSITION PROPERTY.

Let 0 denote composition of polynomials or polynomial vectors. We use the

notation introduced in (I.I).

PROPOSITION I. Suppose f,g,h E K[x] and h f o g. If f,g,h are the

corresponding polynomial vectors according to (I.I), then

h f o g (2.1)

PROOF. We have

n n n. hiSi h( I vi8i) f(g( I viSi)
i=l i=l

and thus

n n

hi fi(gl’’’’’gn )"

It can readily be seen that if f ranges over the elements of a set of polynomials

which are closed under composition, then f ranges over the corresponding set of

polynomial vectors which are closed under composition of polynomial vectors. Specific

examples of sets of polynomials which are closed under composition are the set of

power polynomials S {xkl Z} and the set of Dickson polynomials

D {gk(x,l)Ik E Z}. For a definition of gk we refer to Lidl and Niederrelter [8,

P.355].

CHANGE OF BASIS.

Since the definition of f in (I.I) depends on the basis 8I,...,8n of L over K,

we would like to know the effect of changing the basis while keeping f fixed. Suppose

@l’’’’’n is another basis of Lover K and let

O (O ..... O ), - ( ....n and 8
T Tn

M We use the notation

f (fl’’’" ’f f- (f ..... fn
and v (vl,...,v ).

n

Then

f(v8T) f(vCM@T)) fC(vM)@T) ((vM))T.



GENERALIZED REDEI FUNCTIONS 627

Bu t

f(v0T) jOCv))0T (0(v))(MT)= (0(v)M)T.

Since is a basis of L over K,

Y@CvM) 8Cv)M.
Thus we have shown:

PROPOSITION 2. Let 8 and denote bases of L over K and

polynomial vectors defined in (i.i) with a fixed polynomial f. Then

78(v) @(vM)M-I where M is the matrix relating 8 to .
8,7@ be the

4. CONSTRUCTION OVER Z and F
P

Suppose K Q, L is an algebraic extension of Q of degree n and f Z[x].

If [81 ,8n is_ a basis of L over Q, let 8i8j e Z[81 ’8]n for each i,j

4, n. Then f as defined in (I.I) will be an element of Z[Xl,...x and therefore
n

can also be considered as a polynomial vector with integer coefficients rood

A second approach is as follows. Let A denote the ring of algebraic integers of

K where {81’’’’’8n is an integral basis for K then A Z[81 ,Sn ]" If P is a

prime ideal of A and p e P for a prime p in Z, then when reduced rood P the polynomial

vector f of (l.l) is defined over A/P and has coefficients in F
P

Alternatively, in the construction of section I, let K F and L F n. A
q q

system of n polynomials in n variables is called orthogonal (or a permutation

polynomial vector) over F if on substitution of the elements of Fn the polynomial
q q

vector of n polynomials gives a permutation of the elements of F
n
q, see [8, P. 368].

Every element of F n has a unique representation as Evi8i. A polynomial
q

f e F [x] is a permutation polynomial of F if on substitution of the elements of
q q

F the polynomial gives a permutation of F Now we can state:
q q

PROPOSITION 3. The system of components fi of the polynomial vector f as defined

in (I.I) is orthogonal over F if and only if f is a permutation polynomial of F n.
q q

5. THE MATRIX APPROACH AND GENERALIZED REDEI FUNCTIONS.

This section is the central part of this paper, it represents a generalization of

the Redei funtlon vectors of Fried and Lidl [6] in two ways: instead of power
k

polynomials x we first let f(x) be arbitrary and secondly the underlying structures

are not necessarily finite fields. As in section let L be an extension field of K

and let {81 ,8n be a basis of L over K. The dlscrimlnant matrix of L over K with

respect to this basis is defined as the matrix D whose i,J entry is oi(8j). Here
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Ol,...,On are the n embeddings of L into C that fix K, or the n isomorphisms of L

over K in the case that L is finite.

Let f g K[x] then we define f((x!, Xn (f(xl)’’’’’f(xn )" Let x

n n
(x Xn) then Dx

T xjoi(Sj))T’ hence f(DxT) (f( xji(Sj))T.
i=i i=l

Since f g K[x], o leaves f fixed, so
i

n n
fCDxT) CiCfCj=i xjOi)))T (ICj=’l fJ80j))T

But

n

i(8 ))Ti fj (I ’Xn j
j=l

78(x (f(xl ’Xn) n
T) ...... fnO(X .... ,x ))T

D(8(xT)) . f8 o (8))T f(DxT).(Xl Xn i

Therefore we obtain the following definition of the polynomial vector in terms of

the polynomial f and the dlscrimlnant matrix D of L over K:

0(xT) D-If(DxT) (5.1)

