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TIME-EVOLUTION OF A CAUSTIC
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ABSTRACT. The Lagrange manifold formalism is adapted to study the time-evolution
of caustics associated with high frequency wave propagation in media with both
spatial and temporal inhomogeneities.
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1. INTRODUCTION

The utility of the asymptotic series, or geometrical optics, approach developed by
Keller [1] and his students [2] for studying wave-type linear partial differential
equations is well known. For example, applied to a differential equation of the
form

32’(’?"3)
a?

Vo(F,t) - £(F,t) - A%g(F,t)p(F,t) = 0 (1.1)

where, for definiteness, ¢(T,t) is the wave function, T refers to the spatial
coordinates, t is the time and A is a large parameter, a solution of the form

»(T,t) = exp [iAS(T,t)] A(T,t,A), (1.2)
where

- - .-k _
A(T,t,A) = k_EOAk(r,t)(lh) B A—k =0 (1.3)

is assumed. S(r,t) may be regarded as a phase and A(T,t,A) as an amplitude. Then
substituting Equation (1.2) into Equation (1.1) followed by a re-grouping in powers
of il leads to
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(m°v2-f(f~t>°2 SA(Ft)inH =0 1.4)
[ ,;:E]k:oAkr, (i)™ = 0. (1.

Then by introducing the wave number and frequency
.S
at
respectively, the coefficient of the (iA)2 term may be regarded as a Hamiltonian

P=VS, e= ’ (1.5)

H = Bep - £(F,t)e’ + g(Ft).
The standard approach for obtaining the phase involves the introduction of
Hamilton’'s equations

%: v H %’:- v H (1.6)

dt _ oH de _ oH

dr - " o dr - at (1.7)
which leads to the ray trajectories (map)

Tr= F(r,;) 5 = 5(7'3) (1.8)

t = t(’ls) ® = ”(rra)' (1.9)

where y is the ray-path parameter and ¢ a parameterized initial condition. But at
those space-time points where the coordinate space map becomes singular i.e., on
the caustic curve where

det[g_‘(%] =0 (1.10)

with ¥ = (7,0), the geometrical optics procedure cannot be applied directly.

Such difficulties at caustics can often be circumvented by using the Lagrange
Manifold formalism of Maslov [3] and Arnold [4], which has recently been extended
to determine a class of asymptotic solutions [5] for phenomena modelled by
Equation (1.1). Here we present a variation of this extension which enables a
modelling of the time evolution of the caustic. This algorithe also leads to
determination of the field on the caustic; but because so much of this aspect of
the procedure in [5] applies directly, for brevity we emphasize only those aspects
pertinent to modelling the evolution of the caustic. For clarity, we consider the
scalar wave equation given in Equation (1.1), although the analogous vector wave
equation could also have been considered. An example is included to illustrate the
procedure.

2. FORMALISM

We assume that near caustics Equation (1.1) has an asymptotic solution of the form
*(T,t)-JA(T,B, t,N)exp(ih(T+p - S(P,t))]1dp = O(A™7). (2.1)
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The amplitude A(T,p,t,A) and its derivatives are assumed bounded and Tp-S(p,t)
is regarded as a phase, i.e.,

¢(T,p,t) = Top - S(P,t).
Carrying the differentiation in Equation (1.1) across the integral in Equation
(2.1) leads to

Idp exp(ixo}{(ih)z[ﬁoi - f(?,t)az + g(?,t)] +

2
2 - A _ -®
l‘A - f(l‘,t)—-—2 ]— o )

1 De T O_A. i o
1)\[2p VrA + Zof(r,t)at]«f(ll\) [V "

(2.2)
Where, analogous to Equations (1.5), the wavevector (p = V¢) and

frequency (@ = - %) have been introduced. The coefficient of (i)«)2 term is seen

to be Maslov’s Hamiltonian

Hzpep - £(F,0)8 + g(F,t). (2.3)
The field at any space-time point (T,t) proceeds from the stationary phase (Vp+=0)
evaluation of the integral in Equation (1.2), which turns the Hamiltonian into an
eikonal equation

PP - £(7,0)% + gFt) =0 (2.4
and determines the time-parameterized Lagrange Manifold
T = pS(p,t). (2.5

In the Lagrange Manifold formalism caustic points are determined from the phase
[5], or equivalently from S(p,t). To obtain this S(p,t), we first find the
trajectories (through Hamilton’s equations)

T = T(r,9) P = p(r,0) (1.8)

t = t(r,9) e = o(r,9) (1.9)
then invert the wavevector and time transformations

P = p(r,9) t = t(r,9) (2.6)
to obtain

r = r(p,t) o = 3(P,t). (2.7)

Substitution into the coordinate space map determines the Lagrange Manifold
explicitly

T = ;(7(5’t)n ;(th)) = v}ﬁ(ﬁ!t)t
where the time appears as a parameter. Then an integration along the trajectories

P
8(5,t) = | Fedb (2.8)

pO

leads to the phase
¢(T,p,t) = Top - S(P,t). (2.9)

The caustic points, equivalent to those specified in Equation (1.10), are those at
which
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det{—‘;j;pj} = det {;:i’%} =0 (i, = 1,2,3) (2.10)
At a given time this condition leads to sets of triplets (p), which upon
substitution into Equation (2.5) determines the caustic in coordinate space. The
time evolution of the caustic proceeds by considering Equation (2.10) for several
values of time. Corresponding to each such time is a set of triplets (p), which
upon substitution into the Lagrange manifold yield the time evolution of the
caustic in coordinate space.

