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ABSTRACT. In this note, we consider the multipliers on weighted H1 spaces over
totally disconnected locally compact abelian groups with a suitable sequence of open
compact subgroups (Vilenkin groups). We first show an (Hl,Ll) multiplier result from
ﬁhich Onneweer's theorem follows. We also give an (HI,HI) multiplier result under a

condition of Baernstein-Sawyer type.
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1. INTROUDCTION.

Recently, Onneweer obtained a weighted Lp multiplier theorem [l, Theorem 1] over

a Vilenkin group which is a generalization of Taibleson's theorem over a local field.

In this note, we show a weighted (HI,LI) multipler theorem under a weaker
hypothesis than [1, Proposition 2], and show the Onneweer's theorem, by using an
extended interpolation theorem for weighted Hl and LP spaces. We do not know whether
this multiplier is also a weighted (Hl,Hl) multiplier. But we are able to show that a
Baernstein-Sawyer type condition [2] which is stronger than Onneweer's, implies a

weighted (Hl,Hl) result. This is also a generalization of Theorem 2 [2].

2. DEFINITIONS AND NOTATIONS.

Throughout this note, G will denote a locally compact abelian group with a

-]
sequence {Gn}-° such that
(i) each Gn is an open compact subgroup of G,

(i1) Gn+

1 ‘::F Gn and order (Gn/GnH) { =,

00

(iii) l;) G =G and f\cn = {0}.

o
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Moreover we shall assume that G is order-bounded, 1i.e.;
B: = sup {order (Gn/Gn+l); n € 2} < =,

Let T denote that dual group of G and for each n € Z, let I‘u denote the
annihilator of Gn' Then we have
(i)' each I‘n is an open compact subgroup of T,

[ C =
(ii) 1' r nt and order (Fn+1/I‘n) order (Gn/cn+l)

1
(iii)'b I‘n =T and(w\ Fn = {1}.

We choose Haar measures uonG and XA on T so that u(G ) = X(I‘ ) =1, then
u(G ) = (A(T )) ¢ = (m ) for each n € 2. For an atbitrary set A we denote its
indicator functlon by EA The symbols A and vV will be used to denote the Fourier and
inverse Fourier transform respectively. It is easy to see that for eachn € Z we

-1 -1
have (EGn) = (X(Fn)) Ern. We set D (u(Gn)) Ecn for each n € Z.
We now define the weighted LP spaces. For a ¢ R, we define the function v, on G

by v (x) = (m ) if x (G \G (ne 2); = O if x = 0. We denote the LP spaces with
respect to the measure du =V du on G by L (G), simply LP Also for 1 € p < =, we
set

||f”p’a:- (Gf [£(x)] Pdua)l/P.

Let S(G) be the set of all functions ¢ on G such that ¢ has compact support and
is constant on the cosets of some subgroup Gn(n depends on ¢) of G. The functious in
S(G) are called test functions on G. It is well known that if a > -1, then S(G) is
dense in Lg for 1< p<( =,

In order to define the weighted Hardy spaces on G, we first define weighted atoms
on G. Let 1 < q € =, A function a(x) on G is a (l,q)a atom if there exists an
interval I = In(x): = x + Gn’ x € G, n € Z such that

(1) supp a is contained in I,

4 Gy I lacol? M <, 1e1¢q <

and |aG0)| <u (D7, 1f q = =,

(iii) [ a(x)du = 0.
The weighted Hardy space Hi’q(G), simply Hi’q, is the space of all functions f on
L)
on G such that f(x) =L N(ak(x),
0

h he a ' >
where the a 's are (l,q)ol atoms and Zolkk' { ®, We set ”f“ Hl'q: = inf EZ’Akl, where

the infimuum is taken over all h .
such decompositions. Then Hq’q is a subspace of Li and
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a Banach space with the norm ”.H 1,q4" It also follows easily from the definition
b

that a
l,q l,q
1,» ) *1

H(t C Ha C HCL

whenever 1 < 9, < q, < ®, We denote Hl’m

1 1 o
that H °3 = H if -1 <Ca <0and 1< q< =.

a a
We say that m € Lm(I‘) is an (X,Y) multiplier (or a multiplier on X, when X = Y)

by Hi. In the following section, we show

if there exists a constant C > 0 so that

[1ca®) [1y < cllelly for all ¢ ¢ XNS(G)

where X and Y are equal to H; or LE.