We note that the square of the determlnant of D equals the dlscrlmlnant of

Ol,...,0n, which is nonzero. Therefore D-I is always defined. Now in order to

obtain the special case of Redei vectors presented in [6] we let

f(x) xk and {0I,...,0n [1,0,02,...,0n-l}, where L is a finite extension of

K-- F In this case we obtain the Redel function vectors similar to those defined
q

in Definition 2.2 of [6]. We call the corresponding vector of polynomials in n

variables defined in (5.1) above a generalized Redel (function) vector and denote it

by --8fk. In this case we note that the system of components of O is orthogonal if

and only if (k,qn-l) I.
-0 FnPROPOSITION 4. The Redel vector fk induces a permutation of if and only if

q
n

the exponent of the defining power polynomial f is coprlme with q-I. We give

explicit examples of Redel function vectors for n 2 and n 3 and K ]. Let
k

q
f(x) x

EXAMPLE I. Let n 2, K= F L F o and {1,8} be a basis of L over K, where
q q

0 / is a generator of F 2" Then the dlscrlmlnant matrix D is of the form
q

D (1 Ooq 11 ]’
The definition (5.1) and the remarks belo’5.1) glve the following vector.
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--0 y)k k a y)kfk-- ( ((x + + (x- / y) ((x + (x- / y)).
2/

This vector induces a permutation of F2 Iff (k,q2-1) I. It corresponds to the
q

Redel function vector R as defined in Fried and Lidl [3] in the case n I.
,k

EXAMPLE 2. Let n 3, K F and 1,0,02 a basis of the extension L over F
q--0 q

For k definition (5.1) yields fl (xl’x2’x3)" For k 2 let

D

0 02

0q 0 2q

2
0q 02q

2

Then

--0 2 01+q+q
2

f2 (xl + 2x2x3 + x23 (0+0q+0q2)’

2
x3a + 2XlX2 + 2x2x3b,

2 2
2

x2
+ x3c + 2xIx3 + 2x2x3(0+0q+0

q )),

where

2 2
a -(0q + 0q) (0q + 0) (0q + 0), b -(0q+1+0q2+l+0q2+q),

02 0q2+ 2q+0q2+l+ I+02c q2+ q+0 0q+ All the coefficients of the components of --0f2 are

in F
q

Specifically, for q 2 and e3+02+i 0 we obtain

--0 (x21 + x 2 2 2
f2 x3’ x2 + x3)"

For q 3 and 0
3 + 2e2 + 0 we get

--0
(x

2 2 2 2 2
f2 + x2x3 + x3’ 2x3 + 2XlX2’ x2 + x3 + 2XlX3 + 2x2x3)

and for q 5 and 3 + 2 + 2 0

-0
+ / / / + /f2

We recall composition properties from section 2 and note that if f is an element of a
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met of polynomials which induce a group G of mappings on F then the coresponding
n

q

family of polynomial vectors f induces the ssame_ group of mappings on (Fq) n. It can

also be shown easily that the fixed points of f over F may be identified with the
q

fixed points of f over F
n,

by using representation of (xl,...,xn) as )’. xi8 i
in

n
q

6. REGULARITY AND POLYNOMIALS OVER Z

From the definition (5.1) of f with respect to a given basis 0 we see that

(v l,...,vn Kn is a zero of f if and only if vi0i L is a zero of f. Recall

that

f( xiSi)= fi(xl )8
i

’xn

Differentiating with respect to x. yields
3

fif’( xi8i)Sj 8
i.

fi
The map Oj xj 0" defines alinear3

transformation of L over K for fixed Xl,...,x If m f’(.xi0i)_ then this
n

transformation is the same as 0j m0j. This map is invertible if and only if

m 0. A different condition for invertlbility is that the Jacoblan determinant of

f is nonzero.

Thus we have fl
PROPOSITION 5. f’ vanishes on L if and only if the Jacoblan determinant (x) is

zero.

Lausch and Nobauer [9] call a polynomial f K[x] regular if f’(a) 0 for all

a K. Lidl [i0] generalized the concept of regularity to polynomials in several

variables. We can say that f is regular if its Jacobian determinant is nonzero. Now

we consider the behaviour of the polynomial vectors f with integer coefficients
e

modulo p We say that n polynomials in n variables form a perutatlon polynomial

vector mod pe if on substitution of elements of (. )n we obtain a permutation of

P

(7. )n. Then, based on results from [II] and [12], we have
e

P

PROPOSITIION 6. The following conditions are equivalent:

(i) f is a permutation polynomial vector mod pe, e > I;

(il) f is a permutation polynomial vector mod p and the Jacobian

deteminant of f is nonzero mod p;

(iii) f is a permutation polynomial of F and f’(a) 0 for all
n

a F i.e. f is a regular permutation polynomial of F
n n

P P
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If we specialize the polynomial f to be the power polynomial x
k

then the

corresponding polynomial vector fk can be regarded as a generalized Redei vector with
k

integral coefficients. Since x is regular only in the case k we cannot get any

non-trivial Redei permutation vectors mod pe, for e > I, because of part (iii) in

Proposition 6. However, if f(x) is not a power polynomial but a Dickson polynomial

_gk(x,a) over K then Proposition 6 will yield permutation polynomial vectors

f rood pe, e > I. This follows from the fact that there are regular Dickson

polynomials over K F namely all those gk(x,a) for which (k, char F I.
q q

The Chinese Remainder Theorem enables us to generalize to residue class rings Z
m

PROPOSITION 7. Let f(x) be a Dickson polynomial gk(x,a) over Z, and let

r e
i

m Pi a #0.
i=!

