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CT. The LaranEe manifold formalis is dapted to study the time-evolution

of caustics associated with hiEh frequemcy wave promation in media with both

spatial and temporal inhomoeneities.
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The utility of the asymptotic series, or geometrical optics, approach developed by

Keller 1 and his students [2] for studying wave-type linear partial differential

equations is well known. For exsple, pplied to a differential equation of the

form

t)a2(f,t),(,t) f(, A2g(f,t)(,t) = 0 (1.1)

where, for definiteness, (,t) is the wave function, refers to the spatial

coordinates, t is the time and A is a large imrasmter, a solution of the form

(,t) = exp [ikS(,t)] A(,t,A), (1.2)

where

A(,t,A) --k__Zo(,t)(iA)-k, A_k = 0 (1.3)

is assmaed. S(,t) may be regarded as a phase and A(,t,b) as an amplitude. Then

substituting Equation (1.2) into Equation (1.1) followed by a re-grouping in powers

of iA leads to
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(1.4)

Then by introducing the wve nber and f,qeney

aSp = S, ---respectively, the coefficient of the (iA) 2 term amy be ed as a Hamiltonian

H = .- f(,t)," + g(,t).

The standard aplxech for obtaining the

Hamilton’s equations

=VH -VHp d

which

phase involves the introduction

dt H d

leads to the ray trajectories (map)

= 5(,) =(r,)
t : t(r,Q) -where r is the ray-path Imrsmeter and a terized initial condition. But

those space-time points where the ooordinate space mp beoomes singular i.e.,

(1.5)

of

(1.7)

(1.8)

(1.9)

on

the caustic curve where

tt-GT : o

with = (F,), the emetrical optics Inxxdue cannot he &pplied ctirectly.

Such difficulties at caustics can often be oircumvented by using the Lamange

Msnifold formalism of Maslov [3] and Arnold [4], which has recently been extered

to determine a class of asymptotic solutions [5] for phemmm modelled by

Equation (1.1 }. Here we present a variation of this extension which enables a

modellinE of the time evolution of the custic. This alEorithm s/so lesds to

determination of the field on the csustic; but because so mch of this aspect of

the procehe in [5] applies directly, for brevity we ize only those aspects

pertinent to modellinE the evolution of the caustic. For clarity, we comsider the

scalar wave equation given in Equation I. 1 ), al the analogous vector wave

equation could also have been considered. An exle is included to illustrate the

pzxure.

(1.10)

We assume that near caustics Equation (I. 1 has an astotic solution of the form

(,t)-(A(,,t,k)exp{iA(-- S(,t))]d : O(A-(R)). (2.1)
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The amplitude A(,,t,A) and its derivatives are assumed bounded and

is regarded as a phase, i.e.,

@(,,t) .- S(,t).
Carrying the differentiation in Equation I. 1 across the integral

(2.I) leads to

Where, analogous to Equations (1.5), the wavevector ( V/) and

frequency ( ) have been introduced. The coefficient of (iA)

.-$(,t)

in Equation

(2.2)

2 term is seen

to be Maslov’s Hamiltonian

H - f(,t) + g(,t).

he field at ny slmce-t point (,t) proceeds fr the stations--y phase

evaluation of the integrs/ in Equmtion (1.2), which turns the Hamiltonian into

eikonal equation. f(,t) + g(,t) 0

and determines the ti-imzmeterized Lae Mmnifold

VpS(,t).
In the LeMnifold formalism oaustio points are determined from the

[5], or equivalently from S(,t). To obtain this S(,t), we first find

trsOectories (through Hzilton’s equations)

(r,) (r,)
t t(,) , :

then invert the wavevector and time transformations

5 5(,) t t(,Q)

to obtain

r (,t) = (,t).
Substitution into the coordinate space map detezines the Lgrnge

explicitly

= ((5,t), Q(,t)) vps(5,t),
where the time appears as a ter.

P
s(,t) I ’

leads to the Iase
(,5,t) -5 s(,t).

The caustic points, equivalent to those specified in Equation (1.10), are those

which

(2.3)

Vp,:0

(2.5

phe

the

(1.8)

(1.9)

(2.6)

(2.7)

Manifold

Then an integration along the trajectories

(2.8)

(2.9)

at
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|piapj
det

LpiaPjj
= 0 ;(i,j = 1,2,3) (2.10)

At a given time this condition leads to sets of triplets (), which upon

substitution into Equation 2.5 determines the caustic in coordinate space. The

time evolution of the caustic proceeds by considerinE Equation (2. I0) for several

values of time. CorrespondinE to each such time is a set of triplets (), which

upon substitution into the La&TanEe manifold yield the time evolution of the

caustic in coordinate space.

The determination of the field on the caustic requires the develoient of a

transport equation for the amplitudes. As this develolP_t so parallels that

referred to above [5], we do not include it here.