According to [l], we say that ¢ eLm(I‘) satisfies condition C(k,r) for
some k € Z and r € [1,#) if there exist C, € > 0 so that for all £, n ¢ Z with

n < £ have

v v
sup (¢ [ [ y) - (09 |F a5 ye g,
\G
nt n+l

/!

1 + € -
<c(m) ()™, 1£1<r <,

and there exists C > 0 so that for all £ € Z we have

k.Y kY
sup { | [(6°) (=y) = (0 (O |dus y 6} <c, ifr=1,
GG,
where ¢k = ¢ Er for each k € Z and r' denotes the conjugate exponent of r.

Let —® Ca<®, 1<p<»®and 0< q <= A function f on G belongs to the Herz
space Kap’q(c), simply K:’q, if

- J
- 1
el gt = CEl@p™ee || pHY9 ¢,
k29 -w n G\G
P Nt

with the usual modification if q = «[3].

We now state the main theorems:

THEOREM 1. Let ¢GL°(I‘) and suppose that ¢ satisfies condition C(k,r) for some
k €Z and r ¢[1,%). Then ¢k is an (Hi, L‘lx) multiplier for -1/r' < a < 0.

As a Corollary we obtain Theorem 1 of [1]:
COROLLARY. Let ¢ € LQ(I‘). (1) Suppose that condition C(k,r) holds for all k € Z,
for some r ¢ (1,7), and with constants C and € independent of k € Z. 1If ¢ is a

multiplier on Li for some % with -1/r' < a < 1/r', then ¢ is a multiplier on LP for
all p, a such tgat 1 <p<=and -Ia.ol < ac< (p-l)laol. *
(i1) If C(k,1) holds for all k € Z, and with C independent of k € Z, then ¢ is a
multiplier on LP for 1 <p <K=,
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THEOREM 2. Let ¢ € Lw(F) and suppose that there exist r € [1,2) and € > 0 such
that

|I(¢j§v 1 Ki+1/r',°° <c (mj)—e for all j € Z,

where ¢j: =9¢ EP for each j € Z, then ¢ is a multiplier on H; for

r.
1< r'a < 0. N T

3. PRELIMINARY RESULTS.

To prove Theorem 2, we need the "maximal function" characterization of Hl For

f locally in L (G) we define the maximal function M f of £ by
1
M E(x): = sup { D II [£(y) |au (0},

where the I's are intervals containing x. When a = 0, we denote Ma by M, simply.
LEMMA. Let a > ~1.

(a) b (x46 ) <Cu (x+G ) for all x € G and n € Z,
(b) H is of weak—type (l l) on L1 and is of type (p,p) on Lp for 1 < p £ =,
(c) If o < 0, then for all 1nterval 1

u (1) € € u(1) inflv (y); y € I, y # O}.
(d) If &« < 0, then M is of weak-type (1,1) on Li .

PROOF. (a) and (c¢) are Lemmas 1(b) and (c) in [1]. (b) follows from (a). By
(c), we have that Mf(x) < C qu(x) f?r each x € G.1 Then (d) follows from (b).1
THEOREM A. Let a > -1. An f La belongs to Ha if and only if f*: = Mf La .
Moreover ||f|| 1 is equivalent to 'lf*lll’a .
a
A slight modification of the argument in [2] establishes the result, so we omit
the proof.

THEOREM B. Let -1 < a < 0. Then Hi’q = Hi, for 1 < q < =.

PROOF. We have already seen that Hi is continuously included in Hi’q, for each
1<q<= In order to establish the opposite inclusion, it suffices to show that a
(l,q)a atom a has the representation

a(x) =g ljaj(x) (3.1)

where each aj is a (1, )a atom and Z 'A ’ € C, C independent of a. Like the non-~
weighted case, this can be done by us?ng the Calderon-Zygmund decomposition [4], [5].