The determination of the field on the caustic requires the development of a
transport equation for the amplitudes. As this development so parallels that

referred to above [5], we do not include it here.
3. EXAMPLE

As an example, we consider wave propagation in a medium with
f(r,t)=1, g(F,t) = bx + at - k2, with a, b, k constants. Consequently, the wave
equation we consider is

vy - i} - 2%(x + at - k%)p = O. (3.1)
at
Let the initial-boundary condition be that at r=0, a point source at the origin
r=(0,0) begins radiating at t=ty, with initial frequency 2 and wave vector
p=(pocoss,pysind). We assume an asymptotic solution of the form

#(T,t) - JA(T,p,t,N)exp{ik(T+p - S(P,t)))dD = o™ (3.2)
Then proceeding through the algorithm we obtain Maslov’s Hamiltonian (Equation
(3.3)) and eikonal (Equation (3.4)), respectively
H=Pep - o2 + bx + at - k2 (3.3)
Peb - &2 + bx + at -~ k2 = 0. (3.4)
Next Hamilton’s Equations (1.6) and (1.7), together with the initial conditions at
r=0, are solved to obtain the maps

x:byz+2pbrcoso Px = -br + pg cos 6 (3.5)
¥ = 2por sin 8 Py = Po 8in 8 (3.6)
t:arz+279+to e =ar + 1. (3.7)

While Hamilton’'s Equations relate the canonical variables, the selection of the
initial specific condition t=ty at r=0 introduces an additional coupling between t,
and 2 from the eikonal equation

Pol - 92 - k2 + atgy = O. (3.8)
It is this coupling which allows the inclusion of time t as a parameter in the
Lagrange Manifold. Specifically, elimination of t, between the time coordinate in
Equation (3.7) and Equation (3.8), allows the arc length r to be parameterized in
time t. Then, inversion of the map § * p includes the time as a parameter, which
is subsequently introduced into the Lagrange manifold. To illustrate, for clarity
of exposition, we first use the simplicity of the example to eliminate 8 between
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Equations (3.5) and (3.6), obtaining
x = bré + 2rpy (3.9)
= ery (3.10)
Then from the space and time coordinates in Equations (3.5)-(3.7) and Equation
(3.8), we determine

(bp,-a2) [ (a8-bp, ) *- (a%-b?) (8P 4ic%-p P-p P-at) )1/

r=r(px,py.t)= [az—bzl

(3.11)
Finally, substituting into Equations (3.9) and (3.10), followed by integrations

with respect to py and py respectively leads to the phase

b +a. cp
¢(t,p,t) = Top - —ﬁ-gab 0 Py + —3—

(b™-a™)
+—2——2-[(an bp)-(a-b)(a+k2 pz-p-at)]
3(b-a)
b 3
1 2 .2 2 x 2. .2
_bz.az[b(n+k-py-at)px— 3 +anpy +bat]. (3.12)

(We note only the minus sign in Equation (3.11) leads to physically realizable
caustics.)
As a specific example to illustrate the calculational aspects of the algorithm,

let us choose a = -1, b= 6.655(= 45/7cos 15°), k2 = 23, 8 =159, t5, =1, 28 = 5§,
|Pol = 7 and the initial amplitude at the emitter A; = 1. For this case the
Lagrange Manifold and phase are, respectively,
2 2
x = 7.556 + .154t + .242px - .147px - .154py « - (0-046px + 1.537)e
2 2 1/2
o (1.122 + 0.231t + .0355px + .0005px - .0231py ) 1/2 (3.13)
_ 2 2 2
= - py[.232 +.308p_ + 2(1.122 + .0231t + .0355p,+ .005p, - .0231p %)
(3.14)
An integration leads to the phase
#(F,B,t) = Fop - 5.116t - 7.556p_ - 0.121px2 + .mspy2 - .154tp_
+ .0a9p % + .154p p 2 + 28 86[1 122 + .0355p_ + .0231t + .0005p 2-.0231 2]3/2
. » -154p, p’ . . . P, *+ - . P, - Py
(3.15)

Then at 7=1, i.e., the space-time point (x,y,t)= (6.87,3.62, 10.), the classical
map becomes singular, as does the Hessian determinant of the phase (Equation
(2.10)) at the corresponding point in wavevector space p=(.106, 1.812). This
illustrates the level-equivalence of the classical map and the transformation
specified by the Lagrange Manifold. To find the caustic at t=10, we find those
sets of wavevectors (p) satisfying Equation (2.10); substituting these wavevectors
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into the Lagrange Manifold determines the caustic. The time evolution of the
caustic proceeds by substituting successive values of time into the phase and
repeating the procedure, (Figure 1).

We note that even over long time duration, the topological type of this caustic
does not change, cf. Mather[6]. The determination of the field at the caustic
proceeds largely as in [5]. For completeness, we note that at (x,y,t) = (6.87,
3.62, 10.), the first two terms in the asymptotic series are

2] +8in %]

(6.87,3.62,10.) = exp(ir(l/4+9.8))ll/z[-1.53l‘[%]t- 808 § - 1.74r[3-
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TIME EVOLUTION OF A CAUSTIC
FIGURE 1.
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