As an example, we consider wave prope4{ation in a medi with

f(,t)=l, E(,t) hx + at k2, with a, b, k constants. Consequently, the wave

equation we consider is

V2 @2 A2(x + at k2) = 0.
at2

Let the initial-bo condition be that at y=0, a point source at the oriEin

=(0,0) beEins radiatinE at t=to, with initial frequency and wave vector

=(poCOSe,posine). We assmae an as]nptotic solution of the form

,(,t) $A(,,t,A)exp{ik(o- S(,t))}d 0(A-(R)) (3.2)

Then proceer through the aorithm we obtain Hlov’s HamltorLtan (lution

3.3 and eLkona (tion (3.4)), respeotivel

H -- 2 + bx + at k2 (3.3). m2 + bx + at k2 0. (3.4)

Next Hamilton’s Equations (1.6) and (I.7), toEether with the in/tial cond/tions at

r=0, are solved to obin the

x = br2 + 2pot oos e Px -by + Po cos e (3.5)

y = 2Por sin S P = Po sin e (3.6)

t = ar2 + 2yg + to = ay + B. (3.7)

While Hamilton’ s Equations relate the canonical variables, the selection of the

initial specific condition t=to at y=0 introduces an additiorm/ couplinE between to
and g from the eikonal equation

po2 2 k2 + at 0. (3.8)

It is this couplinE which allows the inclusion of time t as a parameter in the

LaranEe Manifold. Specifically, elimination of to between the time coordinate in

Equation 3. ? and Equation 3.8), allow the arc I y to be parameterized in

time t. Then, inversion of the map includes the time as a parameter, which

is subsequently introduced into the LaranEe manifold. To illustrate, for clarity

of exposition, we first use the simplicity of the example to eliminate e between

(3.1)
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Equations (3.5) and (3.6), obtaining

x br2 + 2rpx
y 2py

Then from the space and time coordinates in Equations

(3.8), we determine

(3.5)-(3.7)

(3.9)

(3.10)

Equetion

r:F (Px,Py,t)=
2 1/2

(bPx_a) ; aQ_bPx 2_ a2_b2 Q2+k2.p
x _py2_St

Finally, substituting into Equations (3.9) and (3.10), followed by

with respect to Px and py respectively leads to the phase

/(,,t) r-p- 2 ab 92px+ 2 +
(b2-a2

+ 2 )2_ a2_ b2 1=2+ k
2 2 2 3/2

b 2-a2
(a2+ Py at)Px 3

+ aPy
2 + b2t

(3.11)
ntegrtions

(3.12)

(We note only the minus sign in Eqution (3.11) leads to physically

caustics.)

As a specific example to illustrate the calculations/ aspects of the

let us choose a -I, b= 6.655(= 45/7coe 15), k2 = 23, e 15, to = 1, a

lot 7 ai the initial amplitude at the emtter Ao 1. For this

LagrangePm_ifoldandphaseare, respectively,

x 7.556 + .154t + .242px .147Px2 .154py2. (0.046px + 1.537).

2 1/2
(I.2 + 0.23;t + .OZSSpx + .O00SPx

z
.OZ31px I/2

y py[232 * .308p
x * 2(1.122 * .0231t * .0355Px* .O05Px2- .0231py2)

rmlizable

An interetion leeds to the phase

algorit/m,

5,

case the

(3.13)

(3.14)

+(,,t) = .- 5.116t 7.556p
x 0.121Px2 + .116py

2 .154tp
x

+ .049Px3 +. 154PxP/ + 28.8611.122+ .0355Px + .0231t + .O005Px2-.O231p/]
3/2

(3.15)

Then at F=I, i.e., the space-time point (x,y,t): (6.87,3.62, I0.), the classics/

map becomes sinEular, as does the Hessian determinant of the phase (Equation

(2.10)) at the correspcdinE point in wavevector space =(.106, 1.812). This

illustrtes the level-equivalence of the classical map and the transformation

specified by the LaEranEe Manifold. To fir the caustic at t=10, we fir those

sets of wavevectors () satisfying Equation (2.10); substitutin these wavevectors
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into the LaEranEe Manifold determines the caustic. The time evolution of the

caustic proceeds by substitutinE successive values of time into the phase and

repeatinE the procedure, (FiEure 1 ).

We note that even over lone time duration, the topoloEical tpe of this caustic

does not chanEe, cf. Mther[6]. The determination of the field at the caustic

proceeds larEely as in 5 ]. For completeness, we note that at (x, y, t) : (6.87,

3.69., I0.), the first two terms in the as)mptotio series are

(6.87,3.62,10.) exp(i,(,/4+9.8)}wI/2 -1.53[ ,- cos 1.74[ ,-7/8sin

zo

10--

_- ,T= 0
o7,,, 1,,,, l,,,, l,,,, I,,,,
-50 -40 -30 -20 -10 0 10 20

X-AXIS

FIGURE I.
TIME EVOLUTION OF A CAUSTIC

#qES(#T. One of us (A.D.G.) wishes to gratefully ae/mowledge helpful

discussions with R. T. Prosser and the partial support of NSF Erant DMS-8409392.

I,

2,

4,

5,

JRR, J. B. in CALO31//S OF VARIATIONS AND ITS APHCATION8 (McGraw-
Hill, New York, 1958).

LEWIS, R.M. Asymptotic Theory of Wave Propagation, Arch. Rat. Mec____h.
Anal., 2_Q0 (1965), 191-250.

MASLOV, V. P. THBORIB DES TIONES ’T MEHKDES IUBS
(Dunod, Cuthier-Villars, Paris, 1972).

ARNOLD, V. I. Characteristic Class EnterinE in uantization
Conditions, Funct. Anal. AuDI., ! (1967), 1-13.

, A. D. Space-Time Caustics, Internat. _J. Math. & Math. Sc_i. _9
1986), 531-540.

MATHER, J. Stability of C- MappinEs If, Infinitesiml Stability Implies
Stabilit, Ann. Math., 8_9 1969 ), 254-291.