Let a be a (l,q)a atom that 1s suppported on I: = x0+ G (x, € G, n.€2). We
n
let b(x): = ua(I)a(x), then supp b € I, [ b(x)du(x) = 0, andollbllq < uw ().
q,a a
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For t > 0 (we shall be explicit later), we denote the open set
{x € G: Mz (b) > t}: = {x€ G; Ma(|b|q)(x) > t9) by Ut' We note that UtC I for t
> 1. (This is easily seen from the fact that for any two intervals in G, they are
disjoint or one contains the other). Lemma (b) implies that

q q q
ug(U) < Clibllq’u /£ < cu (D)/t (3.2)
and ua(Gk) + ® 38 k * -~ [1, Lemma (a)]. Thus we have the decomposition

Ut: = \jJIj; where the I,'s are maximal disjoint sub-intervals of Ut' The Calderon-
Zygnund decomposition is now that b(x) = go(x) +§ hj’ where go(x) = b(x) if

x ¢ Ut; = m(b,I )

] ]

) if x € I, and h,(x) = (b(x) - g,(x)) & (x), and where m(b,I
3 3 0 Ij

denotes the average of b over I, with respect to M. Then the maximality of

3

the Ij's and Lemma (a), (b) imply that lgo(x)l < Cot, B, —aee. and
1 1 q 1/q
—_———— € (———o < =
(1) fI Inylang < Gy 1 Inyltany 2Cyee= Cyt
o R
by Lemma (c). If we set (Clt)-lhj = bj’ then b
q
||bj‘|q’q < uy(1,) for each j.

1

is supported in , I b-1 dy = 0 and

3 5

The idea will be now to do for each bj the same kind of decomposition that we
performed for b (with the same t) and to build an induction process which will
eventually lead to the decomposition (3.1). We shall use multi-indices for the

successive decomposition, in the following way:

b(x) =g (x) +I h, (x) =g (x) +CtlLl b, (x)
0 % 30 0 1j0 10

= go(x) + Clt z (g‘1 (x) +L h (x))

jo o jl jo’jl

-go(x) +Clt z gj (x)+C1t .Z hj iy (x)
0 jged; 701

(x) +ooet (Clt)n P g (x)

=g +Cit I g Joeeod
jO""’Jn-l 0 n-1

o

n .
+ (Clt) L hjo""’jn(X) (3.3)

jo"'.ljn

for each n € N, where, H (Clt)—lh d

b an
jo"")jn_l jo’...’jn—l

@ o (3 o
o a Pgg,eead ) > el <C VQ(IJO’...,Jn_l)/tq
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iy M o > U
TR LA R T IORR I

(111) h . C1 , h -
supp Jon'-'»JnC .']0;'0".1“ f jO"..’jn du 0
S S q 1/q
W G T ! LI L R
0’ 2dq Joreeeid,

x| <ct,

(v) o

g
I jo)"' ’jn-l

for every jo,...,jn and n € N.
By using (i), (ii) and (iv), we see that the L;-norm of the last term in the right

hand side of (3.3) is bounded by (Ctl-q)n+l

that C':l-q <1, we have that

ua(I). Hence for 1large t > 0 so

b(x) =g (x)+Ct I g (x)+...
& 1 3 10
+(C,0) = g (x) + eee, in LY.
1 jo”"’jn—l jo,...,;]n_l a

-1 -1
Let a := (C.tu (I)) "g, and a = (C tdu (I, )) f
0 0" a 0 Jo)"')jn_l 0 « Jo""ijn_l gjor""jn_l or

each jo,...,jn_l, n € N, then these are (l,°°)u atoms by (iii) and (v). Thus we obtain

that
a(x) = ua(l)-lb(x)

Cotitg (D (ay(Dag () + €t T uy I ) ay (o) +oee
jo 0 0

(x) +..4),

+

(Clt)n I

u (1 )a
jo,-....jn_l e jo""’jn_l jo’...’jn—l

which is the desired representation (3.1). For, the sum of the absolute value of the
coefficients of the right hand side 1is bounded by Cot £ (Ctl-q)k: =C, C

independent of a. This completes the proof. 0

THEOREM C. let -1 < a < 0and 1l < P, < =, Suppose that T 1is a sublinear

operator of weak-type (1,1) on HL, by which we mean that there exists Bo such that

for every f € H; and t > 0;
wlx G [TEGO| > by < By|[g]| | /e,
H
a

zl with constant Bl. Then for 1 < p < P> T is of type

(p,p) on Lz with constant depending only on B_, Bl, P, and p.
PROOF. The proof is similar to the non-weighted case [4], [5].