Then the polynomial vector f as defined in section 4 for f(x) replaced by gk(x,a) is

a permutation polynomial vector rood m if and only if (k,v) where

Icm {Pi(pn_ i)}.

lir

PROOF. The result follows from: the regularity of gk(x,a) over Fpin (see

Lausch and Nobauer [9] p. 209), gk(x,a) being a permutation polynomial of Fp.n (see

[9, P. 209], the Chinese Remainder Theorem and Proposition 6. I

7. APPLICATIONS IN CRYPTOLOGY.

Over the past few years there has been considerable interest in applications of

algebraic and number theoretic properties of polynomials to the design and anlaysis of

algebraic cryptosystems. Two of the most influential papers Diffie and Hellman [13]

and Rivest et all [14]; a brief survey of some cryptosystems based on finite fields

can be found in Lidl and Niederreiter [15, chapter 9]. Recently, a number of papers

consider the use of polynomials and rational functions in defining cryptosystem; in

particular, Muler and Nobauer [16, 17], Nobauer [18] study Dickson polynomial

cryptosystems and in Nobauer [3-5], Redei functions in one variable are used to define

cryptosystems over finite fields and residue class rings of integers. Such

invesigations were not confined to polynomials in one variable. Muller and Nobauer

[17] and Lidl and Muller [2], [19] introduced cryptosystems which are based on

polynomials in several variables. Here we show in examples that some polynomial

vectors f, f and fk as defined in the previous sections can be used for

cryptographic purposes.

EXAMPLE 3. Take the Redei function vectors fk defined before Proposition 4.

These vectors can be used in a conventional cryptosystem over F since they induce
q

permutations of Fn iff (k,qn-l) I. For k the vector fl induces the identity
q

--0
mapping of Fnq into itself and the inverse of the mapping fk is given by --Sfk, where
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kk’ (rood qn I). The secret key of a conventional cryptosystem involving Redel
--0

function vectors is the parameter k. A message m e Fnq is encrypted as fk(m) and

--B --0 --0
decrypted by fk,(fk(m)) fl(m) m.

EXAMPLE 4. Redei function vectors can also be used in no-key algorithms or three-

pass algorithms (see Lidl and Niederreiter [15], Nobauer [3,4]). The analogy with the

one-variable case of Redei functions or Dickson polynomials is straightforward,

therfore we omit the details.
--0

EXAMPLE 5. The vectors fk can also be used in a Diffle-Hellman key distribution

scheme for establishing common keys (see Lidl and Niederrelter [15] p. 348, for a

description of the scheme introduced by Diffie and Hellman [13]; Muller and Nobuauer

[16], and Nobauer [3] contain details for schemes based on Dickson polynomials and

Redei functions, respectively). Suppose we have a communications network and a number

of users. First we choose a finite field F a polynomial f e F ix], a basis
q q

0 of F over F and a vector c Fn and make these known to all participants of the
n q q

q

network, every user U chooses a positive integer k(U) as a secret key and calculates
--0
fk(u)(C) which is stored in a public file accessible to all other users. Two users A

and B of the network establish a common key as follows.

--0
I. A obtains fkB(c)k from the public file;

2. A forms

fk(A) k(B) (c)) f k(A)k(B) (c);

3. B gets 0k(A)(C) from the public file;

4. B forms fk(B)(fk(A)(C)) f(B)k(A)(C).

The element f(A)k(B) (c) k(AB) is the common key for users A and B.

EXAMPLE 6. Proposition 4 and Proposition 7 enable us to define a public key

cryptosystem based on Redei function vectors mod m. Such a system is an RSA type

cryptosystem similar to those introduced in Lidl and Muller [2], Nobauer [3,4]. Let m
k

be the product of two primes Pl and P2 and let f(x) --x Then the Redel function

vectors k induce a permutation of Zm iff (k, cm {p- I, p- I})- I.

We denote cm[pnl I, P2-n I} by v. Then the inverse of the permutation

fk: Z Z is the permutation f of Z where k (rood v). As in other
m m m

cryptosystems which are based on polynomials we take fk as he encryption function

f as the decryption function, m and k as the public key and PI’P2 or as the

private key. Note that by Proposition 7 we can only consider m to be a product of

primes and not prime powers. If, however, f(x) is a Dickson polynomial gk(x,a)
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then the corresponding Redei function vector fk as defined by (5.1) can give a
e.
I

permutation of - m [ e
i

> 1, by Proposition 7, and can be used in a public-m
key cryptosystem mod mo
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