and T is of weak-type on L

Let f Lz and choose a q so that 1 < q < p < P, < =, As in the proof of
Theorem B, we consider the open set E := {Mg f> ¢t} = {Mq(lflq) > td}, for t > 0.
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Then we have the same kind of decomposition; Et = Y I, . From this we obtain a

j
Calderon-Zygnund decomposition f = g, + ht' where g = £ if x ¢ Et; = m(f,Ij)
if xel for each j, and h: =h =1L h ,where h := (f - g ) & . We then
t 3 3 ] t Ij

have |gt(x)| < Cot and

(

1
{ lhj‘q dua) /a < Clt

1 _
uq(Ij)

. -1
for each j € N. Hence aj. (Cltua(lj)) hj

is a (l,q)a aton and

€ H;’q. And Theorem B implies that h € Hi with norm bounded

h = clt § ua(Ij)aj

by Ctua(Et)’ The rest of proof proceed as in [4], [5] with a few modifications, so

we omit the details.

4. PROOFS OF THE MAIN RESULTS.

PROOF OF THEOREM 1. Let -1/r' < a < 0, To prove the conclusion, it suffices to
v
.show that ||K*a||l a < C for every (l,°°)u atom a, where K:-(¢k). Let a be such an
’

atom, supported on an interval I = +G (x,€ G, n€2Z). We write
*o n 0

f |K*a| du(x = f + f = A + B, say.
G I G\I

Let first r = 1 (hence a = 0). Then

A< ([ |xxato]? ant’? ([ ant? < c]|a|], wDY? < c wnT wn = c.
1 I

On the other hand,

B=/ | [ Kxyaly) @ (0] dux) = [ | [ Kx=y)-K(x-x;))aly)du(y)| ducx)
G\1 G G1 G

< S |a] auy) [ [RGx=y)K(x=x)| du(x)
I G1I

= Ia(x +y)| du(y) [ 'K(x-y)-K(x)'du(x) <c/ Ia(x +y)| du(y) < c.
0 0
G G\G G
n
hence the conclusion follows, when r = 1. This together with Theorem C implies the

conclusion of Corollary (ii).

Next, let r > 1. To estimate A, we use Corollary (ii) and Lemma (c). Then
A< () R antT ([ w en™ an'/F < clla]|, {"ar""’d“)”r
I I
< g WY w@Y tnelv s x € 1, x# 0} < a7 um =c.

On the other hand, using Lemma (c) again,

B< [ ap|any) [ [RG=y)-K(x-xp)| v (x) du(x)
1 G1
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= [ Jalxg |anty) [ JRGEDRE| v Gebx) dulx)
G G\G

n n

= L | 'a(x0+y)| auly) [ ‘K(x-y)—K(x)l v (x¥xg) dulx)
== G G\Cg41
n-
<1 faxgty)| auty) |[k(x-y) k() | T ancx) /T
* Gn FA N2
x ( Vo (%) du(x))l/r
Gﬁ.\czﬂ
n-1 e+l/r' -€ -1/r'
< ¥ |a(x0+y)| du(x) (mp) (m) " my)
- Gn
x inf {vu(x); x € I, x # 0}
e n-1 c
< ¢(m) L (my) ] ’a(x0+y)| vy (xgty) duly) < Clm )¢ “ ”1 «
- ® G

n
This completes the proof.

PROOF OF COROLLARY. (1) Since ¢ € L“(F) is amultiplier on LZ, it follows from a
classical interpolation theorem Ffor weighted spaces [6] and [l, Proposition 1]
that ¢ is a multiplier on Lz for all -IaO' < acx 'aol. As in the proof of [I,
Theorem 1], the case where 1 < p < 2 and -|a0| < a € 0, has to be proved.

Let 1 < p < 2 and - a < ac<0. Since each ¢k, k € Z is a multiplier on L2 and
[

. ,L ) multiplier by Theorem 1, it follows from Theorem C that ¢k is a

also a (H
multiplier on Lg. The assumption that the constants C and € are independent of k,
implies that ¢ is a multiplier on Lg.
(11) This is already seen in the proof of Theorem 1.
PROOF OF THEOREM 2. According to Theorem A, it suffices to show that

"(¢*a) ||1 a < C for all (1, °°) atom a. Let a be a (1, w) atom, supported on an
interval I°-x0 + Gn(x € G, n & Z). We set ¢*a = f. The case where r = 1
(hence a = 0) is known [2, Corollaryl. So we let 1 <r < ® and -1/r' < a € 0. Now

we write

f frdu = [+ ] =4a4+B8, say.
G I G\I

We first estimate A. Since Kl/t toe® Ki’o Lemma (b) and [2, Corollary]

imply that Hf*Hr < Cllfllr < C||a||r. Thus as in the proof of Theorem 1, we have

that

A< (LT fuantT < [laf] sV tnetv (05 x €1, x # 0)
I 1

< a7 um = ¢ 4.1)
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Let y(v): = (v, x0)¢(Y) and b(x): = a(x+xo). Then it is easily seen
that f = ¢*a = Y*b, supp b Gn’ and Ibdu = 0. Thus we have that
% = < * . * .
b Dk 0 if k € n, and supp (b Dk) C Gn if k > n. Also (b Dk)j

—Dj) =01if j » k and (b*Dk) =b, if j < k. Moreover bj-O, if j < n.

T 0y T
Hence
* v o % v v
£ (x) = (¥*b) " = sup |(¥*b)*D, (x)| = sup |V *(b*D) (x) |
k k>n
© v k-1 v o v
=sup | I *@*0) (0| = sup | T (v b G0] < (v W]
k>n b k>n n n
Then,
* Ao v ® n-1
B= [ £ < D[ fGu) sl = Io2 [l #laug, 4.2)
G\1 n G\I SR A I

where Ii: = X + Gi for each 1 € Z.

Now for i < nm,

v
(v)) *G) = [ (¥ ) (9)b(x-y) duly)
¢

= [ + +

Lin INL 4 e\

If x € 11\1i+l andy €L, xy € (’1\G1+1C GG. Also

if x € L, 1, ady ¢ L, xy € G\GiC G\Gn' These, together with
supp b C Gn imply that the first and last terms of the right hand side of the
equality are zero. Thus (4.2) is bounded by

© n-1 v
T O g%y,

j= i=—= J 1

n~1

[ ey [ |08y Y-y |du (x) (4.3)
- G J I @

i

"~
9™ 8

where Ji: = 11\11_'_1 for each i € Z. Now, Lemma (c)
[ 1w e, )y |du (o
X-y u_(x
AJRE o
< et G| T T fv o aueo)
J, Iy 1, ¢
i v 'i
< (f ) @[T @) it v (05 x € 1,, x # 0}
3 3 ¢
- |Co)" (0] Fauan)
SNG4

(mi)

l/r(mi)_lh:'inf{va(x); x € Ii’ x # 0}
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Hence (4.3) is bounded by

® -1
< I I f Ia(y+x0)|du(y)inf{vu(x); X € Ii’ x # 0}
j=n i=~»
x ()™M [0, 0| Fau) M
GA\G, J
iN i+l

Since I = Lci, (1 <n) and “a“l,u <L

© n-l '
B<C L L (mi)-—l/r ( f ‘a(y)ldu(y) inf{va(x); x € I, x # 0}
j=n  i=-w I

v
x( f o) o[ Fauean
('i Gi+l

= ol -1/ €) ITTNY.
<c oz @ omfmp Ty |(¢j> [ Faw) ' *

n = CiN\Sqa1

o -] v © n-1
<c z z af || <C z (m)® & wfcc. (4.4)

Loz 2 JHKiHh,’“ R

*
Hence, we have that Hf ”l a < C by (4.1) and (4.4). This completes the proof.
»
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